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Abstract— A necessary condition for the existence of a stable
PID controller for a given plant is introduced. The derived
rule is straightforward to check and applies generally for LTI
systems, including time-continuous, time-discrete and time-
delay systems. Therefore the plot of a directly constructible
function is checked for a required minimal number of real
zeros.

I. I NTRODUCTION

PID controllers count to the simplest and most applied
controller structures in a wide spectrum of industrial ap-
plications. Yet challenging theoretical problems have been
recently formulated in searching for alternative procedures
for the design of robust PID controllers to the standard
tuning rules. A typical such problem is computation of the
set of all robust PID stabilizers for a given finite set or a
continuum of plants. The competition with the tuning rules
approach requires simple solutions for non-trivial problems.

This paper presents a new necessary condition for the
stabilizability of a time-continuous or a time-discrete PID
loop, which additionally may include time delay. The rule
is based on the decoupling of the PID parameter space
(kP , kI , kD) at singular frequencies. Such conditions enable
the construction of an equation of the formkP = kP (ω),
which plays the central role in this work. Then, it is shown
that for Hurwitz-stabilizability akP must exist, such that
the equationkP = kP (ω) possesses at least a fixed number
of real-roots (singular frequencies) in the interval(0,+∞).
This condition may be directly checked by plotting the
function kP = kP (ω). The rule is then extended for
Hurwitz-stability of time-delay systems and Schur-stability
of time-discrete PID controllers. In the latter case, the
notion of thedecoupling functionover the unity circle is
introduced. Eventually, the usability of the rule is illustrated
by several examples.

II. D ECOUPLING

A. Time-continuous systems

Consider Hurwitz-stability of the characteristic polyno-
mial of a feedback-loop with a PID controller

p(s) = A(s)(kI + kP s + kDs2) + B(s) (1)

where A(s) and B(s) are given real polynomials. No
restriction w.r.t. the order of the polynomialsA and B is
made in this paper. The characteristic equation of (1) for
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Hurwitz stability,s = jω, may be represented in the matrix
form as follows[

H
G

]
= PA

[
1 −ω2

0 0

] [
kI

kD

]
+PA

[
0

ωkP

]
+PB = 0

(2)
where

PA =
[

RA −IA

IA RA

]
, PB =

[
RB

IB

]
and R and I stand for real and imaginary part of polyno-
mials A andB at s = jω. Notice that for a fixedkP in (2)
the system matrix in terms of parameterskI andkD is ∀ω
singular

det
∂(H,G)
∂(kI , kD)

= 0, ∀ω. (3)

Yet (2) may have solutions at a finite set of frequencies
{ω′

1, ω
′
2, · · · , ω′

N}, which are usually calledisolated or
singular frequencies. By left multiplication of (2) withP−1

A ,
the following two equations result

kI − ω2kD −
RARB + IAIB

R2
A + I2

A

= 0 (4)

ωkP −
RAIB − IARB

R2
A + I2

A

= 0. (5)

The importance of the latter representation is that the
parameters of the PID controllers appear decoupled into
two separate equations. In this paper, special attention is
paid to the second equation (5), which has been referred
to as thegenerator of singular frequenciesor generator of
isolated frequencies. Namely, for a fixed value ofkP its real
solutions{ω′

1, ω
′
2, · · · , ω′

N} represent singular frequencies.
The term ’singular’ or ’isolated’ addresses the fact that
for a fixed kP the eigenvalues can cross the imaginary
axis only at these frequencies. Furthermore, equation (4)
maps each isolated frequency to a straight line in the
(kI , kD)−plane, which, in turn, compose convex stable
polygonal regions, [1]. Eventually, here it is important to
mark that the generator of singular frequencies represents
the imaginary part of the function

F (s) =
p(s)
A(s)

= kI + kP s + kDs2 +
B(s)
A(s)

. (6)

B. Time-delay systems

Hurwitz-stability of a PID loop with a time-delayTd is
described by a quasi-polynomial of the form

p(s) = A(s)(kI + kP s + kDs2) + B(s)eTds. (7)



Following similar steps as in the previous subsections it
can be easily shown that the quasi-polynomial (7) decouples
also at isolated frequencies into the following two equations

kI − ω2kD − α(ω) cos(ωLd + φ(ω)) = 0 (8)

ωkP − α(ω) sin(ωLd + φ(ω)) = 0 (9)

with

α(ω) =

√
RB

2 + IB
2

RA
2 + IA

2 , tanφ(ω) =
RA IB − IA RB

RA RB + IA IB
.

Again, equation (9) represents the generator of singular
frequencies. However, for a fixedkP infinite singular fre-
quencies result now.

C. Time-discrete systems

To show that decoupling of PID controller applies also in
the discrete time case, some definitions and pre-discussion
is required. Though the derived results apply directly or are
easily generalized for every simple and closedΓ region in
the z−plane, our main concern here is the Schur-stability
and the unity circle

Γ = {ejα : α ∈ [−π, π]}. (10)

First, note that the characteristic equation of a discrete-
time PID control loop is of the form

p(z) = A(z)Q(z) + B(z) = 0 (11)

where

Q(z) = kIz
2 + kP z(z − 1) + kD(z − 1)2. (12)

It is easy to check that the condition (3) does not apply∀α
on the unity-circleΓ, that is (12) is impossible to decouple
over Γ. However, aQ of the form

Q(z) = δ1(z)r1 + δ2(z)r2 + r3 (13)

with
δ1(z) = 1 + z2, δ2(z) = z

satisfies this condition with respect to parametersr1 andr2,
i.e.

det
∂(H,G)
∂(r1, r2)

= 0, ∀α. (14)

For the equations (12) and (13) to be identical an ap-
propriate liear parameter transformation(kI , kP , kD)T =
T (r1, r2, r3)T can be easily solved for. Clearly the above
expressions forδ1(z) andδ2(z) are not unique.

Definition 1: A function EΓ(z) defined as

Q(z) = EΓ(z) q(z) (15)

such that
Iq = r3g1(α) + g0(α), ∀α (16)

i.e. ∂Iq

∂r1
= ∂Iq

∂r2
= 0, whereIq stands for the imaginary part

of q, will be referred to as the decoupling function ofQ
over Γ.

�

Lemma 1: If (14) applies everywhere onΓ then

∂Iq

∂r1
= 0 ⇔ ∂Iq

∂r2
= 0, ∀z ∈ Γ. (17)

�
Proof. The reader can easily check that

det
∂(H,G)
∂(r1, r2)

=
(
R2

A + I2
A

) (
R2

E + I2
E

)
×

(
∂Rq

∂r1

∂Iq

∂r2
− ∂Iq

∂r1

∂Rq

∂r2

)
If (14) applies, that is, the right-hand side of the above
equation is zero, then∂Iq

∂r1
= 0 ⇒ ∂Iq

∂r2
= 0, since ∂Rq

∂r1
6= 0.

Similarly, ∂Iq

∂r2
= 0 ⇒ ∂Iq

∂r1
= 0. �

Theorem 1:δ1(z) andδ2(z) in (13) decoupleQ over Γ.
�

Proof. SupposeEΓ(z) = δ1(z). Then

q = r1 +
δ2(z)
δ1(z)

r2 +
1

δ1(z)
r3,

and ∂Iq

∂r1
≡ 0. Lema 1 guarantees that for allz ∈ Γ the

imaginary part ofδ2(z)
δ1(z) is also zero, that is, (16) applies.

Since δ2(z)
δ1(z) is real onΓ, its inverse will be also real, that

is, the imaginary part ofδ1(z)
δ2(z) for all z ∈ Γ is zero. Hence,

EΓ = δ2(z) represents also a decoupling function. �
The next theorem may be now directly stated.
Theorem 2:Consider the function

F (z) :=
p(z)

A(z)EΓ(z)
. (18)

The equationF (z) = 0 for z ∈ Γ decouples the parameters
r1, r2 andr3 into two equations,

r1h1(α) + r2h2(α) + h0(α) = 0 (19)

r3g1(α) + g0(α) = 0. (20)
�

Note that the second equation (20) is the sought generator
of singular frequencies for the time-discrete PID controllers.

III. T HE MAIN RESULTS

Based on the principle of argument simple necessary
conditions for the stability of a PID loop are derived in
this section. The results presented in this section use the
decoupling of PID parameter space, shown in the previous
section. For a more concise formulation of the Hurwitz-
stabilizability conditions aneven function E : N 7→ N+

is defined to map a positive natural number to the nearest
smaller even number.

A. Time-continuous PID

To prove the main result of this subsection the following
lemma is needed.

Lemma 2:Consider the Mikhailov plot of a real-rational
function F (s) for s = jω with 0 ≤ ω < +∞, and let
F (∞) → ∞. If the net phase change of the Mikhailov



vector F (jω) is Nπ/2, and F (s) has no poles on the
imaginary axis, then it cuts the real axisZ−times, where

Z ≥ 1
2

E(N) + 1. (21)

If F (s) hasL poles on the imaginary axis, which are left
circumscribed, then

(a) for F (0) 6= ∞

Z ≥ 1
2

E(N − L) + 1 (22)

(b) for F (0) = ∞

Z ≥ 1
2

E(N − L). (23)
�

A direct consequence reads as follows.
Lemma 3: If the net phase change of the Mikhailov

vector F (jω) for 0 ≤ ω < +∞ is Nπ/2, and F (s)
has L poles on the imaginary axis, which are all left
circumscribed, thenF (jω) will intersect the real axis at
Z nonzerofrequencies, where

Z ≥ 1
2

E(N − L). (24)
�

Now we are ready to introduce one of the key results of
the paper.

Theorem 3:Consider the characteristic polynomial (1).
Assume that the polynomialA(s) has no zeros on the
imaginary axisjω and let
N : order of the polynomial (1)
M : order of the polynomialA(s)
P : number of RHP (right half-plane) zeros ofA(s)
Z: number of singular frequencies on the interval

0 ≤ ω < +∞ for a fixedkP .
A necessary stabilizability condition for (1) is

Z ≥ 1
2

E(N −M + 2P ) + 1. (25)

Proof. Consider the functionF (s) as defined in (6).
Recall that its imaginary part fors = jω represents the
generator of singular frequencies (5). Hence the Mikhailov
plot of functionF (jω) intersects the real axis exactly atZ
singular frequencies{ω′

i}. If p(s) is Hurwitz, then appliance
of the principle of argument on a large semicircle on the
left-hand side of thes−plane with center ats = 0 yields

∆φF = (N −M + 2 P ) π/2 (26)

where ∆φF represents the phase change of the function
F (jω) on the imaginary axis for0 ≤ ω < +∞. According
to Lemma 3, asω changes within0 ≤ ω < +∞, F (jω)
will intersect the real axis at least12 E(N −M + 2P ) + 1
times. �

Using Lemma 3 the theorem is directly extendable for
the case whenA(s) possesses zeros on the imaginary
axis. In the forthcoming theorems applies the notation
introduced in Theorem 3.

Theorem 4:SupposeA(s) hasL zeros on the imaginary
axis. Then, for the polynomial (1) to be stable

(a) if A(0) 6= 0

Z ≥ 1
2

E(N −M + 2P + L) + 1 (27)

(b) if A(0) = 0

Z ≥ 1
2

E(N −M + 2P + L) (28)

singular frequencies corresponding to a fixedkP are
required within the intervalω ∈ [0,+∞).

�
Notice that both, Theorem 3 and 4, include the singular

frequency ats = 0. Given that the existence of a singular
frequency ats = 0 can be implicitly read from the
non-divergence of the plot of the generator of singular
frequencies (5) atω = 0, the next theorem simplifies the
both results and disburdens them from the situation ats = 0.

Theorem 5:SupposeA(s) hasL zeros on the imaginary
axis and consider the functionkP = kP (ω) in (5). Fix
kP = k∗P . Then for the polynomial (1) to be stabilizable,
the functionkP (ω)− k∗P must have

Z ≥ 1
2

E(N −M + 2P + L) (29)

positive zero frequencies.
�

B. Time-delay systems

The necessary stabilizability condition for the time-delay
systems is derived based on the theorem on real-roots
of quasi-polynomials, see [2]. The stabilizability theorem
reads:

Theorem 6:Consider the quasipolynomial (7). Assume
that A(s) has no zeros on the imaginary axis, andP RHP
zeros. If (7) is Hurwitz-stabilizable then akP and ak ∈ N
exist, such that forl ≥ k, the equation (9) possesses

Z ≥ 1
2
E (4l + N −M + 2P ) (30)

real roots in the interval0 < ω < (2lπ + δ)/Td, whereby
0 < δ < 2π is chosen such that the principal term of the
quasi-polynomial (7) does not vanish atω = (±2lπ+δ)/Td.

�
Its proof, as well as, the generalization for the case that

A(s) has zeros on the imaginary axis are similar to that in
the Subsection III-A.

C. Schur-stability

Lemma 4:Consider the Mikhailov plot of a real-rational
function F (z) on the unity circleΓ in (10) and letL be
the number of poles ofF (z) on Γ. If the phase change of
the Mikhailov vectorF (z) over Γ is Nπ, whereby theL-
poles are left circumscribed, then it cuts the real axis atZ
frequenciesα ∈ (0, π)



(a) if L is odd

Z ≥ N − L− 1
2

(31)

(b) otherwise

Z ≥ N − L− 2
2

. (32)
�

Theorem 7:Consider the time-discrete polynomial (11)
and letEΓ(z) be its decoupling function over theΓ unity
circle (10). Let
N : order of the polynomial in (11)
R: number of zeros ofA(z)EΓ(z) lying insideΓ
L: number of zeros ofA(z)EΓ(z) lying on Γ
Z: number of real roots of (20) in the interval

0 < α < π for a fixedr3 = r∗3 .
If the polynomial (11) is Schur-stabilizable, then

(a) if L is odd

Z ≥ N −R− L + 1
2

(33)

(b) otherwise

Z ≥ N −R− L + 2
2

(34)
�

The proof of the latter theorem is based on Lemma 4 and
the principle of argument. It follows the same lines as the
proof of Theorem 3.
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Fig. 1. Example 1; the generator of singular frequencies

IV. EXAMPLES

Example 1. Consider the polynomial (1) with

A(s) = −0.5s4 − 7s3 − 2s + 1,

B(s) = s7 + 11 s6 + 46 s5 + 95 s4 + 109 s3 + 74 s2 + 24s.

Its generator of singular frequencies (5) reads

kP =
−96 + 1028 ω2 − 2968 ω4 + 2534 ω6 − 216 ω8 − 2 ω10

4− 116 ω4 + ω8 + 16 ω2 + 196 ω6

(35)

and is depicted in Fig. 1. According to the definitions in
Theorem 3,N = 7, M = 4 and P = 1. Theorem 5
claims that for stability, akP must exist in Fig. 1, such
that Z ≥ 1

2E(N − M + 2P ) = 2 real-roots in (35)
exist within 0 < ω < +∞. By observation of the plot
in Fig. 1 it is obvious that this condition is fulfilled for
−24 < kP < 6.1565. Indeed, the reader may check that
stable PID controllers exist within thiskP−interval. E.g.
such a stable PID controller iskP = −2, kI = 5, kD = 10.
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Example 2: Shifted stablekP−intervals. Let

A(s) = s3 + 3s2 + 9,

B(s) = s4 + 2s4 + 3s2 + 7s + 14.

In this case,N = 4, M = 3 and P = 2, and for a fixed
kP , Z ≥ 1

2E(N − M + 2P ) = 2 real roots in (5) are
required within0 < ω < +∞. Now consider Fig. 2, where
the plot of the generator of singular frequencies forω ≥ 0
is depicted. The two (shaded)kP -intervals of interest are
directly recognized to fulfill the stabilization condition. For
otherkP ’s no stable PID controllers exist; Fig. 3 shows the
total set of PID stabilizers.
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Example 3: Missing stability.Let

A(s) = 1
B(s) = s5 + s4 − 3s3 − s2 + 2s.

Theorem 3 requires at least2 positive root frequencies,
however for−2 > kP , just 1 exists, otherwise none. Thus,
polynomial (1) is unstable no matter whatkP , kI , kD.
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Example 4: Time-delay system.Consider the quasi-
polynomial (7) with

A(s) = −7s2 − 2s + 1
B(s) = s4 + 3s3 − 3s2 + 4s

and Td = 0.5. In this caseN = 4,M = 2, and P = 2.
According to Theorem 6 a necessary condition for stabiliz-
ability of (7) is to find a sufficiently largek such that for
a fixedkP in Fig. 4 within any interval0 < ω < 4lπ + δ,
with l ≥ k, and0 < δ < 4π, at leastE(2l + 3) = 2l + 2
real frequency roots are available. By observation of the
plot in Fig 4 it is easily checked that already fork = 1 and
δ = π, the condition is fulfilled within the shaded interval
−0.8 < kP < −0.27. For all other values ofkP no stable
controllers exist.

Example 5: Schur-stability.The characteristic polyno-
mial (11) is considered with

A = z5 + 9.44z4 − 5.34z3 − 9.34z2 + 5.04z + · · ·
0.59 (36)

B = 0.19z8 − 0.73z7 + z6 − 0.45z5 − 0.12z4 + · · ·
0.14z3 − 0.009z2 − 0.008z. (37)

The polynomialA(z) possesses three zeros inside the
Schur-circleΓ, one zero atz = −1 and one zero outside
Γ. For the decoupling functionEΓ(z) = z, see Theorem 1,
N = 8, R = 3 + 1 = 4, and L = 1. Hence, for stabiliz-
ability a r3 must exist in (20) withZ ≥ N −R− L+1

2 = 3
zero frequencies in0 ≤ α ≤ +π. By observing the plot in
Fig. 5, it can be discriminated that this condition is fulfilled
within −0.52236 < r3 < 0.00290. Furthermore, zooming
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of plot in Fig. 5 identifies for0 < r3 < 0.00290 two
additional zero frequencies. Alternatively, if the decoupling
function EΓ(z) = 1 + z2 is used thenN = 8, R =
3, and L = 3, i.e. again for stabilityZ ≥ N−R−L+1

2 = 3
are required within0 ≤ α ≤ +π.

V. CONCLUSIONS

This paper provides a necessary condition for Hurwitz-
stability of a PID loop. The condition is easily checked by
observation of a plotkP = kP (ω). Thereby for a fixed
kP a minimal number of real root-frequencies is required
in (0,+∞). The condition is extended for discrete-time
PID controllers and PID control loops with time-delay. The
usability of the rule is illustrated by several examples.
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