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Abstract— We present an algorithm to implement the second
order Newton method on ordinary differential equation (ODE)
and partial differential equation (PDE) optimization programs.
The algorithm is based on the direct computation of the New-
ton step without explicitly calculating the second derivative
(Hessian) of the objective function. The method poses the
search for the Newton step as a convex quadratic optimization
program. We apply our method to (a) dynamical systems
driven by ODEs and to (b) constrained PDE optimization
programs in the context of air traffic flow. In both cases,
our implementation of the Newton method shows much faster
convergence than first order algorithms, while not significantly
increasing computational time.

I. INTRODUCTION

Optimal control of ordinary differential equations (ODEs)
and partial differential equations (PDEs) includes, among
others, applications in trajectory planning [6], aerodynamic
design [9], [10], [4], turbulent flow control [3], [1] and air
traffic flow control [2]. For such problems, the decision
variables are continuous functions – as the geometric shape
of an airfoil in aerodynamics or the velocity of the air
traffic flow – and thus, when discretized, could result in
a very large set of discrete design variables. Therefore,
from an optimization standpoint, control of ODEs and
PDEs generally consists of a high dimensional optimization
program. For such programs, first order methods such as the
gradient algorithm, the smoothed gradient method, or the
steepest descend method have proved to give particularly
low performance when the condition number of the Hessian
of the objective function is large [5].
A standard method to overcome the difficulties of first
order methods is the Newton method. In this approach,
the descent direction is chosen as the minimizer of the
second order approximation of the objective function. The
drawback of the Newton method is that the second deriva-
tive of the objective function (the Hessian) needs to be
computed – and inverted. For an objective function whose
variables are subject to PDEs constraints, there exists no
systematic procedure to derive the Hessian. Therefore, only
algorithms approximating the Hessian are currently used.
The major example is the quasi Newton method [7] which
builds up second derivative information by estimating the
curvature along a sequence of search directions. However,
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the length of the sequence is proportional to the number
of variables [11], which is problematic in high dimensional
optimization.
In this paper, we propose a method to compute the Newton
step directly – without having to compute explicitly the
Hessian of the objective function. We pose the search for the
Newton step as an auxiliary convex quadratic optimization
program, in which we minimize the norm of the first
order approximation of the gradient. The constraints of this
auxiliary problem are the linearized forms of the original
PDE and its adjoint equation; they represent the dependence
of the first order variation of the state and the costate on
the first order variation of the input. This quadratic program
is solved using standard PDE optimization techniques such
as the conjugate gradient method if the Hessian is positive
definite, or the gradient algorithm if the Hessian is not. In
the particular case of ODEs, the variables can be easily
discretized to obtain either a non-singular linear program
or a standard discrete quadratic program.
In Section II, we introduce the class of problems we propose
to investigate and we shed some light on the difficulties of
first order methods. In Section III, we present our method to
implement the Newton method. In Section IV, we illustrate
this approach through applications in trajectory planning,
and applications in air traffic flow control. We compare the
performance of our Newton step approach with that of the
gradient algorithm and the smoothed gradient algorithm.
We show that the Newton method performs much better,
particularly when the decision variables are constrained.

II. OPTIMIZATION OF ODES/PDES: PRESENTATION

AND PREVIOUS WORK

A. Problem formulation

We will consider optimization problems in which vari-
ables are constrained by differential equations.

Minimize J(u, x)
Subject to N (u, x) = 0

r(u, x) ≤ 0
(P1)

J is a twice differentiable real value function; u is the
continuous control variable and is, in most engineering
applications, a function of time and/or space; x is the
continuous state variable and is also generally a function
of time and/or space. N is an operator, possibly nonlinear,
which represents the governing differential equations of the
system. Finally, r is a twice differentiable function, and
represents constraints on the state and the input variables.
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Example 1: Dynamical systems driven by ODEs.
We first consider an example in which N (u, x) = 0
encodes an ordinary differential equation (ODE) of the form
ẋ(t) = f(x(t), u(t)). Furthermore, we write the problem as
a standard optimal control problem of a dynamical system:

Minimize J(u, x) =
∫ T

0 h(x(t), u(t)) dt
Subject to ẋ(t) = f(x(t), u(t)) , x(0) = x0

r(u(t), x(t)) ≤ 0

(P2)

The constraint r(u(t), x(t)) ≤ 0 represents bounds on the
admissible input and the authorized state of the system. The
particular case of aircraft trajectory planning will be chosen
for the numerical demonstration of our algorithm.

Example 2: Transport PDEs for Air Traffic flow.
In the second example, N (u, x) = 0 encodes transport
PDEs involved in air traffic flow. It has been demonstrated
[2] that flow of aircraft can be analyzed and controlled using
an Eulerian viewpoint of the airspace. In this formulation,
the state variable of the system is the density of aircraft
ρ(s, t) (s being the position), which represents the number
of aircraft per unit length of jetway. The control variable
is the velocity v(s, t) which the air traffic controller can
prescribe to the aircraft located at position s and time t.

position

de
ns

ity

ρ
max

ρ

Fig. 1. Left: Air traffic flow from New-York, Boston and Montreal landing
in Chicago, over a 24 hour period. Right: Given a spatial distribution of
aircraft, the density ρ(s, t) is defined as the number of aircraft per unit
length of jetway.

Given a velocity field v(s, t), the density of aircraft satisfies
the continuity equation [2]:

∂ρ(s, t)

∂t
+

∂ρ(s, t)v(s, t)

∂s
= 0 (1)

The problem we propose to solve is the following: We
would like to determine the velocity field which maximizes
the number of aircraft landing at the destination airport
under the constraint that the density does not exceed the
safety density ρmax.

Minimize J(ρ, v) = −
∫ T

0 ρ(L, t)v(L, t) dt

Subject to ∂ρ
∂t

+ ∂ρv
∂s

= 0
ρ ≤ ρmax , vmin ≤ v ≤ vmax

(P3)

−J(ρ, v) represents the total number of aircraft landing at
the final destination s = L . vmin and vmax are bounds on
the authorized aircraft velocity.

B. Descent Algorithms

Problems (P1)-(P3) are subject to both inequality and
equality constraints. We first eliminate the inequality con-
straints on (P1), using a logarithmic barrier

Minimize J(u, x) − ε1T log(−r(u, x))
Subject to N (u, x) = 0

(P4)

(P4) and (P1) are equivalent when ε → 0. The prob-
lem is now to find a descent direction for the control
input u. For convenience, let us note I(u) = J(u, x) −
ε1T log(−r(u, x)) , with x such that N (u, x) = 0. Work
by Lions [12] and then Jameson [9] has shown that the
gradient ∇I(u) can be derived using the adjoint method.
This method returns the gradient of I as a function of the
control input u, the state x and a costate p : ∇I(u) =
G(u, x, p). The costate q solves a backward PDE, called
the adjoint equation: N ∗(u, x, p) = 0.

C. Disadvantanges of first order methods

First order methods such as the gradient algorithm or the
smoothed gradient method perform poorly when the condi-
tion number of the Hessian of I is high (say, 100). In these
cases, some components of the gradient highly fluctuate
as a function of u whereas some other components vary
slowly with u. Components with high amplitude and high
fluctuations are updated while the other components remain
almost unchanged during the algorithm. This phenomenon
is illustrated in Figure 2, which shows the control variable
as well as the gradient of a dynamical system for which the
control variable is upper bounded. This example has been
borrowed from the trajectory planning problem discussed
in Section 4. The control variable u(t) corresponds to the
turning rate angle w(t). At points at which the constraint
is active, the gradient is “noisy” and is high in amplitude,
and at points at which the input variable is far from the
constraint, the gradient is not updated, although it should
be since the gradient at these points is non zero.
Other methods such as the steepest descent method are
problem dependent and need a good choice of precondi-
tioner, i.e. a good change of coordinates, which may not be
easy to find. In contrast, the Newton method automatically
rescales the variables of the problem in Hessian norm
which considerably descreases the condition number of the
Hessian near optimum, leading to robust and very fast
convergence [5]. In next section, we will propose a method
to derive the Newton step for optimization programs of
ODEs/PDEs.

III. SECOND ORDER METHOD

A. Newton step

For any control input u, the Newton step ∆unt is defined
as the input that should be added to u in order to set the
first order approximation of the gradient to 0. Therefore,
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Fig. 2. Example of gradient descent iterations, for a problem in which
the control variable u(t) is subject to the constraint u(t) ≤ umax. Top
left: 5 updates of the control variable which are almost indetectable from
each other. The 5 updates, u(t) , t ∈ [0, 3T/4] are gathered on the solid
line and the constraint is represented by the dashed line. The gradient
algorithm is unable to update u(t), although it is far from being optimum.
Bottom left: Difference between the 5 updates, u(t) , t ∈ [0, 3T/4]. The
difference is very small (of the order of 10−5). Right: 5 updates of the
gradient. The gradient is updated for the times at which the contol variable
is almost optimum: t ∈ [0, T/4], and not for the others: t ∈ [T/4, T ].

using ∇̂I(u + δu) to denote the first order approximation
of ∇I(u + δu), we have:

∇̂I(u + ∆unt) = ∇I(u) + ∇2I(u)∆unt = 0 (2)

∇2I(u) denotes the second order derivative of I , and is
also referred to as the Hessian, noted H. Now, in order to
compute ∆unt, we need to give an explicit expression for
H. For this purpose, we write the first order variation of
the gradient ∇I(u). Recall that the gradient is a function
of the input, the state, and the costate: ∇I(u) = G(u, x, p);
thus

∇I(u + δu) −∇I(u) = ∇u G(u, x, p) δu
+∇x G(u, x, p) δx
+∇p G(u, x, p) δp + O||δu||2

(3)
Keeping only the first order terms, we obtain

Hδu = ∇u G(u, x, p) δu + ∇x G(u, x, p) δx
+∇p G(u, x, p) δp

(4)

δx and δp are the first order variation of the state and the
costate generated by a first order variation of the input δu.
Therefore x+ δx and p+ δp solve the state and the costate
PDEs to the first order:

N (u + δu, x + δx) = O||δu||2

N ∗(u + δu, x + δx, p + δp) = O||δu||2 ,
(5)

which can be written as

N̂ (δu, δx) = 0 , N̂ ∗(δu, δx, δp) = 0 (6)

in which N̂ represents the linearized form of N and N̂ ∗

represents the linearized form of N ∗. Finally, using (4), (6)
and (2), the differential equation satisfied by the Newton
step ∆unt reads

∇u G(u, x, p) ∆unt + ∇x G(u, x, p) δx
+∇p G(u, x, p) δp = −G(u, x, p)

N̂ (∆unt, δx) = 0 , N̂ ∗(∆unt, δx, δp) = 0

(7)

In the case in which N (u, x) encodes an ordinary differ-
ential equation, this system of equations is a linear system
of ODEs and can be solved numerically using semi-implicit
linear discretization schemes. In other cases, this system
is a linear system of PDEs and we propose the following
auxiliary optimization program to compute ∆unt:

∆unt = argmin
δu

{||Hδu + ∇I(u)||2}

subject to N̂ (δu, δx) = 0

N̂ ∗(δu, δx, δp) = 0

(P5)

where H is given by (4).
In this optimization program, the Newton step ∆unt is
expressed as the minimizer of the the first order approxima-
tion of the gradient. Mathematically, the constraints of this
problem are homogeneous linear PDEs and the objective is
a positive definite quadratic form. Therefore, the problem
is a (convex) quadratic program, which certifies that a
descent algorithm will return a global optimal solution, i.e.
the Newton step. We can solve this optimization program
for PDEs in the following manner. (a) If H is positive
definite, we use a conjugate gradient method [8]. The
computation of ∆unt is then easy and very fast. (b) If H
is not positive definite, we use a gradient descent method
and the complexity of this procedure is roughly the same as
the complexity of the original problem. Therefore, we could
argue that, for this last case, a gradient algorithm might fail
to converge in implementation and therefore not return the
exact Newton step. This issue is resolved in practice. For
most cases, an estimate for the Newton step is sufficient
and the one given by the auxiliary optimization problem
is usually a good descent direction, much better than the
gradient one. This will be illustrated in the framework of
the air traffic flow example.

B. Application to Dynamical Systems

We will now show how this approach can be applied
to dynamical systems driven by ODEs, as introduced in
example 1 of Section II-A.

1) Perturbation of the gradient: The gradient of the
objective function I can been derived as ∇I(u) =
G(u, x, p) = ∇uf(x, u) p+∇uh(x, u) [6]. Therefore a first
order variation of ∇I(u) leads to

∇I(u + δu) −∇I(u) = ∇uf(x, u) δp
+∇2

u pT f(x, u) δu + ∇2
xu pT f(x, u) δx

+∇2
u h(x, u) δu + ∇2

xu h(x, u) δx + O||δu||2

(8)
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where ∇uf is the matrix whose ith row and jth column is
∂fj

∂ui
, and where ∇2

xuh is the matrix whose ith row and jth

column is ∂2h
∂ui∂xj

. Therefore,

Hδu = (∇2
u pT f(x, u) + ∇2

u h(x, u) )︸ ︷︷ ︸
H1

δu

+ (∇2
xu pT f(x, u) + ∇2

xu h(x, u) )︸ ︷︷ ︸
H2

δx

+∇uf(x, u)︸ ︷︷ ︸
H3

δp

(9)

The variation of the state and the costate: δx and δp satisfy
the following linear ordinary differential equation:

[
˙δx

δ̇p

]
=

[
∇xfT 0

−∇2
xh −∇2

x pT f −∇xf

]
︸ ︷︷ ︸

A(t)

[
δx
δp

]

+

[
∇ufT

−∇2
uxh −∇2

ux pT f

]
︸ ︷︷ ︸

B(t)

δu

(10)

2) Derivation of the Newton step via linear program-
ming: We can now discretize this linear ODE accurately
using semi-implicit numerical schemes. Posing y = (x, p),
we discretize (10) as follows

δy(k + 1) − δy(k) = 1
2

(
A(k + 1) δy(k + 1)

+A(k) δy(k)
)

+ 1
2

(
B(k + 1) δu(k + 1) + B(k) δu(k)

)
(11)

for k = 0, . . . , N − 1, where Ndt = T .
Finally, the Newton step can be found by solving the
following linear program of variables δu, δx and δp.

H1(k)δu(k) + H2(k)δx(k)
+H3(k)δp(k) = −∇I(u(k))

δx(0) = 0 , δp(N) = 0
δy(k) = (δx(k), δp(k))
δy(k + 1) − δy(k) = 1

2

(
A(k + 1)δy(k + 1)

+A(k)δy(k)
)

+ 1
2

(
B(k + 1)δu(k + 1) + B(k)δu(k)

)
(12)

where the first and fourth equations have to be satisfied for
k = 0, . . . , N , and the last equation has to be satisfied for
k = 0, . . . , N − 1.
Remark: In the case in which the linear system (12) is sin-
gular, the quadratic program (P5) has to be solved instead.
It will return the descent direction δu which minimizes
the Euclidean norm of the first order approximation of the
gradient.

C. Application to Air Traffic Flow

We will now show how to derive the Newton step in the
case of the air traffic flow control problem, introduced in
example 2 of Section II-A.

1) Derivation of the auxiliary optimization program:
The gradient of the cost function with respect to the control
input can be derived as [2]

∇I(v) = ρ
∂p

∂s
+

1

M
(

1

vmax − v
−

1

v − vmin
) (13)

where the costate p satisfies the following backward PDE

∂p

∂t
+ v

∂p

∂s
=

1

ρ − ρmax
, p(s, T ) = 0 , p(L, t) = −1

(14)
Perturbing ∇I(v) to the first order, we get the expression
for the Hessian in terms of the variations of the input, of
the state and of the costate.

Hδv = δρ
∂p

∂s
+ ρ

∂ δp

δs
+

1

M
(

δv

(vmax − v)2
+

δv

(v − vmin)2
)

(15)
A first order perturbation of the state and the costate
equations gives:

∂ δρ
∂t

+ ∂ δρ v
∂s

= −∂ρ δv
∂s

∂ δp
∂t

+ δv ∂p
∂s

+ v ∂ δp
∂s

= − δρ
M(ρ−ρmax)2

(16)

All boundary conditions are trivial and have not been
stated because of space constraint. We are now in a position
to form the cost function for the auxiliary optimization
program:

JA =
∫ L

0

∫ T

0
(Hδv + ∇I(v))2 dt ds

=
∫ L

0

∫ T

0
(∇I(v) + δρ∂p

∂s
+ ρ∂p

∂s
+ δv

M
k)2 dt ds

(17)
where, k = 1

(vmax−v)2 + 1
(v−vmin)2 . The problem is to find

the minimizer of this cost function given the system of
PDEs (16).

2) Solving the auxiliary optimization program: In order
to solve the auxiliary optimization problem, we compute the
gradient of JA with respect to δv given the system (16). For
this purpose, we perturb both JA and (16) to the first order.
Note that v, ρ and p are fixed parameters of the problem.

δJA =

∫ L

0

∫ T

0

a(δ2ρ
∂p

∂s
+ ρ

∂δ2p

∂s
+

δ2v

M
k)dt ds (18)

where a = 2(∇I(v) + Hδv).

∂ δ2ρ
∂t

+ ∂ δ2ρ v
∂s

= −∂ρ δ2v
∂s

∂ δ2p
∂t

+ δ2v ∂p
∂s

+ v ∂ δ2p
∂s

= − δ2ρ
M(ρ−ρmax)2

(19)

In order to eliminate the terms both in δ2ρ and δ2p in
δJA, we introduce two new costate variables q(s, t) and
r(s, t). Multiplying respectively the PDE satisfied by δ2ρ
by q and the PDE satisfied by δ2p by r; integrating twice by
parts and making the right choice for the adjoint variables
q and r, we can replace the terms in δ2ρ and δ2p by terms
in q and r, and we get the following expression for the
variation of JA:
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δJA =

∫ L

0

∫ T

0

(
a k

M
− ρ

∂q

∂x
+ r

∂p

∂s︸ ︷︷ ︸
∇JA

) δ2v dt ds (20)

provided that

∂r
∂t

+ ∂rv
∂s

= −a∂ρ
∂s

− ρ∂a
∂s

∂q
∂t

+ v ∂q
∂s

= a∂p
∂s

+ r
M(ρ−ρmax)2

(21)

3) Algorithm: The algorithm to find the Newton step is,
in the general case, a gradient descent on JA.

Newton step search Algorithm

Given (u, ρ, p), form ∇I(v) and k. Set the starting value
for δv as −∇I(v)M/k
Repeat:

1. Solve for δρ and δp (16). Form a (18).
2. Solve for r (21), then for q (21) and form ∇JA (20).
3. Line search: Compute β > 0 such that JA(δv−β∇JA)
is minimized.
4. Update: δv := δv − β∇JA.

Terminate when ∇JA is small.
Return ∆vnt = δv.

IV. RESULTS

In this section, we will compare the performance of
the gradient algorithm, the smoothed gradient algorithm,
and the Newton method in the context of (a) trajectory
planning, which consists of a nonlinear dynamical system
optimization problem and (b) air traffic flow, which repre-
sents a nonlinear PDE optimization problem. The smoothed
gradient will be taken as the projection of the gradient on
the space of the Legendre polynomials of degree less than
6.

A. Trajectory planning

We implement the Newton descent algorithm in the
context of trajectory planning. An aircraft pursuer has an
objective to minimize its distance from another aircraft
leader. The dynamics of the aircraft is the traditional 2D
kinematic nonlinear model.⎧⎨

⎩
ẋi(t) = vi(t) cos(φi(t))
ẏi(t) = vi(t) sin(φi(t))

φ̇i(t) = ωi(t)
(22)

Both ω(t) and v(t) have saturation: ωmin ≤ ω(t) ≤ ωmax
and vmin ≤ v(t) ≤ vmax.
Therefore, the problem reads

Minimize J =
∫ T

0 (x(t) − xleader(t))
2

+(y(t) − yleader(t))
2 dt

Subject to (22)
ωmin ≤ ω(t) ≤ ωmax , vmin ≤ v(t) ≤ vmax

(P6)

The scenario is chosen so as to fully exploit the nonlinearity
of the dynamics of the aircraft as well as the constraints
on the input variables. For instance, the heading angle is
expected to range from π/2 to −π/2 and the velocity and
heading angle rate inputs are expected to reach saturation.
For both the gradient descent and the smoothed gradient
descent, we used 50 descent iterations. For the Newton
descent algorithm, we only used 6 descent iterations. Figure
3 displays the computed trajectories. The gradient algorithm
and the smoothed gradient method both return a similar
trajectory which is far from the trajectory computed by the
Newton method. Figure 4 shows the input variables for the
3 different methods. Unlike the Newton method, the first
order methods are unable to push the input variables to
saturation when it should do so. Table I returns the costs,
where the Newton method is shown to give the best result.
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Fig. 3. Trajectories of the aircraft leader (solid line) and the aircraft
pursuer given by the Newton method (dashed line), the gradient algorithm
(dashed dotted line) and the smoothed gradient method (dotted line). The
dashed dotted and dotted lines are almost on top of each other. The Newton
method drives the pursuer much closer to the leader than the first order
methods do.
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Fig. 4. Input variables as a function of time as given by the Newton
method (dashed line), the gradient algorithm (dashed dotted line) and the
smoothed gradient method (dotted line). The Newton algorithm exploits
full potential of the dynamics of the aircraft. On the contrary, the first order
methods drive only the turning angle rate to saturation for t ∈ [0, 0.25T ].
This example is the same as the one displayed in Fig. 2, in which we had
also displayed the gradient of the objective function with respect to w for
the gradient algorithm.
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Gradient
Smoothed
gradient Newton

Final Cost (J) 0.5967 0.6003 0.5571

Computational Time 396 sec. 330 sec. 149 sec.

TABLE I. Performance of the different methods for the trajectory planning
problem. The Newton method returns the lowest cost and therefore the best
solution.

B. Air traffic flow control

In this section, we implement the Newton descent algo-
rithm in the framework of air traffic flow. We consider the
case in which a set of aircraft are landing at a destination
airport located at s = L. The problem is to compute the
velocity open loop controller which maximizes the number
of aircraft landing at s = L, for a given time interval
t ∈ [0, T ]. Furthermore, the density ρ(s, t) is subject to
the constraint ρ(s, t) ≤ ρmax. The initial density is chosen
low enough, so that no matter how fast (v = vmax) the
aircraft travel, the maximum density will never be exceeded.
Therefore, an optimal control is simply v(s, t) = vmax. This
scenario is a good test case (a) because the optimal cost for
the problem is known and (b) because most algorithms will
perform poorly when v approaches vmax. The results are
displayed in Figure 5 and TABLE II. The solution returned
by the Newton method makes the aircraft travel faster than
the first order methods, which leads to a lower cost and
therefore a better solution.
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Fig. 5. Air traffic flow control (ATC) low density case. Velocity profile
returned by the Newton method (dashed line), the gradient algorithm
(dashed dotted line) and the smoothed gradient method (dotted line), at
4 different times. vmin and vmax are indicated by thick solid lines. With
the Newton method, aircraft initially far from the airport (located at s=0.25
at t=0) speed all the way and reach the airport by t = T , thus contributing
to a high payoff, i.e. a low cost (See TABLE II).

V. CONCLUSION

We have proposed an original method to implement the
Newton method in the context of optimization for systems

Gradient
Smoothed
gradient Newton

Final Cost (J) -3.604 -2.748 -3.999

Computational Time 296 sec. 291 sec. 491 sec.

TABLE II. ATC low density case: Performances of the different
algorithms. The Newton method almost returns an optimal solution, for
which the cost is −4. The computations have been stopped when the
algorithms have converged i.e when the value of the cost function has
become stationary. The algorithms could have run indefinitely, the objective
functions would not have been improved more.

driven by ordinary differential equations and partial differ-
ential equations. Applications of the method to trajectory
planning for aircraft of nonlinear dynamics and to air traffic
flow control modeled by propagation PDEs show that this
algorithm returns better results than first order methods.
The discrepancy between the performance of the methods is
exacerbated in particular when the input variable is subject
to inequality constraints. Finally, in the context of PDE
optimization, solving the auxiliary optimization programs
slows down the algorithm – typically the Newton method
is twice as slow as the first order methods. However, the
improvement in the objective function is substantial enough
to make the method desirable.
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