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Abstract— Flight test and simulation results are presented
for a Nonlinear Model Predictive Tracking Controller (NMPC)
used in pursuit and evasion maneuvers in three dimensions
on a fixed wing Unmanned Aerial Vehicle (UAV) for the
purposes of pursuit/evasion games (PEGs) against a piloted
F-15 aircraft. These controllers are shown to be effective for
both asymmetric and symmetric PEGs. While the capability of
UAVs to perform autonomously has not yet been demonstrated,
this is an important step to enable at least limited autonomy
in such aircraft to operate with temporary loss of remote
control, or when confronted with an adversary or obstacles
for which remote control is insufficient. Such capabilities have
been under development in the Software Enabled Control
(SEC) program and were recently tested in the Capstone
Demonstration of that program.

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) have recently been
used with great success in gathering military intelligence
[1] by providing a viable alternative to manned aircraft
through their smaller size, reduced risk to life and limb,
and reduced cost. These successes and challenges have
stimulated research into UAV autonomy.

UAVs have, however, exhibited very little autonomy to-
date, and in the face of adversaries this lack of autonomy
is a liability. While some defense against ground based
adversaries can be achieved through either low-level or
very high-level flight, success against an intelligent (i.e.
manned) airborne adversary must rely on one of four
possible dimensions in which to obtain an advantage: speed,
maneuverability, munitions, and intelligence of control. This
experiment focuses on the last of those by improving the
intelligence of the aircraft, which allows for current aircraft
designs to be reused with software changes.

Nonlinear model predictive control (NMPC) is a control
technique that explicitly addresses nonlinear systems with
constraints on operation and performance. Previously the
use of NMPC has been shown to be effective for rotary-
wing UAVs [2]. Aerial vehicles, with their nonlinear dynam-
ics and input/state constraints to guarantee adherence to safe
flight, are a proving ground for this technology. Although,
the use of these control methods that run in real-time on
fixed-wing UAVs has been in development [3], this has not
been previously demonstrated in flight test. This is also the
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Fig. 1. The Global Hawk Medium Altitude Long Endurance UAV (photo
courtesy of US Department of Defense).

first application of NMPC to a symmetric PEG in which
the evader aircraft is able to switch roles and become the
pursuer.

In this paper, the results of the final integration and
testing for the Capstone Demonstration of the Software
Enabled Control (SEC) program are presented for the fixed
wing pursuit/evasion games (PEGs). A numerically efficient
nonlinear model predictive tracking control (NMPTC) al-
gorithm is used to encode the PEG between two fixed-
wing adversaries. This follows on earlier work [3] and
the approach of [4]. The control problem is formulated
as a cost minimization problem in the presence of input
and state constraints. The minimization problem is solved
with a gradient-descent method, which is computationally
light and fast [4]. The NMPTC controller uses an interface
to an existing autopilot in order to influence the system
behavior. By formulating the cost function to include the
state information of the other aircraft, input saturation, state
constraints and flight test boundary constraints, we show
the performance of the NMPTC as a one-step solution for
trajectory planning and control of UAVs competing in a
PEG.

This paper describes the experimental results of flight
tests using an NMPTC controller that was designed to
perform evasive maneuvers on a fixed-wing UAV when
confronted by an airborne adversary of a priori type.
Section II gives a brief description of the details of the fixed-
wing aircraft used for flight and testing, and the expression
of the UAV’s dynamic and kinematic description. Section
III describes the rules of the PEG. Section IV gives a
description of the encoding of the PEG requirements into
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the controller for both pursuer and evader roles. Section V
gives the results of some games using the controller, and
Section VI presents our conclusions and continuing work.

II. DEVELOPMENT AND TEST PLATFORMS

A. Aircraft details

A Boeing Aircraft Company owned T-33 (originally
manufactured by the Lockheed Martin Company) two-seater
jet trainer was modified by Boeing for use in the live flight
testing in June 2004, and functioned as a UAV surrogate
aircraft. The T-33 included a third party autopilot system
which did not include airspeed control of the aircraft. This
aircraft will hereafter be referred to as the UAV. The UAV
had on board a safety pilot who could take control of
the aircraft in the event of controller malfunction or poor
decision making, and well as for controlling the airspeed
of the aircraft based on indicator alerts and a displayed
target airspeed given to the pilot to increase/decrease thrust.
The route and trajectory of the UAV was controlled by
CORBA-based experimental Technology Developer (TD)
applications running on a laptop PC with a Linux operating
system and Boeing’s Open Control Platform (OCP) that was
interfaced to the avionics of the aircraft. The TD applica-
tions sent the control commands to the avionics pallet that
transformed them into autopilot maneuver commands. The
state of the UAV, as well as the state of the other aircraft (an
F-15 which exchanged state data with the UAV on a wireless
link), was available via this avionics interface. The details
of the avionics interface, the available state information, and
the input controls are given in the rest of this section.

The NMPTC for PEGs described in this paper was one
of the TD applications developed and tested for this UAV
as part of this SEC Capstone Demonstration program.

B. Software in-the-loop simulation testbed

In order to facilitate development, reliable testing, rapid
integration, and a uniform interface independent of op-
erating system, a software in-the-loop simulation (SILS)
platform was provided by Boeing. This interface used
Boeing’s Open Control Platform (COP), a generic (black-
box) aircraft simulator called DemoSim and Java based
UAV Experiment Controller GUI. The final versions of
OCP and the Experiment Controller used were identical
to the ones that would be used in the final flight test
experiments. This interface provides state information based
on the DemoSim model of the UAV, as well as the F-15, to
the NPMTC controller and the various other experimental
applications that uses it. In addition, a high-level interface
to the simulated UAV autopilot is provided that allows
the interfacing application to control the rate of change
of heading, altitude, and velocity. This included a model
of the UAV test pilot’s implementation of the airspeed
commands from the NMPTC controller, the functionality
missing from the third-party autopilot described above.
This is just one example of model-mismatch for which

the NMPTC controller would have to demonstrate sufficient
robustness.

In order to test dynamic PEGs, Boeing modified the
SILS to allow for two simulated UAVs to fly against each
other, one as evader and the other pretending to be an F-
15 pursuer. This allowed for extensive SILS testing of the
NMPTC in PEGs with two simulated players.

C. Hardware in-the-loop simulation testbed

All software developed for the test flight was provided
to Boeing for integration and testing in their Hardware In-
the-Loop Simulator (HILS). The HILS system included an
interface to the same avionics system used on the UAV and a
proprietary aircraft simulation system. Along with software,
the experiment test plans were provided with which Boeing
developers tested and verified all the software for the
various experiments, including the NMPTC controller for
pursuit/evasion.

One of the major limitations on the HILS testbed was
again, the lack of a human piloted pursuit aircraft. Addition-
ally, the modification made to the DemoSim aircraft simu-
lation that allowed for the pursuer to use a similar NMPTC
controller as the evader aircraft could not be integrated
into the HILS system and the pursuer aircraft could only
execute a preprogrammed, non-responsive search pattern.
This meant that only the basic functionality of the NMPTC
controller could be verified. The actual performance of the
controller in a real PEG could only be evaluated during the
actual flight test.

D. Vehicle modeling

As described above, the UAV was simulated with the
DemoSim executable that was provided. This simulator
included a high level interface to the control the aircraft
through the autopilot, and no model of the aircraft nor
the simulator was provided. So, a simplified model was
constructed based on the states and inputs available and
testing of the DemoSim to determine appropriate parameters
for this model.

1) State Vector: The overall system state vector, x, is
defined using the following equations.

x =
[
xK ,xD

] ∈ R
nx (1)

The vector x, which is the overall system dynamics,
is partitioned in (1) into the kinematics (denoted by the
superscript K) and system-specific dynamics (denoted by
the superscript D) matrices. The kinematics of the system
is given as the current state of the system in 3 dimensional
space, and with respect to the 3-axis posture of the body.

xK = [x, y, z, φ, θ, ψ] (2)

The kinematics is shown in (2), where (x, y, z) is the
position of the center of mass in 3 dimensions, φ is the
roll, θ is the pitch, and ψ is the yaw. The dynamics of the
system is given as the time rate of change of the kinematic
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state variables, along with incidental changes, which are
represented in classical notation as

xD = [u, v, w, p, q, r] , (3)

where u = ẋ, v = ẏ, w = ż, p = φ̇, q = θ̇, r = ψ̇.
Two state variables, the angle of attack and the angle of
sideslip, are absent due to the lack of sensors available on
the aircraft, and the autopilot’s ability to guarantee heading
and attitude of the aircraft.

2) Input vector: The input state vector, u, which is
the space of possible inputs to the controller to modify
the system state, is determined by the autopilot interface
through which we have control of the system (as previously
described). We define the input state vector as,

u =
[
uv̇, uψ̇, uż

]
∈ [−1, 1]3 ∈ R

nu (4)

where uv̇ is the desired rate of change of airspeed velocity,
uψ̇ is the desired rate of change of turn, and u ż is the desired
rate of change altitude. The input space is constrained by
the [−1, 1]

3 matrix. However, the actual values sent to the
input controller are linearly scaled from the range [−1, 1],
such that the maximum outputs to the autopilot were as
follows: 50ft/s for airspeed, π/50 rad/s for turn rate and 10
ft/s for rate of climb to match the approximate limits of the
DemoSim.

In addition, boundaries for the values of the state vector,
x, are integrated into the optimization cost function to
prevent flight out of the test range and autopilot flight
envelope, and to prevent violation of the minimum or
maximum safe values for speed and altitude.

III. THE PURSUIT/EVASION GAME

The PEG is an interesting application of NMPTC, as
discussed in greater detail in [3], [5]. In this application,
a asymmetric PEG is played in the UAV plays the part of
the evader, and the F-15 plays the part of the pursuer, and
there are asymmetric objectives for the pursuer and evader.
The objective of the evader is to either,

• fly for a predetermined period of time, T, since the
start of the game; or

• exit the test range at an opposite corner without being
targeted by the pursuer.

The objective of the pursuer is to,

• target the evader before the end of the game.

In the symmetric game, the evader win conditions include
the targeting of the pursuer.

In these games, targeting is defined by aligning ones
heading with that of the other aircraft and locating oneself
within a spherical cone (of predefined height, angle, and
diameter) aligned with the tail of the other aircraft. This
targeting condition is shown in Fig. 2, and in these games
a 10° cone of length 3 nautical miles is used. A time limit T
= 20 minutes is also imposed to prevent a trivial solutions
in which the pursuer blocks the exit point, and to reflect the
constraints of the flight test experiments.

F-15

UAV

F-15

UAV

F-15

UAV

Fig. 2. The targeting rules for these PEGs. In the condition on the left
the F15 is not behind UAV, in the middle the F15 not pointed at the UAV,
and on the right a successful targeting conditions is shown with the F15
behind AND pointed at the UAV

IV. CONTROLLER DESIGN

A. Controller Design for the Evader

NMPC problems, in general, consist of the following
steps: 1) solve for the optimal control law starting from
the state x(k) at time k; 2) implement the optimal input
u(k), · · · ,u(k + τ − 1) for 1 ≤ τ ≤ N ; and 3) repeat
these two steps at time k + τ . The solution for the optimal
control law can be found by formulating a cost function
and minimizing it when performing the optimization. The
cost function can be composed using specific details of the
application, and the designers best knowledge of optimal
performance of the object being tracked. This and the
computational speed, and method, of the technique are
discussed in detail in [2].

Considering the rules of the PEG we were able to design
the evader controller by incorporating our desired outcome
of the game and encoding some basic aerial tactics as
described in [6]. Additionally, state and game constraints
necessary for the flight test were added to the basic con-
troller described in [3]. For our final design, we chose the
timestep τ = 1[s], and a lookahead length of N = 30
steps. The 30[s] lookahead proved sufficient in simulation
to produce good evasion and pursuit tactics in the aircraft.
Note, that the 1[s] timestep is used for trajectory planning
using NMPTC, while the avionics system performs the low
level control at a 0.01[s] timestep.

The desired trajectory of the evader, the location and
orientation of the pursuer, the input constraints, and the state
constraints, are each a part of the cost function. We set this
cost function, J , to be

J = φ(ỹN ) +
N−1∑
k=0

L(x, ỹ,u,d), (5)

where,
φ(ỹN ) �

1

2

(
ỹT

NP0ỹN

)
, (6)

and,
L(xk, ỹk,uk,dk) �

1

2
ỹT

kQỹk +
1

2
xT

kSxk +
1

2
uT

kRuk

1

2
p1

T
kB1p1k +

1

2
p2

T
kB2p2k

+
1(

dT
kGdk

) 1
2n1

+
1(

aT
kHsk

) 1
2n2

(7)

In these equations, x is the state vector, and u is the
input vector. The vector ỹ is the encoding of the error on
the current trajectory, and is defined as ỹ � yd − y, where

1511



−1

0

1

−1

0

1
0

0.5

1

1.5

XY

C
os

t F
un

ct
io

n

(a) An attractive CF.

−1

0

1

−1

0

1
0

0.5

1

XY

C
os

t F
un

ct
io

n

(b) A one-sided attractive CF.

−1

0

1

−1

0

1
0

0.5

1

XY

C
os

t F
un

ct
io

n

(c) A pointwise repulsive CF

−2

−1

0

−2

−1

0
0

0.5

1

XY

C
os

t F
un

ct
io

n

(d) A linearly repulsive CF

Fig. 3. Basic forms of the cost functions used by the NMPTC

y = Cx ∈ Rny . The vector yd is the desired trajectory of
the aircraft at the given timestep and C acts as a filter to
remove elements in x that are unimportant to the rules of the
game. The vectors p1 and p2 are the horizontal proximity
of the aircraft to the 2 nearest boundaries of the playing
area/experimental test range. The vector d is the proximity
danger vector between the evader and its adversary, and a

is the AOT of the pursuer with respect to the evader.
The Q, S, R, B1, B2, G, and H square matrices

each serve as weighting factors in the cost function. By
modifying their relative values, it is possible to give more
“weight” to certain portions of the cost function. The details
of the basic parameters and the process of determining the
values for these weights is described in [3]. Some additions
were made to the cost function leading up to the final flight
test, which are described below.

The choice of which boundaries to use for the compu-
tation of vectors p1 and p2 is made by computing the
distance from all boundaries (five in these experiments,
as illustrated in Fig. 4) and choosing the two nearest.
This method is clearly effective only inside a non-convex
area. Furthermore, the B1 and B2 matrices are set to zero
when the aircraft is further than a preset distance from the
respective closest range boundary.

Similarly, when the pursuer is more that a preset distance
from the evader, the matrix H is set to zero and has no affect
on the NMPTC controller.

The first three terms in (7) are quadratic and zero-
mean attractive functions which penalize deviation from
the zero valued inputs, as shown in Fig. 3(a). The fourth
and fifth functions (of p1 and p2) are one sided versions
of the previous type such that they penalize deviation in
one direction only, as shown in Fig. 3(b). The last two
functions are quadratic and zero-mean repulsive functions,
meaning that they penalize inputs that approach zero values.
The first of those two is a point repulsive function, the
second is repulsive along the axis extending behind the
aircraft as a function of the angle from zero, as shown in

Fig. 3(c) and Fig. 3(d) respectively. The forms of these
functions are chosen to allow for the easy computation of
their derivatives necessitated by the optimization procedure.
Note also that the last two (repulsive functions) contain
the additional parameters n1 and n2 in the order of the
denominator polynomial functions which affects the shape
of the repulsive functions.

The cost-function is optimized using the iterative tech-
nique described in [4], [7], which requires the calculation
of the derivatives of the vehicle dynamics with respect to
both the state and input vectors. Since only the DemoSim
interface was available and no mathematical description of
the vehicle dynamics, a simplified model was used with the
Eulerian equations of motion, input latency gains and limits
on the states to capture the “projected” values for the state
of the evader (and pursuer) in the predictive component of
the controller.

In order to reduce the computational burden of the
nonlinear gradient-descent optimization, the result from the
previous time step is used to initialize the optimizer [7], [3],
and a limit on the number iterations is imposed. The second
measure may result in a sub-optimal solution being found,
however this is generally during a periods rapid change
during which (particularly in a PEG) rapidly determined,
sub-optimal decisions are preferable to waiting for optimal
solutions based on estimates of future states. Such estimates
of the future are also made inaccurate by the changing and
unpredictable actions of the other aircraft.

Other methods for optimizing the cost function can
be considered, including off-line multiparametric quadratic
programming [8]. However, off-line methods restrict how
the cost function can be modified as the situation changes,
and that in the case of [8] they require linear constraints and
a quadratic cost function, which would preclude several of
the functions used here. Also the dimensionality of state,
input and constraint vectors would lead to a significant
storage issue for the solution computed off-line.

B. Controller Design for the Pursuer

An NMPTC controller design for the pursuer aircraft was
partially necessitated by the need for an opponent for the
evader in the SILS testbed, and also to enable the UAV to
assume the role of pursuer.

When in pursuer mode, the UAV used the same controller
as in evader mode, however with different matrix values
for Q, S and R, the other 4 terms in (7) omitted and the
computation of ỹ was modified for pursuit. Additionally, the
pursuers yd used to compute ỹ depended on the pursuers
position and relative direction compared to the evader,
specifically to offset its approach prior to turning into a
position on the tail of the evader, as discussed in [6]

In the symmetric version of the PEG, in which the evader
is able to target the pursuer to win the game, the evader
checks its angle of tail (AOT) and angle of nose (AON)
conditions (see V-B below), and if they are within a certain
range simultaneously it will switch to the pursuer NMPTC
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parameters until such time as the favorable conditions are
lost. There is sufficient deadband in these switch conditions
to prevent chattering behavior.

V. EXPERIMENTAL RESULTS

A. Implementation

The NMPTC algorithm and the PEG were implemented
in C++ and run in a Windows environment. The evader
aircraft’s NMPTC controller was tuned by building it up,
component by component of (7) to provide for a successful
game outcome in terms of exiting the playing area and
avoiding the pursuer aircraft. The trajectory, state and input
matrices Q, S, and R were first tuned to ensure that aircraft
would follow a set trajectory as both evader and pursuer.
Then the evader matrices G and H were tuned along with
exponential terms n1 and n2 for the evader to prevent the
pursuer from taking up a targeting position as per the rules
of the PEG. Finally the boundary matrices B1 and B2 were
tuned to keep the aircraft within the boundaries of the game.
This did require several iterations to fine-tune the behaviors.

The pursuer algorithm was tuned to close with the evader
using its Q matrix and the choice of yd as a path toward
the predicted position of the evader. Both aircraft controllers
used the S and R matrices to constrain the states and inputs.

In the SILS experiments, two instances of the aircraft
were simulated, one as the pursuer and one as the evader.
For these examples, the performance characteristics of the
two aircraft were identical, as was the case in all the
simulations leading up to the final test flight due to the
constraints of the DemoSim interface.

In the HILS experiments and in the flight test experiments
only one aircraft used the NMPTC algorithm. A dummy
aircraft was used in the HILS and the initial flight tests
as the other other aircraft to verify the software for flight
testing. In the remaining flight tests the other aircraft was
an F-15 flown by a USAF pilot.

B. Simulation Results

The experiment controller used in the simulation and
flight test experiments is shown in Fig. 4 at the start of a
SILS experiment. In this case the evader has entered from
the west and it trying to reach the ‘End Zone’ to win the
game. The pursuer was in the southern half of the area,
turned to engage the evader and then turned to get behind
it.

Fig. 5 shows the outcome of this experiment after 30
minutes of simulation time. The tracks of the two aircraft
can be seen as the evader carries out a series of maneuvers to
prevent the F-15 from adopting a targeting position behind
it. It can also be seen that the UAV tries to break contact
and head for the ‘End Zone’ when it feels safe to do so,
although it only gradually makes its way in that direction.
The effect of the game boundary constraints can also be
seen as the UAV’s evasive maneuvers bring it close to the
southeast boundary. The UAV is forced back into the game
area at these times.

Fig. 4. The UAV Experiment Controller: UAV is yellow, F-15 is blue

Fig. 5. A 30 minute simulation game: the pursuer (blue trace) started
near the bottom, the evader (yellow trace) started on the left

In this game, the pursuer would have won by being in
the 10° AOT cone of the evader (i.e. within 10° of directly
behind the evader) while at the same time having the evader
within the 10° angle off nose (AON) cone of itself (i.e.
having the evader within 10° of directly in front).

C. Flight test validation

The NMPTC controller was ported to Linux and provided
to Boeing for final integration, hardware testing in the HILS
and experimental flight tests. These flight tests were carried
out as part of the SEC Capstone Demonstration at Edward’s
AFB during the weeks of June 14-25, 2004. This experiment
was run 4 times as part of three different sorties, in which

Fig. 6. Flight test experimental results: A symmetric PEG in which the
UAV (yellow trace) has just targeted the F-15 (blue trace)
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the NPMTC controller and the Boeing platform performed
as expected from the simulations, despite significant wind
and other conditions.

The first two test flights were flown without the F-15 in
order to verify the system. In this case, the same method
was used as on the HILS in which the F-15 was simulated,
and as in the HILS it could only follow a preprogrammed
flight path. In these cases the simulated F-15 flew a figure-
8 pattern through which the UAV successfully flew to its
desired destination virtually unimpeded.

In the third experiment, the UAV was set to only evade. In
this case the F-15 was able to get behind the UAV, although
it did not succeed in targeting the UAV for several minutes.

In the fourth and final experiment, the UAV was able to
switch to pursuer mode if it detected favorable conditions
to do so. In this experiment, shown in Fig. 6, the paths of
the aircraft can be seen. The F-15 was carrying out a search
pattern as the UAV approached. The UAV then detected a
advantageous condition and switched to pursuer mode and
successfully targeted the F-15. The experiment was allowed
to continued after this (not shown) and the F-15 did shake
the UAV off its tail and managed to get behind it as the
UAV switched back to evader mode and tried to reach the
‘End Zone’.

The interesting variable in these experiments was the
behavior of the F-15 pilot, which was highly non-
deterministic. The pilot also provided valuable feedback and
commented very favorably on the behavior of the UAV and
the NMPTC controller. Paraphrasing the F-15 pilot after
one experiment: the UAV did precisely what one is taught
to do in flight school for that situation (in which the F-15
got behind the UAV and tried to adopt a targeting position).

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we have presented experimental results of
the effectiveness of the NMPTC approach to the PEG for
fixed-wing aircraft in a time-critical application.

By using the NMPTC approach, rapid computations
can be performed, and (given accurate dynamics) the true
advantages of autonomy can be encoded using the concepts
of competitive games. By providing this autonomous mode
(e.g., evader) to a UAV operator, it is possible for a remote
operator to relinquish control of the vehicle in time-critical
situations, to allow the intelligent controller to serve as a
surrogate that incorporates the same theories and behaviors
of the pilot. Because the safety and functionality constraints
of the aircraft are encoded into the cost function, the UAV
is not endangering itself or its environment.

The simulation results show that the encoding of the
game into the cost function was successful and these results
were validated in actual flight tests on a T-33 UAV surrogate
in PEGs with a piloted F-15. NMPTC had not yet been
demonstrated on fixed-wing aircraft for the pursuit/evasion
problem, and this work shows that this method is appropri-
ate when providing input to an autopilot interface.

B. Future Works

With this flight test validation, we will be able continue
developing and testing PEGs and the use of NMPTC in
the simulation environment with high confidence in their
extension to real flight situations.

The application of NMPTC will continue as we encode
the notion of a symmetric PEG into the cost function. This
will enable an aircraft to switch roles in the game, thus
switching its goals (and associated costs) at runtime. The
encoding of this decision to switch roles as part of the cost-
function is an exciting possibility.

Currently the game can only be played with the high-
overhead avionics interface to the T-33 jet, provided by Boe-
ing. The execution of the code, however, is extremely fast,
and future work will involve the hardware implementation
in avionics interface to low-cost fixed-wing UAVs.

Proven tactics for evasion and pursuit of fighter aircraft,
as discussed in [6], would be useful if encoded into the
cost function to encourage these behaviors. Future work
into iteratively deriving the weights and values of the
cost function matrices could be employed to provide this
emergent behavior. Both works are slated for the future,
along with simulations that show such behavior emerges
from the controller definition.

Finally, the overhead associated with creating a new
NMPTC controller is substantial and it would be useful to
have a high-level understanding of the controller, as well
as a way to generate the controller from this higher level.
Providing an abstraction for this level of detail is a useful
future research area.
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