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Abstract – Vehicle lateral control for Automated Highway 
Systems (AHSs) is concerned with lane keeping and lane 
changing. It is of critical importance for safe highway 
operations; it must have fault tolerant capability in order to 
maintain stability in the event of malfunction of its 
components. In this paper, we investigate detection, isolation 
and accommodation of sensor faults. We propose a stochastic 
framework to which switching Kalman filtering and the EM
algorithm are applied to detect faulty sensors and achieve 
good state estimation. With prior knowledge about the sensor 
failure modes, multiple sensors can be integrated into the 
framework, and the single failure assumption is no longer 
required. Simulations show that the sensor faults are detected 
immediately after their occurrences. Stability and 
performance are observed to be satisfactory in the event of 
sensor failures. 

1. Introduction 
The California PATH (Partner of Advanced Transit and 

Highways) Program has conducted an extensive study on 
Automated Highway Systems (AHSs) for reducing traffic 
congestion and enhancing safety. Driving tasks are carried 
out automatically by on-board sensors, actuators and 
computers without human intervention. The vehicle’s 
lateral control system, one of the vital subsystems in AHS, 
acquires the lateral position from the lateral sensing system 
and generates steering command to keep the vehicle 
running along the road centerline. The lateral sensing 
system consists of magnetic markers embedded along the 
road centerline every 1.2 meter and two sets of 
magnetometers installed under the vehicle’s front and rear 
bumpers [3][10]. Experiments have shown that the 
“look-ahead” scheme utilizing these two sets of 
magnetometers’ outputs results in good control 
performance [3]. It has also been shown, however, that the 
performance of the scheme is sensitive to failures of the 
magnetometers [10]. In order to guarantee a safety 
operation, the lateral control system must have fault 
tolerant capability such that the system maintains stability 
and acceptable performance even when either set of 
magnetometers fails. 
 We have proposed an observer-based fault tolerant 
control scheme to detect, identify and accommodate 
magnetometers’ failures in [5]. The scheme is canonical in 

the sense that only two sets of magnetometers are required 
to accomplish fault detection and identification (FDI) and 
state estimation. It is, however, applicable only to 
two-output systems and is based on the single failure 
assumption which states that at most one sensor can fail at 
any time. There is no systematic way to integrate other 
on-board sensors such as gyros and accelerometers into the 
proposed observer-based structure and to relax the 
restrictive single failure assumption.  

In this paper, we make use of a priori knowledge of the 
sensor failure modes to represent the fault signal as a 
mixture of Gaussians model [1][2]. A stochastic observer, 
switching Kalman filter or mixture Kalman filter [1][2][8], 
is designed to approximate the optimal state estimator in 
both normal and sensor failure cases. Failures will be 
detected and identified during the process of state 
estimation. The proposed stochastic observer structure can 
be extended to incorporate as many sensors as we want at 
the price of increasing computation load. Multiple sensor 
failures are allowed provided that the system is still 
observable with the outputs of the remaining healthy 
sensors. 

This paper is organized as follows: Section 2 gives the 
bicycle model for vehicle lateral motion and the probability 
model imposed to the sensor failures. Design of switching 
Kalman filters is discussed in Section 3. The EM algorithm 
[9], which is used to compensate the unknown disturbance 
caused by the road curvature, is introduced in Section 4. 
Simulation results are presented in Section 5. Conclusions 
are given in Section 6. 

2. Models and Problem Setting 
2.1  Bicycle model 

The bicycle model is widely used in the design of vehicle 
lateral controllers. Under the assumptions of a small 
steering angle and yaw angle, negligible roll and pitch 
motion, and linear tire model, the lateral motion can be 
expressed by a 4th order linear differential equation [4]. 
        1 2                             (1)dx Ax B B
   

1 2 3                 (2)T
y y yy C x

The state x consists of lateral position/velocity and yaw 
angle/rate. The output vector y consists of the 
measurements from the two sets of magnetometers (y1 and 
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y2) and the gyro (y3)1. The disturbance d introduced by the 
road curvature is unknown. A, B1, B2, and C are known 
matrices shown below. The meaning of each symbol is 
listed in Table 1.  
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Let Ci denotes the i-th row of C; then (A,C1) and (A,C2)
are observable whereas (A,C3) is not. In other words, full 
state estimation is still possible if the gyro and either set of 
the magnetometers have failed.  

Table 1 nomenclature of the bicycle model

The lateral sensing system may suffer from the following 
types of failures [10]:  

 (F1) Since the magnetometers are quite close to the 
ground, it is very likely that the magnetometers are hit by 
obstacles on the road and their signals can be lost. We 
model this situation as yi~N(0, 1

2), i.e. the corresponding 
output yi is a Gaussian random process with zero mean and 
variance 1

2.
 (F2) The on-board lateral sensing system includes a 

preliminary fault detection mechanism. When faults are 
detected, the outputs of the corresponding magnetometers 
are set to its maximum values, which is 0.5. We model this 
situation as yi~N(0.5, 2

2).
 (F3) The gyro could lose its information by accident. 

We model this situation as y3~N(0, 3
2).

1 Due to the DC drift problem, applying the gyro measurement is 
more elaborate than that presented in this paper. The 
implementation issue is beyond the scope this paper. It is included 
in the output vector to demonstrate that the single failure 
assumption is not necessary. 

2.2  Probability Model 
For convenience, we will derive the state estimation 

algorithm in discrete-time domain. Therefore the 
continuous-time model (1) and (2) are converted into the 
discrete-time counterparts (3) and (4). The output equation 
(4) is modified to include the effects of different types of 
sensor failures. 
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where yk
0 denotes the healthy sensor output and yk

i denotes 
the sensor’s output under the i-th failure mode for i>0. zk

i

{0, 1} is unknown and selects exactly one of the yk
i’s at 

each step k. fk
i’s are Gaussian processes.  

iii
k N Vf ,~ , i=0,1,…M, k   (5) 

where 0=0 and V0= 0
2I denote the mean and variance of 

the measurement noise under no sensor failures. Cd
i, i, and 

Vi, i=0,…,M, are assumed to be known and represent 
different failure modes. For example, yk

1 represents the 
sensor output when the front set of magnetometers 
undergoes failure (F1) and other sensors work properly, 
then 

Cd
1=[0; Cd,2; Cd,3], 1=0, and V1=diag( 1

2, 0
2, 0

2)
 zk

i is regarded as a multinomial random variable for 
each k. Since zk

i depends on zk-1
i (the sensor broken at step 

k-1 is more likely to remain broken at step k and 
thereafter.), we assume zk

i is a Markov-chain random 
process, i.e.  

(7)k0,1,...M,ji,,)1|1(

(6)1and)1(
,

1
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jii
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k
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i

iii

zzp

zp

i is the prior probability of the occurrence of the i-th 
failure mode. i,j is the conditional probability of the 
occurrence of the j-th type of failure at step k, given the 
occurrence of the i-th type of failure at step k-1. i and i,j

are assumed to be known. They can be derived from prior 
knowledge about the quality of the sensors. 

We also model the initial state x0 and disturbance dk to be 
Gaussian random variables, i.e.  

),(~ 000 Xxx N  and ),(~ 2
d

d
kk Nd  (8) 

where x0 and X0 are assumed to be known. Note that in 
reality dk is deterministic and the probabilistic description 
of dk seems artificial. However d can be viewed as a 
design parameter for the designer to adjust the Kalman 
filter gain. k

d depends on the road curvature which is 
unknown and varies with time. As in the standard setting of 
Kalman filtering, we assume fk

i, dk, and x0 are independent. 

Remarks:
(a) yk

i is Gaussian for each i whereas yk is not. The density 
function of yk is a convex combination of Gaussian density 
functions. In other words, yk is expressed as a mixture of 
Gaussians model [1][2][7].  Efficient algorithms to 
estimate the state of the mixture of Gaussians model will be 

yaw angle  steering angle 
m mass vx longitudinal speed 
Iz yaw moment of inertia 
d disturbance caused by the road curvature 
l1/l2 distance between the front/rear wheel and the CG 
d1/d2 distance between the CG and the front/rear bumper 
C f/C r Cornering stiffness of the front/real wheels 
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discussed in the next section. 
(b) Under the probabilistic setting, the FDI problem is 
equivalent to evaluate the posterior probabilities: 
     i

kk
i
kzp ),|( 0 yy   i=0,1,… M.       (9) 

Let k
j=max{ k

0,… k
M}. If j=0, then there is no sensor 

failure at step k; otherwise the j-th failure mode has taken 
place.  

2.3  Problem Statement 
Given model descriptions (3)~(8) and a stabilizing 

controller, we will derive a real-time algorithm to detect, 
identify and accommodate sensor failures such that stability 
and acceptable performance are achieved when parts of 
sensors have failed. No single failure assumption is made in 
this approach. To accommodate sensor failures, the 
algorithm must be capable of estimating the state 
reasonably well despite the occurrence of failures. The 
controller generates the steering command based on the 
estimated state.  

Figure 1 is the block diagram of the proposed closed 
loop system, where SKF denotes switching Kalman filter 
which will be illustrated in the next section. 

Figure 1 Block diagram of the proposed closed loop system 

The standard Kalman filtering algorithm is applicable 
only to Gaussian processes. For non-Gaussian cases, it is 
mathematically intractable to compute exactly the 
“optimal” estimated state (in the sense of minimum 
variance). Moreover, k

d is unknown and time-varying. A 
special algorithm tailored to the present application will be 
derived in the next two sections.  

3. Switching Kalman Filter 
In this section, we assume that k

d is known and focus on 
the state estimation problem under mixture of Gaussian 
processes. Several methods have been proposed in the 
literatures, e.g. Monte Carlo filtering [1] or “splitting and 
collapsing” method [7][8]. The latter is more efficient and 
often provides satisfactory results. It is reviewed below. 
First of all we introduce the following notations:  

y[s,t] ={ys, ys+1, … yt} for any s<t.
,
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If the values of zi’s are specified, the optimal state 
estimation problem becomes a standard Kalman filtering 
problem. Given the estimated state at step k, the “splitting 
process” applies the standard Kalman filtering algorithm 
repeatedly to compute M+1 state estimates at step k+1, 
each of which corresponds to zk+1

i=1 for i=0,…M 
respectively. The splitting process continues and generates 
(M+1)2 estimated states at step k+2. The number of 
estimated states blows up exponentially. See Figure 2 for 
M=1. 

Figure 2  Splitting process for M=1 

To make the problem tractable, there must be a 
“collapsing” mechanism to reduce the number of estimated 
states. The GPB(2) algorithm (Generalized Pseudo 
Bayesian algorithm of order 2, [8]) maintains (M+1)2

estimated states ji
kk

,
|x̂  at each step k by collapsing M+1 

estimated states ji
kk

,
|x̂ , i=0,1,…M into one estimate, j

kk |x̂ .
See Figure 3 for M=1.  

Figure 3 Splitting and collapsing processes for M=1. Real line: 
splitting. Dotted line: collapsing. 

The “splitting and collapsing” algorithm is recursive. 
Given i

kk
i

kk
i

kk ||| ,,ˆ Px  at step k, compute 
i

kk
i

kk
i

kk 1|11|11|1 ,,ˆ Px  at the next step. See Algorithm 1 
below or references [7] and [8] for more details.  
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Remark:
We can derive algorithms which compute (M+1)3 estimates 

]1,,1,1|[ˆ 21
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m
k
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k

i
kk

mji
kk zzzE xx  at each step k and 

then collapse them into (M+1)2 estimates. It results in a 
better approximation since more Gaussian processes are 
involved; however the computation load increases 
exponentially. 

4. EM Algorithm 
4.1  EM-algorithm in General 

The EM algorithm is a generic iterative algorithm to 
estimate unknown parameters when some of the random 
variables are unobserved (called latent variables). It 
consists of two steps: Expectation step (E-step) and 
Maximization step (M-step). The idea behind the 
EM-algorithm is to separate a complex problem into two 
simple but coupled problems. Solve one problem at a time 
assuming that the answer of the other problem is known 
and continue the process iteratively. 

For example, let X and Y be random variables with joint 
probability p(X,Y| ), where Y is observed, X is latent and 
is the unknown parameter to be estimated. The maximum 
likelihood estimation is 

)|,(log)(maxargˆ yxpLML    (10) 
Solving the optimization problem (10) directly is often a 

daunting task because both X and  are unknown. The 
EM-algorithm provides a two-step iterative solution: 

)(ˆmaxarg:step-M
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1

1
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t
yxp
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LEL

where t is the estimate of  at the t-th iteration. E-step 
assumes ’s value from the previous iteration and computes 
the “best” estimate of X by averaging out the likelihood 
function with respect to the conditional probability p(X|Y).
M-step maximizes the (averaged) likelihood function from 
E-step to update the current estimate of . The procedure 
keeps going until  converges. It can be shown that the 
EM-algorithm does converge to the local maximum of the 
complete log likelihood function, log p(X,Y| ) [9]. 

4.2  Estimating k
d by EM algorithm 

In the lateral control problem, the state x is latent and k
d

is the unknown parameter. We apply the EM algorithm to 
estimate both x and k

d in this subsection. First, we write 
down the complete log likelihood function at step k. 

k
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Since the disturbance dt is piecewise constant, we 
assume that t

d is constant within a “N-duration window” 
around each step k, i.e. t

d= d for t [k-N+1, k]. Note that 
only the conditional density functions p(xt+1|xt), t [k-N+1, 
k], are related to d. Other terms of L disappear after we 
take derivatives of L with respect to d. Therefore we 
redefine the log likelihood function L which includes only 
N terms related to d.

k

Nkt tt
d pL 1 )|(log)( 1 xx
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We modify the log likelihood function L again to exclude 
terms unrelated to d.
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Note that Eq. (12) requires a smoothing process at each 
step k to compute kt|x̂  for t [k-N+1, k]. Switching 
Kalman smoothing is feasible but time-consuming. The 
smoothing algorithm includes implementation of Algorithm 
1 in both forward and backward directions for each step 
and we found that it cannot be applied to our real-time 
control systems. Therefore we modify Eq. (11) by replacing 
the “N-duration window” with an exponential decay 
window. 

Let 0ˆ
0 |

k
t

d
kkt

tk
dq , where 0< <1. Then  

k
t kt

tkd
k q

d

k 0 |
1 ˆˆ , where k

t
tk

k 0
    (13) 

Expanding the summation in Eq. (13): 
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Note that kks |ˆ  is the conditional mean of  
   k
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dks 01 )( xAIU  given y[0,…k]. It can be obtained 
by applying the switching Kalman filtering algorithm to the 
augmented system (15) and (16) below. 
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When Algorithm 1 is applied to (15) and (16), k
d in 

Algorithm 1 is replaced by d
k 1ˆ . Then substitute kks |ˆ

into (14) to update the current estimate of d. In this way, 
we can estimate both the state and the mean of the 
unknown disturbance in a real-time manner. 

5. Simulation 
In the following simulations, we set the longitudinal 

speed vx to be 25 m/sec  56 mph. The road curvature  is 
set to be 1/1000 (1/m). Hence the disturbance dk is 
vx/ =0.025 [4]. Note that these settings are in accordance 
with the highway traffic in U.S. We set up 6 failure modes 
which are listed in Table 2. 

The following parameters are selected: 0=0.0075, 
1= 3=10 0 2=0.1 0 and d=10-4. The prior probabilities 
i,js are shown in Table 3. And i= 0,i(see eq. (6)); x0=0,

X0=0.1I and =0.99.
The selection of these parameters is based on the prior 

knowledge of the sensors. For example, the value of 0 is 
chosen such that 99% of the measurement noise is within 
the range (-0.02 0.02). We set 3,0=0.003, 3,3=0.995 and 

3,4=0.002 because the sensing system in failure mode 3 
(the rear set of magnetometers suffers from failure F1) at 
step k is much more likely to stay at mode 3 at step k+1. 
It’s also possible for it to jump to mode 0 (the 
magnetometer works again) or to mode 4 (the rear set of 
magnetometers suffers from failure F2).  

Table 2 Failure modes 

Mode    
0 Normal mode 3 y2 is under failure F1 
1 y1 is under failure F1 4 y2 is under failure F2 
2 y1 is under failure F2 5 y3 is under failure F3 
6 y1 AND y3 are under failures F2 and F3, respectively 

Table 3 the prior probabilities i,j

i,j j=0 j=1 j=2 j=3 j=4 j=5 j=6 
i=0 0.998 5e-4 3e-4 5e-4 4e-4 2e-4 1e-4 
i=1 0.003 0.995 0.002 0 0 0 0 
i=2 0.003 0.001 0.992 0 0 0 0.004 
i=3 0.003 0 0 0.995 0.002 0 0 
i=4 0.003 0 0 0.001 0.996 0 0 
i=5 0.003 0 0 0 0 0.993 0.004 
i=6 0 0.001 0.003 0 0 0.003 0.993 

Case 1: In this case, failure mode 2 takes place at 
7 t 12 while failure mode 4 takes place at 14 t 24. We 
can see from  

Figure 4 that the corresponding is becomes maximal 
among all posterior probabilities. The SKF performs state 
and disturbance estimation well under different failure 
modes and in the presence of disturbance. The disturbance 
affects the calculation of the posterior probabilities (part 
(g)). But the transient response caused by the disturbance 
dies out quickly once its effect has been compensated by 
the estimated disturbance.  

Case 22: In this case, we simulate the situation of 
concurrent sensor failures. y1 undergoes failure F2 at 
3 t 13 while y3 undergoes failure F3 at 7 t 17. At t [7 
13], y1 and y3 fail simultaneously, which is failure mode 6. 
We can see from Figure 5 that these faults are successfully 
detected and identified. The state estimation remains good 
under these failures. 

2 Control by the rear set of magnetometers only has been reported 
difficult in experiments [6] in the presence of model uncertainties, 
which is not reflected in the simulations. Current research efforts 
are directed to design robust observers to overcome this problem. 
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Figure 4 (a) dashed line (--): lateral position of the vehicle’s C.G.; 
dotted line(:): estimated lateral position. (b) dashed line (--): the 
vehicle’s yaw angle; dotted line (:): estimated yaw angle. (c) 
steering angle (d) dashed line (--): disturbance; dotted line (:): 
estimated disturbance (e) real line: 0; dotted line (:): 1. (f) real 
line: 2; dotted line 3. (g) real line: 4; dashed line: 5; dotted line: 

6. (h) dashed line (--): y1; dotted line(:): y2; solid line (-): y3.

Figure 5 (a) dashed line (--): lateral position of the vehicle’s C.G.; 
dotted line(:): estimated lateral position. (b) dashed line (--): the 
vehicle’s yaw angle; dotted line (:): estimated yaw angle. (c) 
steering angle (d) dashed line (--): disturbance; dotted line (:): 
estimated disturbance (e) real line: 0; dotted line (:): 1. (f) real 
line: 2; dotted line 3. (g) real line: 4; dashed line: 5; dotted line: 

6. (h) dashed line (--): y1; dotted line(:): y2; solid line (-): y3.

6.  Conclusion 
In this paper, we cast the sensor FDI problem in a 

stochastic framework. Multiple sensor cases can be 
integrated into this framework in a systematic way 
provided we know a priori their failure modes. The single 
failure assumption is no longer required. To estimate the 
vehicle’s state and compute the posterior probabilities for 

FDI purpose under the proposed stochastic settings, we 
applied switching Kalman filtering and the EM algorithm. 
Simulations demonstrated that state and disturbance can be 
estimated reasonably well under either normal or sensor 
failure modes. The normal mode controller was able to 
stabilize the system and achieve acceptable performance by 
feeding back the estimated state instead of the sensor 
measurements. Experiments will be conducted to verify the 
proposed algorithm. 
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