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Abstract— A necessary condition for the existence of a stable Hurwitz stability, s = jw, may be represented in the matrix
PID controller for a given plant is introduced. The derived  form as follows
rule is straightforward to check and applies generally for LTI
systems, including time-continuous, time-discrete and time- [ H ] — P, { 1 —w? ] [ kr ]

delay systems. Therefore the plot of a directly constructible G 0 0 kp
function is checked for a required minimal number of real 2
Zeros. where
RA —IA RB
I. INTRODUCTION = =

PID controllers count to the simplest and most applied dR and I stand f land i . ¢ of Dol
controller structures in a wide spectrum of industrial apfir_l and. stand for rea’ and imaginary part of polyno-
ials A and B at s = jw. Notice that for a fixedcp in (2)

plications. Yet challenging theoretical problems have beel . .
recently formulated in searching for alternative proceduretge system matrix in terms of parametégsandp is v
for the design of robust PID controllers to the standaraIngular
tuning rules. A typical such problem is computation of the d(H,G)
set of all robust PID stabilizers for a given finite set or a det W
continuum of plants. The competition with the tuning rules LD
approach requires simple solutions for non-trivial problemsyet (2) may have solutions at a finite set of frequencies
This paper presents a new necessary condition for tHej,ws, -+ ,wjy}, Which are usually calledsolated or
stabilizability of a time-continuous or a time-discrete PIDsingularfrequencies. By left multiplication of (2) wit#®, ',
loop, which additionally may include time delay. The rulethe following two equations result
is based on the decoupling of the PID parameter space

=0, Vw. 3)

(kp,kr,kp) at singular freque_ncies. Such conditions enable ) RaRp + I4lp

the construction of an equation of the fortp = kp(w), kr —wkp — T R2+12 0 4
which plays the central role in this work. Then, it is shown RAIAf I,?R

that for Hurwitz-stabilizability akp must exist, such that wkp — B B = . (5)

the equatiorkp = kp(w) possesses at least a fixed number Ry + 13

of real-roots (singular frequencies) in the inter¢@l+oco0).  The importance of the latter representation is that the
This condition may be directly checked by plotting theparameters of the PID controllers appear decoupled into
function kp = kp(w). The rule is then extended for two separate equations. In this paper, special attention is
Hurwitz-stability of time-delay systems and Schur-stabilitypaid to the second equation (5), which has been referred
of time-discrete PID controllers. In the latter case, theo as thegenerator of singular frequenciem generator of
notion of thedecoupling functiorover the unity circle is isolated frequenciedNamely, for a fixed value of p its real

introduced. Eventually, the usability of the rule is illustratedsolutions{w}, w5, - - - ,w} represent singular frequencies.
by several examples. The term ’'singular’ or 'isolated’ addresses the fact that
for a fixed kp the eigenvalues can cross the imaginary
I[I. DECOUPLING axis only at these frequencies. Furthermore, equation (4)

maps each isolated frequency to a straight line in the
(kr,kp)—plane, which, in turn, compose convex stable

Consider Hurwitz-stability of the characteristic polyno-polygonal regions, [1]. Eventually, here it is important to
mial of a feedback-loop with a PID controller mark that the generator of singular frequencies represents
the imaginary part of the function

B
) ) F(S):@:k1+k’PS+kDS2+ﬂ. (6)
where A(s) and B(s) are given real polynomials. No Als) A(s)
restrict_ion vy.r.t. the order of the pqunomiaks _andB is B. Time-delay systems
made in this paper. The characteristic equation of (1) for ] N ] ] )
Hurwitz-stability of a PID loop with a time-dela¥y is
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A. Time-continuous systems

p(s) = A(s)(kr + kps + kDSQ) + B(s) Q)



Following similar steps as in the previous subsections it Lemma 1:If (14) applies everywhere oh then
can be easily shown that the quasi-polynomial (7) decouples oI oI
q _ q

also at isolated frequencies into the following two equations e & Fr 0, Vzel. a7
1 2
kr —w’kp — a(w)cos(wLg + ¢(w)) = 0 (8) . U
whp — aw)sinwle + 6w) = 0 (9) Proof. The reader can easily check that
. 8(Ha G) 2 2 2 2
with det ) (R% +13) (R: + 1Iz)
Rp®+1Ip° Ralp—IaRp OR,dI, OI, R,
=4, t =t _-"2 441
a(u)) RA2+14% an ¢(w) RaRp+1alp x <87“1 dres  Ory Org

Again, equation (9) represents the generator of singuldfr (14) applies, that is, the right-hand side of the above
frequencies. However, for a fixeldp infinite singular fre- equation is zero, thergf,—j =0= g%; =0, since 2z # 0.

or
quencies result now. Similarly, % —0= % —0. ' 0
T2 T1 .
C. Time-discrete systems Theorem 1:61(z) anddz(z) in (13) decouplel overlg

To show that decoupling of PID controller applies also in
the discrete time case, some definitions and pre—discussionPrOOf' SUppOSEr(2) = 01(2)- Then
is required. Though the derived results apply directly or are d2(2) 1
easily generalized for every simple and clogedegion in ¢=mt 61(2) 2t 51(2) T35
the z—plane, our main concern here is the Schur-stability .
and the unity circle and o~ = 0. Lema 1 guarantees that for all € T the
imaginary part of22(2) is also zero, that is, (16) applies.

61(2)
Since gfgg is real onT, its inverse will be also real, that
First, note that the characteristic equation of a discretc?s— the

. . I(Z) .
time PID control loop is of the form imaginary part ogﬁ for all z e.F Is zero. Hence,
Er = d5(z) represents also a decoupling function. O

p(z) = A(2)Q(2) + B(z) =0 (11) The next theorem may be now directly stated.
Theorem 2:Consider the function

I ={e*: ac€[-n, ]} (20)

where h
Q(2) = kr2* + kpz(z — 1) + kp(z — 1)2 (12) F(z):= m (18)

It is easy to check that the condition (3) does not apfaly The equationF(z) = 0 for z € T’ decouples the parameters
on the unity-circlel’, that is (12) is impossible to decouplerhr2 andr; into two equations,

overI'. However, a@ of the form

rlhl(a) + r2h2(a) + hg(a) =0 (19)
z) =01(2)r1 + 62(2)re + 1 13
@) 1(2)r1 4 0a(z)r + 75 (13) r3g1(a) + go(a) = 0. (20)
with a
§1(2) =142 0a(z) =2 Note that the second equation (20) is the sought generator

satisfies this condition with respect to parametgrandrs, of singular frequencies for the time-discrete PID controllers.

i.e. O(H,G) Ill. THE MAIN RESULTS

det A(ry,m2) =0, Va. (14) Based on the principle of argument simple necessary

For the equations (12) and (13) to be identical an aloc_onditions for the stability of a PID loop are derived in
propriate liear parameter transformatioby, kp, kp)” —= this section. The results presented in this section use the

T(r1,s,73)" can be easily solved for. Clearly the aboved€c0upling of PID parameter space, shown in the previous
expressions fob; (=) andd,(z) are not unique. sect!qn. Epr a more concise formulgtlon of the Hurwitz-
Definition 1: A function Er-(z) defined as ;tab|I|_zab|I|ty conditions _qmvenfunctlon E: N~ Nt
is defined to map a positive natural number to the nearest

Q(z) = Er(2) q(2) (15)  smaller even number.
such that . y 16 A. Time-continuous PID
@ = T391(@) + go(), “ (16) To prove the main result of this subsection the following
ie. % = g—g = 0, wherel, stands for the imaginary part lemma is needed.
of ¢, will be referred to as the decoupling function @f Lemma 2:Consider the Mikhailov plot of a real-rational
overT. function F'(s) for s = jw with 0 < w < +oo, and let

O F(c) — oo. If the net phase change of the Mikhailov



vector F'(jw) is N7 /2, and F(s) has no poles on the Theorem 4:SupposeA(s) hasL zeros on the imaginary
imaginary axis, then it cuts the real axis-times, where axis. Then, for the polynomial (1) to be stable
(@) if A(0)#£0

Z> % E(N) + 1. (21) '
If. F(s) hgsL poles on the imaginary axis, which are left Zz 2 E(N-M+2P+L)+1 @7)
C'rf;mf;r“g?g)' i‘ig (b) if A(0) =0
ZZ%E(N—L)—Fl 22) ZZ%E(N—M+2P+L) (28)
©) for o) = oShaulr fequenes coresponing 1o a f ar
Zz % E(N —L). (23) Notice that both, Theorem 3 and 4, include the siEguIar

_ 0 frequency ats = 0. Given that the existence of a singular
A direct consequence reads as follows. frequency ats = 0 can be implicitly read from the
Lemma 3:1f the net phase change of the Mikhailovhon-givergence of the plot of the generator of singular
vector F(jw) for 0 < w < 400 is N7/2, and F(s) frequencies (5) atv = 0, the next theorem simplifies the
has L poles on the imaginary axis, which are all leftpoth results and disburdens them from the situation=ato.
circumscribed, then¥(jw) will intersect the real axis at  Theorem 5:Supposed(s) hasL zeros on the imaginary
Z nonzerofrequencies, where axis and consider the functiohp = kp(w) in (5). Fix

1 kp = k%. Then for the polynomial (1) to be stabilizable,
Zz 2 E(N - IL). (Zé) the functionkp(w) — k% must have
Now we are ready to introduce one of the key results of 7> 1 E(N —M+2P+1L) (29)
the paper. —2
Theorem 3:Consider the characteristic polynomial (1).positive zero frequencies.
Assume that the polynomiall(s) has no zeros on the O
imaginary axisjw and let
N: order of the polynomial (1) B. Time-delay systems
M: order of the polynomial(s) The necessary stabilizability condition for the time-delay
P: number of RHP (right half-plane) zeros df(s) systems is derived based on the theorem on real-roots
Z:  number of singular frequencies on the interval  of quasi-polynomials, see [2]. The stabilizability theorem
0 <w < +oo for a fixed kp. reads:

A necessary stabilizability condition for (1) is Theorem 6:Consider the quasipolynomial (7). Assume

that A(s) has no zeros on the imaginary axis, aRdRHP
zeros. If (7) is Hurwitz-stabilizable then/g> and ak € N
exist, such that fof > k, the equation (9) possesses

ZZEE(N—M+2P)+1. (25)

Proof. Consider the functionf'(s) as defined in (6).
Recall that its imaginary part fos = jw represents the
generator of singular frequencies (5). Hence the Mikhailov 7> lE (41+ N — M + 2P) (30)
plot of function F'(jw) intersects the real axis exactly At ~ 2
singular frequenciegw; }. If p(s) is Hurwitz, then appliance real roots in the intervad < w < (2ir + §)/Ty, whereby
of the principle of argument on a large semicircle on thg < § < 2 is chosen such that the principal term of the
left-hand side of the—plane with center at = 0 yields quasi-polynomial (7) does not vanishuat= (+2i7+6)/T}.

O
Agp=(N—-M+2P)7/2 (26) Its proof, as well as, the generalization for the case that

where A¢r represents the phase change of the functiod(s) has zeros on the imaginary axis are similar to that in
F(jw) on the imaginary axis fob < w < +oo. According the Subsection IlI-A.
to Lemma 3, asv changes within) < w < 400, F(jw) -
will intersect the real axis at leagt E(N — M +2pP)+1 C- Schur-stability
times. | Lemma 4:Consider the Mikhailov plot of a real-rational

Using Lemma 3 the theorem is directly extendable fofunction F'(z) on the unity circleI" in (10) and letL be
the case whenA(s) possesses zeros on the imaginarghe number of poles of'(z) onT. If the phase change of
axis. In the forthcoming theorems applies the notatiothe Mikhailov vectorF(z) overT is N, whereby theL-
introduced in Theorem 3. poles are left circumscribed, then it cuts the real axig at

frequenciesy € (0, 7)



() if L is odd and is depicted in Fig. 1. According to the definitions in
Theorem 3,N = 7, M = 4 and P = 1. Theorem 5

Z>" - (31) claims that for stability, &p must exist in Fig. 1, such
2 that Z > 1E(N — M + 2P) = 2 real-roots in (35)
(b) otherwise exist within 0 < w < +oc. By observation of the plot
N_TI_9 in Fig. 1 it is obvious that this condition is fulfilled for
Z > — (32) —24 < kp < 6.1565. Indeed, the reader may check that

] stable PID controllers exist within thisp—interval. E.qg.

Theorem 7:Consider the time-discrete polynomial (11)such a stable PID controller fsp = —2,k; = 5,kp = 10.
and let Er(z) be its decoupling function over thié unity

circle (10). Let
N: order of the polynomial in (11)

R:  number of zeros ofA(z)Er(z) lying insideT’
L:  number of zeros ofA(z)Er(z) lying onT
Z: number of real roots of (20) in the interval

O<a<7rforaf|xedr3fr
If the polynomial (11) is Schur- stablllzable then

(a) if L is odd

Z>N-R- % 33)
(b) otherwise
Z>N-R- % (34)

O . .
The proof of the latter theorem is based on Lemma 4 and Fi9- 2. Example 2; the generator of singular frequencies
the principle of argument. It follows the same lines as the

proof of Theorem 3. Example 2: Shifted stablep—intervals. Let
" A A(s) = 24352409,
B(s) = s*+2s*+35% 4+ 75+ 14.

In this case,N = 4, M = 3 and P = 2, and for a fixed
kp, Z > $E(N — M + 2P) = 2 real roots in (5) are
required within0 < w < +o00. Now consider Fig. 2, where
the plot of the generator of singular frequenciesdop 0

is depicted. The two (shaded)--intervals of interest are
directly recognized to fulfill the stabilization condition. For
otherkp’s no stable PID controllers exist; Fig. 3 shows the
total set of PID stabilizers.

Fig. 1. Example 1; the generator of singular frequencies 1
0.5
0

IV. EXAMPLES

Example 1. Consider the polynomial (1) with '

A(s) = —0.58" =753 — 2541,
B(s) = s +11554465° +955* +1095° + 74 5 4 24s. w
Its generator of singular frequencies (5) reads

—96 + 1028 w? — 2968 w* + 2534 Wb — 216 wW® — 210
4 —116w* + w8 + 16 w2 + 196 Wb

kp =

(35) Fig. 3. Example 2; the set of all PID stabilizers



Example 3: Missing stability.Let

I
0.0029

A(s) = 1
o,
B(s) = s +s*"—3s%—5%+2s. ’

Theorem 3 requires at least positive root frequencies, ,
however for—2 > kp, just1 exists, otherwise none. Thus, WF AO,'m

polynomial (1) is unstable no matter whiat, k;, kp.

stable

/interval

s ‘ ‘
0 an 8n 12n
Fig. 5. Example 5; the generator of singular frequencies

®

Fig. 4. Example 4; the generator of singular frequencies
additional zero frequencies. Alternatively, if the decoupling
function Er(z) = 1 + 22 is used thenN = 8, R =
3, and L = 3, i.e. again for stabilityZ > N—R— X+ =3
are required withird < a < +.
V. CONCLUSIONS

polynomial (7) with

A(s) = —T7s2—2s+1

B(s) = s*+3s%—3s%+4s
and 7Ty = 0.5. In this caseN = 4, M = 2, and P = 2.
According to Theorem 6 a necessary condition for stabiliz- This paper provides a necessary condition for Hurwitz-
ability of (7) is to find a sufficiently large: such that for stability of a PID loop. The condition is easily checked by
a fixed kp in Fig. 4 within any intervald < w < 4ir + 6, observation of a plokp = kp(w). Thereby for a fixed

kp a minimal number of real root-frequencies is required

with [ > k, and0 < ¢ < 4, at leastE(2] + 3) = 2] + 2
real frequency roots are available. By observation of thia (0, +oc). The condition is extended for discrete-time

plot in Fig 4 it is easily checked that already for=1 and  PID controllers and PID control loops with time-delay. The
0 = m, the condition is fulfilled within the shaded interval usability of the rule is illustrated by several examples.

—0.8 < kp < —0.27. For all other values okpr no stable
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