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Abstract— This paper concerns power control in lognor-
mal fading wireless channels with correlated interference.
We consider an outage-based quality of service (QoS) spec-
ification, which requires the uptime probability, i.e., the
probability that no transmitter/receiver pair experiences
any outage due to fading, is kept above a given level. The
problem of finding an optimal power allocation to achieve
this QoS goal over lognormal fading wireless channels can
be posed as a stochastic geometric program (GP) with joint
probabilistic constraints. This stochastic geometric pro-
gram is extremely hard to solve in general, compared with
the stochastic GP associated with Rayleigh fading channels.
In this paper, we describe a suboptimal approach based
on recently proposed robust geometric programming. With
a good compromise between computational efficiency and
accuracy, this robust GP relaxation approach finds a power
allocation which meets the QoS requirement on the uptime
probability. A numerical example is given to demonstrate
the method.

I. INTRODUCTION

A common QoS requirement in a modern cellular

system is that the outage probability, i.e., the probability

of the signal-to-interference ratio (SIR) or signal-to-

interference-plus-noise ratio (SINR) being below some

threshold, is kept below a specified level. Power control

provides an intelligent way of determining transmit-

ting power to achieve the outage probability specifica-

tions [1], [2]. In many other aspects, power control has

also be shown to be an effective way to improve the

performance of wireless communication systems. For

example, careful allocation of power can increase utiliza-

tion in interference-limited systems (such as CDMA) or

multiple access systems with frequency-reuse schemes

(e.g., in FDMA). It is also effective in mitigating near-far

effects occurring when the signal received by a remote

user is attenuated significantly due to disturbing from a

nearby interferer. In addition, power allocation is critical

in wireless networks for longer battery life: by allocating

minimum power across all mobile devices, users only

need to expend sufficient power for acceptable QoS.

For medium-scale fading (commonly referred to as

shadowing), the underlying signal power can be well

described by lognormal statistics, i.e., the signal mea-

sured in decibel or nats has a normal distribution (see,

e.g., [3]). In addition, in some situations shadowing of

the desired and interfering signals is the main source

of performance degradation in the presence of channel

interference. For instance, in wireless systems employ-

ing diversity techniques to combat effects of multipath

(short-term) fading, the co-channel interference con-

siderations are more strongly dependent on the large

scale signal variation due to shadowing [4]. For these

reasons, it is beneficial to take into account the effects

of lognormal fading in designing cellular systems.

The effect of lognormal fadings on performance of

wireless communication systems has been a topic of

intensive research. Although a lot of work has assumed

that fadings are statistically independent, they may be

correlated. For instance, the signals that a mobile sta-

tion receives from surrounding base stations may be

shadowed by the same obstacles in the neighborhood of

the receiver; correlation between shadowings has been

experimentally found [5], [6].

In the presence of lognormal channel interference,

computing the outage probability (or its bounds) of-

ten involves calculating the mean and variance of the

sum of lognormal random variables (see, e.g., [7], [8],

[9], [10] and references therein). A general closed-

form expression (in terms of known functions) for the

lognormal sum distribution is not available (even for

the case of independent lognormal random variables).

Several approximative methods have been suggested in

the literature to compute both the outage probability and

the underlying lognormal sum distribution (see, e.g., [10]

and references therein). Since a good approximation

for the probability of outage with lognormal shadowed

interferers is in general a highly nonlinear function of the

transmitter powers, only heuristics or local optimization

algorithms can be used to find (local) solutions to
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the problem of minimizing the total transmitter power

subject to outage probability constraints, e.g., [11], [12].

This is in sharp contrast with some short-term fading

environments, e.g., Rayleigh, in which the probability

of outage with (independent) Rayleigh faded interferers

can be expressed analytically as a posynomial function

of transmitter powers and hence geometric programming

can be used to achieve power minimization with outage

probability specifications [1].

This paper concerns power control in lognormal

fading wireless channels with correlated interference.

The statistical variation and correlation of both the

received signal and interference power are taken into

account explicitly. We introduce an outage-based QoS

specification, which requires that the SINR of each
transmitter/receiver pair keeps above a given threshold

for highly probable channel conditions (determined by

the underlying lognormal statistics and QoS threshold).

This measure can be interpreted as the fraction of time

no transmitter/receiver pair experiences any outage due

to fading. The problem of finding an optimal power

allocation to achieve this QoS goal over lognormal

fading wireless channels can be posed as a stochastic

geometric program with joint probabilistic constraints.

This stochastic GP is extremely hard to solve, unlike the

stochastic geometric program associated with Rayleigh

fading channels. In this paper, we describe a suboptimal

approach based on recently proposed robust geometric

programming [13]. With a good compromise between

computational efficiency and accuracy, this robust GP

relaxation approach finds a power allocation which

meets the QoS requirement on the uptime probability. A

numerical example is given to demonstrate the method.

II. BACKGROUND

A. Geometric Programming

The convex function lse : R
k → R, defined as

lse(y1, . . . , yk) = log(ey1 + · · · + eyk), (1)

is called the log-sum-exp function.

A geometric program (in convex form) can be formu-

lated as

minimize lse(A0y + b0)
subject to lse(Asy + bs) ≤ 0, s = 1, . . . ,m,

Hy + h = 0,
(2)

where y = (y1, . . . , yn) ∈ R
n are the optimization

variables, and As ∈ R
Ks×n, bs ∈ R

Ks , s = 0, 1, . . . ,m,

H ∈ R
l×n, h ∈ R

l are the problem data. (For more

details about GP and its applications, see [14], [15].)

B. Robust GP with Ellipsoidal Uncertainty

Assume (As, bs) in (2) are uncertain, but known to

belong to the image of a set U ⊂ R
L under an affine

mapping:

(Ãs(u), b̃s(u)) =
(

A0
s+

L∑
j=1

ujA
j
s, b0

s+
L∑

j=1

ujb
j
s

)
, (3)

where Aj
s ∈ R

Ks×n and bj
s ∈ R

Ks . To simplify

notations, we define fs : R
n × R

L → R as

fs(y, u) = lse(Ãs(u)y + b̃s(u)) (4)

and f0 : R
n → R as

f0(y) = lse(A0y + b0). (5)

The corresponding robust GP (in convex form) can then

be formulated as

minimize f0(y)
subject to supu∈U fs(y, u) ≤ 0, s = 1, . . . ,m,

Hy + g = 0,
(6)

where H ∈ R
l×n, g ∈ R

l. In addition, we assume the

robust GP (6) has ellipsoidal uncertainty, in which U is

an ellipsoid:

U = {ū + Pρ | ‖ρ‖2 ≤ 1, ρ ∈ R
L}, (7)

where ū ∈ R
L and P ∈ R

L×L. An approximation

method with modest computational complexity has been

proposed for the robust GP (6) with ellipsoidal uncer-

tainty (7); see [13] for more details.

III. CHANNEL MODEL AND QOS METRICS

A. Lognormal Fading Channels

In this paper the following setup for lognormal fad-

ing channels is considered. We have n transmitters,

labelled 1, . . . , n, which transmit at (positive) power

levels P1, . . . , Pn respectively. We also have n receivers,

labelled 1, . . . , n; receiver i is meant to receive the

signal from transmitter i. The power received from

transmitter j, at receiver i, is given by FijGijPj , where

Gij > 0 represents the path gain (not including fading)

from transmitter j to receiver i. In the analysis below,

we assume that Gij are constant, i.e., do not change

(much) with time.

To model lognormal fading over wireless channels,

Fij are assumed to be lognormal random variables:

Fij ∼ LN(µij , σ
2
ij), i, j = 1, . . . , n. (8)
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(Recall that a random variable x has the lognormal

distribution x ∼ LN(µ, σ2) if its probability density

function has the form:

px(ξ) =
1

√
2πσ

1
ξ
e−(log ξ−µ)2/(2σ2), (9)

where 0 < ξ < ∞, −∞ < µ < ∞, and σ > 0.) Note

that here we do not pose the assumption that Fij are

independent. Wireless channels over which both desired

signals and interference signals are subject to lognormal

fading are referred to as lognormal fading channels.

B. Uptime Probability

At the ith receiver, the signal power is FiiGiiPi, and

the total interference power is given by
∑

k �=i FikGikPk.

The signal-to-interference-plus-noise ratio (SINR) of the

ith receiver/transmitter pair is given by

Si =
FiiGiiPi

βi +
∑

k �=i FikGikPk

, (10)

where βi represents the noise power in the ith receiver.

In this paper we assume βi are constant.

One common QoS requirement is that SINR of the

ith receiver/transmitter pair must be kept above a given

threshold Smin
i :

Si ≥ Smin
i , i = 1, . . . , n.

The outage probability of the ith receiver/transmitter pair

is therefore given by

Oi(P1, . . . , Pn) = Pr(Si < Smin
i ), i = 1, . . . , n.

(11)

Here and elsewhere Pr(A) is the probability of event

A. Note that in a lognormal fading environment, Si is

a random variable with what would appear to be a very

complex distribution, since it is the ratio of a lognormal

random variable to a sum of lognormal random variables

(with different means). The analytical expression for its

density is yet unknown.

Assume the required QoS concerns the ‘integrated’

performance of n receiver/transmitter pairs (in contrast

to posing (outage) probability constraints individually as

in (11)); we define the uptime probability as

J (P1, . . . , Pn) = Pr(Si ≥ Smin
i , i = 1, . . . , n), (12)

which can be interpreted as the fraction of time when

no transmitter/receiver pair experiences any outage due

to fading.

Note that in our expression for J , statistical variation

of both received signal power and received interference

power is taken into account. In this paper, the requested

QoS is provided when the uptime probability J exceeds

a given threshold.

IV. STOCHASTIC GP WITH JOINT

PROBABILISTIC CONSTRAINTS

A. Formulation

In the robust GP (6), we assume u ∈ R
L is determin-

istic but uncertain. In some cases, however, u ∈ R
L is a

random vector with given distribution. Accordingly, we

can define the following stochastic GP:

minimize f0(y)
subject to Pr(fs(y, u) ≤ 0, s = 1, . . . ,m) ≥ α,

Hy + g = 0,
(13)

where H ∈ R
l×n, g ∈ R

l, and 0 < α < 1 is a given

threshold. If y ∈ R
n is feasible to the above stochastic

GP, we say that the risk of loss of y is less than 1 − α.

Note that the stochastic GP (13) is an example of op-

timization with a joint probabilistic constraint, which is

different from imposing the constraints individually, i.e.

Pr(fs(y, u) ≤ 0) ≥ αs, s = 1, . . . ,m,

where αs > 0 are thresholds for individual proba-

bilistic constraints. In general, optimization with joint

probabilistic constraints is very difficult to handle, both

theoretically and computationally [16]. In §IV-B we will

show that a relaxation method via the robust GP (6)

with the ellipsoid uncertainty (7) can be used to find

feasible solutions of the stochastic GP (13), provided

that u ∈ R
L is jointly normal with given covariance

matrix.

B. Robust GP Relaxation

Recall that a normal random variable u ∈ R
n with

mean ū and covariance matrix Σ = ΣT > 0, denoted

by u ∼ N(ū,Σ), has the probability density function

pu(ξ) = (2π)−n/2(det Σ)−1/2e−1/2(ξ−ū)T Σ−1(ξ−ū).
(14)

Obviously pu(ξ) is constant for (ξ−ū)T Σ−1(ξ−ū) = γ,

i.e., on the surface of the ellipsoid

Eγ = {ξ ∈ R
n | (ξ − ū)T Σ−1(ξ − ū) ≤ γ}. (15)

Here Eγ is called a confidence ellipsoid of u. It is well-

known that the nonnegative random variable

(u − ū)T Σ−1(u − ū)

has a chi-squared distribution with degree n, i.e.,

Pr(u ∈ Eγ) = Fχ2
n
(γ), (16)

where Fχ2
n

is the cumulated distribution function of χ2
n.

(See, e.g., [17].)
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Now we suppose that u ∈ R
L in the stochastic

GP (13) is normally distributed with the density func-

tion (14). In this case, feasible solutions of (13) can be

obtained via robust GP relaxation as follows. Define the

uncertainty set U as

U = Eγ , (17)

where Eγ is the confidence ellipsoid define in (15), and

γ is uniquely determined by

Fχ2
n
(γ) = α. (18)

It is straightforward to see that all the feasible solutions

of the robust GP (6) with the ellipsoidal uncertainty (17)

are feasible to the stochastic GP (13) with jointly normal

u ∈ R
L, i.e., risk of loss is guaranteed to be less than

1 − α.

V. POWER ALLOCATION WITH UPTIME

PROBABILITY CONSTRAINTS

A. Power Minimization as Stochastic GP

The problem of minimizing the total transmitter

power, subject to a lower bound on the probability

that each transmitter/receiver pair has no outage due to

fading, can be formulated as

minimize
∑n

i=1 Pi

subject to J (P1, . . . , Pn) ≥ α,
(19)

where J is the uptime probability defined in (12) with

the lognormal random variables Fij introduced in (8),

and 0 < α < 1 is the minimum allowed uptime

probability.

Since a lognormal random variable v ∼ LN(µ, σ2) is

associated with a standard normal variable p ∼ N(0, 1)
through v = eµ+σp, the fading factors Fij can be

expressed as

Fij = exp(µij + σijpij), i, j = 1, . . . , n (20)

with pij ∼ N(0, 1). For i, j = 1, . . . , n, define

bi = log βi, di = log Smin
i ,

yj = log Pj , cij = log Gij .

Hence by (20), Smin
i S−1

i can be reformulated as a sum

of exponentials:

Smin
i

(
βi +

∑
k �=i

FikGikPk

)
(FiiGiiPi)−1

= exp
[
(bi + di − µii − cii) − σiipii − yi

]
+

∑
k �=i

exp
[
(di + (cik − cii) + (µik − µii))

+ (σikpik − σiipii) + (yk − yi)
]
,

where pij ∼ N(0, 1), i, j = 1, . . . , n. Consequently,

given the lognormal distributions (8), we can easily find

(Aj
s, b

j
s) ∈ R

n×n × R
n, s = 1, . . . , n, j = 1, . . . , n2

such that the uptime probability constraint in (19), i.e.,
J (P1, . . . , Pn) ≥ α, can be reformulated in the form of

Pr(fs(y, u) ≤ 0, s = 1, . . . , n) ≥ α,

where fs(y, u) is defined in (4), and u = (u1, . . . , un2)
with

ui ∼ N(0, 1), i = 1, . . . , n2. (21)

The power minimization (19) can therefore be cast in

form of the stochastic GP (13).

In summary, the problem of minimizing the total

transmitter power with the uptime probability constraint

over lognormal fading channels can be expressed in form

of the stochastic GP with a joint probabilistic constraint

as defined in (13).

B. Power Allocation via Robust GP Relaxation

Assume Σu = ΣT
u > 0 is the covariance matrix of the

random vector u ∈ R
n2

introduced in (21). (Obviously,

Σu = In2 if the fading factors Fij , i, j = 1, . . . , n are

independent.)

Feasible solutions of the power minimization (19)

can be obtained by the robust GP relaxation described

in §IV-B as follows. Define the ellipsoidal uncertainty

set

U = {ξ ∈ R
n2

| ξT Σ−1
u ξ ≤ γ}

for some γ, which is uniquely determined by Fχ2
n
(γ) =

α. Here α is the QoS threshold assigned in (19). Then

any feasible solution (ȳ1, . . . , ȳn) of the robust GP (6)

with the above ellipsoidal uncertainty U is feasible to

the stochastic GP of the form (13) that is reformulated

from the power minimization (19) as discussed in §V-A.

The power allocation

(P1, . . . , Pn) = (eȳ1 , . . . , eȳn)

can therefore achieve the QoS requirement on the uptime

probability, i.e., J (P1, . . . , Pn) ≥ α.

VI. SIMULATION RESULTS

In this section, we give a numerical example to

demonstrate the power allocation method described thus

far. We consider a system with 6 transmitters and

receivers with lognormal fading. All the path gains Gii

(from ith transmitter to ith receiver) are assumed to

be one. The cross gains Gij , i 
= j are generated

as independent random variables uniformly distributed

in the interval [0, 0.01]. All the noise powers βi are

assumed to be 0.01. The fading factors Fij are log-

normal variables with mean 0.5 and variance (0.15)2.
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The correlation between the standard normal random

variables u1, . . . , u36 introduced in (21) is described by

the covariance matrix Σ ∈ R
36×36 with diagonal entries

1 and off-diagonal entries 0.1.

We consider the QoS thresholds α = 0.9, 0.8, 0.7 and

0.6 respectively. For each of the four QoS thresholds, we

vary the SINR thresholds Smin
i (which are assumed to

be the same for each transmitter/receiver pair) from 3

to 15. For each value of Smin
i , we generate 20 instances

of (19), in which the cross gains are randomly selected

as described above. Then we compute the total power

P1+· · ·+P6 for each instance by the proposed robust GP

relaxation approach, and the average of the 20 instances

is used to obtain each data point in Fig. 1, which shows

the tradeoff between the total transmitter power and

SINR threshold.

For fixed QoS threshold α, the total power increases

as higher SINR threshold Smin
i is assigned. For high

QoS threshold, e.g., α = 0.9, the total power increases

drastically as SINR threshold increases. This implies that

the ‘price of robustness’ is high in this example.

VII. CONCLUSIONS

In this paper, we have described a power control

scheme in lognormal fading wireless channels with cor-

related interference. With a good compromise between

computational complexity and performance, this robust

GP relaxation method finds a power allocation that meets

the given QoS requirement on the uptime probability. A

natural question arises on the performance loss of this

suboptimal power allocation scheme. Since the exact

optimal solution of the original problem is very hard

to find, it is very difficult to answer this question.

Our preliminary study based on Monte Carlo analysis

suggests that the performance loss is not significant in

most cases.
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