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Distributed deployment of asynchronous guards in art gaflerie

Anurag Ganguli Jorge Ca@s Francesco Bullo

Abstract—This paper presents deployment algorithms for related to visibility-based pursuit-evasion problems B4,
multiple mobile robots with line-of-sight sensing and commu-  [5], although these works focus on single agents and not on
nication capabilities in a simple nonconvex polygonal environ-  yistributed policies for groups of agents.

ment. The objective of the proposed algorithms is to achieve . -
full visibility of the environment. We solve the problem by Clearly, the solution to the visibility-based deployment

constructing a novel data structure called the vertex-induced Problem exists only if sufficient number of robots are présen
tree and designing schemes to deploy over the nodes of this tree to complete the task. According to the famous Art Gallery
by means of distributed algorithms. The agents are assumed to Theorem [6],L%J guards are always sufficient and occasion-
gg"ﬁcﬁ‘ﬁgﬁgigo a local memory and their operation is partially ||y necessary to guard a simply connected polygon with
4 ' n vertices. Fisk’s constructive proof of this theorem [7]
|. INTRODUCTION provides an elegant way of finding the guard locations.

owever, the construction relies on complete knowledge

as a nonconvex polvaon. Now consider the problem & f the environment and is contrary to the assumptions in
polygon. P ur formulation of the problem. As we shall see later, the

finding the least number of stationary guards so that Canservativeness of this assumption leads us to an algorith

point of the art gallery is visible to at least one guard. . i I~
stationary guard, here, is a fixed point that can see in ev'(gtrr)]/"’lt In the worst case requir¢s | robots as againgfs |.

direction or equivalently, has omnidirectional vision. €Th
assumption here is that guards cannot see through the walls
of the environment. This is the statement of the classical Ar
Gallery Problem. We can also think of this problem as that
of illuminating a polygonal environment with point lights;
see Fig. 1 for a graphical illustration of the objective.

Inspired by this and other "illumination problem” (see
the beautiful survey [1]), we pose the following problem.
Imagine a group of mobile robots, modeled as point masses,
in a nonconvex polygonal environment. Each robot has
omnidirectional vision and also has line-of-sight wirales Fi9. 1. A nonconvex polygon shaped like a typical floor pldre solid

. . . . circles represent the locations géiardswith omnidirectional vision. Note

communication capabilities. The problem then is to desigi\at each portion of the environment is visible to at least guard. Every
a distributed algorithm, copies of which run will run oncolored subset is a star-shaped polygon visible from thedglezated in
each robot and drive them to locations such that each poifie interior of the polygon.

of the environment is visible to at least one robot. The We now present a summary of our aoproach and contribu-
algorithm is distributed in the sense that it depends only on P y bp

information obtained from local sensing and communicatioryon' In what fOHOWS. we s_haII use_the term agents to refer to

robots or guards. First, given a simple nonconvex polygonal
We also assume that the robots operate asynchronously.erqvironment and one of its vertices, we describe a procedure
what follows, we shall refer to this problem as thisibility- ! P

based deployment problem to incrementally partition the environment into star-sédp

This problem is related to many surveillance and pursuiEOIygonS' This induces a new graph, associated to the

. . ) honconvex polygon and to the given vertex, called the vertex
evasion problems in unknown environments. Some related’ POlyg 9

works include [2] where an incremental heuristic for deploymduced tree; each star-shaped polygon is a node and an edge

. g § ists between two nodes if and only if the corresponding
ment is proposed (no formal analysis is presented) and [srar-sha ed polygons share an edge. Second, we design local
in which the relevance of random walk on graphs is dis: bed polyg ge. ! g

cussed (the environment and its graphical representation navigation algorithms to move between neighboring nodes of

S ) ne vertex-induced tree. Third, we present asynchronods an
assumed known a priori, general strategies are evaluaied istributed global algorithms for multiple agents to daplo
Monte Carlo simulation). In addition, the proposed work is 9 9 . P 9 o

over the nodes of the vertex-induced tree, and thereby solve
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Imagine an art gallery whose floor plan can be modele




. BROADCAST, (i, M; BROADCAST; (i, M;)
two pointsz,y € R?, we let [z,y] represent theclosed )

segmentbetweenz and y. Similarly, (z,y) represents the

open segmenbetweenz and y, [x,y) represents the set 25 Ti 4+ S

(z,y) U{x} and (z,y] represents the sét,y) U{y}. Given i@ 1 g T

a finite setX, let | X| represent the cardinality of the set.
Now let us turn our attention to the polygonal environ-

ment. Let@ be a polygon, possibly nonconvex. A polygon

is said to be simple if it does not contain any hole. Let LISTEN

Ve(Q) = (v1,...,v,) be the list of vertices of) ordered

counterclockwise. A reflex vertex is a vertex @f where Fig. 2. Sequence of actions performed by an ageint between two

he internal anale i r r tham radians. A in wake-up instants. Note that a BROADCASTM;) is an instantaneous
the internal angle is greater thain radians pointg € ¢ event taking place where there is a vertical pulse, wherb@$ROCESS,

is visible fromp € Q if [p. Q]_ C Q. The visibility polygon | |STEN and MOVE actions take place over an interval. The MONErval
S(p) C @ from a pointp € @ is the set of points ird) visible  might be empty if the agent does not move.

from p. Also, we shall usé to refer to tuples of elements in
R? of the form(p1, ..., px). With a slight abuse of notation, _ _
we shall useP interchangeably with a point set of the formdiscrete-time control system:

{p1,...,pN} pi(t + At) = pi(t) + s, 1)

1. NETWORK MODELING AND PROBLEM DESCRIPTION  Where the control is a function of the action that the agent
performs at timet, the memoryM,(t¢), and the information

In this section, we describe in detail the sensing and congbtained from communication and sensing. Also, note that
munication capabilities that define a visually-guided dgenthis model of visually-guided agents is similar in spirit to
Each agent has a unique identifier (UID)e {1,...,N}.  the partially asynchronous modelescribed in [8].
Furthermore, it is equipped with an omnidirectional life-o  Having described the model, we are now in a position to
sight range sensor. Thus, agéribcated atp; can measure formally describe the visibility-based deployment prable
the relative position of any other agent or of a point on  Gjven a polygonal  environment Q, let
the environment boundary that lies in its visibility polygo pto),....pn(to) € Q represent the initial
S(pi)- An agent can also communicate with any other agent  positions of an asynchronous network of
visible to it and at a distance less than the communication visually-guided agents as described in Section II.
radiusr; > 0. The communication is assumed to be UDP  Te yisibility-based deployment problem is solved
based. Thus, the communication region can be denoted by if the agent dynamics dictated by a suitable control

) ) )

\
‘ PROCESS MOVE ‘

C(pi) = S(pi) N By, (p:). We also assume here thatcan be law as described in (1) causes the positions of
chosen freely by an agent but cannot exceed a certain upper e agents to converge to a sdt c (2Q)¥
bound, sayR. Whenever agentcommunicates, it sends a with the property thatUN S(p;) = Q for all

7 7

BROADCAST; (i, M;) message containing its UIR and (p1,....pN) EW.

the contents of its memory1;. We assume here that there

is a variable but bounded time delay between sending and [ll. THE VERTEX-INDUCED TREE

receiving of messages. Lét> 0 denote this upper bound. Let us start by describing a procedure to partitiom
To any agent, we associate a sequen(E’), of wake- simple polygonal environment), into star-shaped subsets.

up instants. Lefly = ..., TV = ty. The agent performs the To begin constructing this partition, we require a starting

following actions betweefl; and T}, , for any[: vertex which we calk € Ve(Q). The procedure is as follows:

() BROADCAST;(i, M;) at timest = T} + kd, where [ ety — s and X =
k € NU{0}, as long as the agent is not moving;

(i) LISTEN for broadcasts during the time interval
[T}, T + M), A > 0

(iif) Continue to LISTEN and PROCESS states in its mem
ory during the interva(T} + X{, T} + X + pi);

(iv) MOVE during the time intervalT} + \; + p;, T}, ;). If
the robot decides not to move théfy | = T} +\;+p;.

1: Compute the set of all vertices of visible from v

2: Let Pemp be the polygon defined by the set of vertices
and insert it into the lisf®

3: Insertv into another list\/

4: Find all edges ofPemp that are diagonals oX and
insert them into listG. We call these diagonals gaps

5: for all gaps inG do

Remarks 2.1: (i) Note that the sequenc&” is not 6: Find a vertexv’ across the gap at a minimym

prespecified. Given any wake-up instaft, the next distance from the mid-point of the diagonal and from
wake-up instanf/, , is decided based upon the time which the complete gap is visible

the agent spends in each of the states in between ther:  Perform steps 1- 4 (withh = v and X being the
two wake-up instants. environment across the gap)

(i) An agent is capable of receiving broadcasts always s: end for
except when it is moving.
See Fig. 2 for a schematic illustration of the above schedul
. Agenti, n the MOVE State' IS capgble of moving at[ any =«Recall that a partition of any seX is a collection of closed and
time ¢t € [T} + A} + p},T},,) according to the following connected subsefs; with mutually disjoint interiors such that = U; X;.

gee Fig. 3 (left) for a graphical description of the algarith



In the procedure just describeB,is the list comprising of
star-shaped polygons composing the partition Ahds the
list of kernel points of the star-shaped polygons. In othe
words, if P; be theith element ofP, all points of P; are
visible from the vertex\/;. Henceforth, giver) and a vertex
s € @, we shall refer to this partition &B¢(s) and to the
list N as N (s). Finally, we refer toPg(s) as thevertex-
induced partition

Fig. 3.  The figure on the left shows the incremental way in whic
the vertex-induced partition is constructed. Startingrirthe vertexs, the
polygon defined by all the vertices visible fromis constructed. This is
represented by the dark shaded polygon. The thick edgessopttlygon
are diagonalsd’ and d”’, of the environmenty’ and v” are vertices of
the environment on the other side of the diagonals at a minimstartie
from the mid-point of the diagonals. The lighter shaded pohgyare the
sets of vertices visible from’ andv’’ on the other side of’ andd'’. This
procedure is repeated until the entire environment is pargt. The figure
on the right shows the partition. The vertex-induced tre@se shown. The
solid circles represent the vertices of the tree and theedhhes represent
the edges. The root of the tree is denoted by the vesrtex

As an outcome of the algorithn? is the list of star-
shaped polygons which partitiof. In addition, all points
of P, are visible from the vertexV;. With some abuse of
notation, henceforth, give@ and a vertexs € @, we shall
refer to this partition a® (s) and to the node list a¥/(s).
Finally, we refer toPg(s) as thevertex-induced partition
The following lemma summarizes the important propertie
of the vertex-induced partition.

Lemma 3.1:Given a simple polygoid) without holes and
any vertexs € Ve(Q), the following are true:

(i) Pg(s); is a star-shaped polygon for all and

(i) for any p; € Ng(s), we have thatPy(s); € S(p;).

We now define a graph using this partition. We assum
that the reader is familiar with standard notions of grap
theory.

Definition 3.2: Given a simple polygor) and a vertex
s € Ve(Q), thevertex-induced tre€(s), is the graph such
that the vertex list isV (s) and an edge exists between any
two verticesN;, N, € Ng(s) if and only if there exists a
segmentz, y| = P; N'P; with z,y distinct.

Note that by virtue of the construction of the vertex-indiice
tree, any segmerit, y| = P;NP; is such thate, y € Ve(Q),

or in other words |z, y] is a diagonal ofQ). Note also that
Ni = s. We refer tos as the root oG (s). Some important
properties of the vertex-induced tree are as follows.

Lemma 3.3:Given a simple polygor) and any vertex
s € Ve(Q), the following statements are true:

(i) the graphGq(s) is a rooted tree;

TThe kernel of a star-shaped polygon is the set of points frdrichvthe
entire polygon is visible.

h

(i) no two nodes sharing an edge are visible to each other;
(i) [No(s)| < 5 wheren = | Ve(Q)].
r
IV. DEPLOYMENT ALGORITHMS

In this section, we present algorithms to solve a relaxed
version of the visibility-based deployment problem. The
additional assumptions we make here are that the agents
have memory and that the initial positions of all the agents
are the same. We also assume here that the environment has
no holes. These algorithms are a result of local navigation
algorithms and global deployment schemes.

A. Local navigation algorithms

Here we design algorithms to plan paths between neigh-
boring nodes of the vertex-induced tree. Let us first state
a lemma which characterizes the shortest path between any
two neighboring nodes.

Lemma 4.1:Given a simple polygon@ without holes
nd any vertexs € Ve(q), let Ng(s);,Ng(s); represent
two neighboring nodes of the vertex-induced tr@g(s).
Let [v/,v"] = Pg(s); N Pg(s); wherev' v’ € Ve(Q)
and v # v”. Then the shortest path betwee¥,(s);
and N,(s); is given by the shorter of the two paths,
N (8)ir v U, Ny (5);] and [N (s)s, 0] Uf", N (s);].

Any node of the vertex-induced tree has neighbors of
possibly two types: parent or child. The following is an
informal description of the MOVE-TO-PARENT routine to
travel from a node to its parent:

a

MOVE-TO-PARENT

1: compute the shortest path between the node an
parent based on Lemma 4.1

go to the reflex vertex which is a part of the shor
path

from the nonconvex vertex, go to the vertex repres
ing the parent node

d the

test

3: ent-

S

Next, we present an informal description of the MOVE-TO-
CHILD routine to travel from a node to a child.

MOVE-TO-CHILD

compute the mid-point of the gap between the n
and the child

go to the mid-point

compute the nearest vertex from which the entire
is visible and which is across the gap

go to that vertex

el ode

h
2:
3: gap

4.

The formal descriptions of these routines appear in Talbles |
and Ill in the Appendix. See Fig. 4 for a graphical illustoati

of the paths between nodes and the respective parents and
children.

Note that the algorithms described in this section require
the knowledge of the relative locations of the parggent
and the vertices’,v” defining the gap between the node
and its parent, or the gap between the node and a child. All
this information is obtained using local sensing and commu-
nication. This distributed information processing capgbi
is in-built into the global deployment schemes described in
the following section.



(iii) The list buf f er - ui d; whose elements are natural
numbers.

(iv) The list buf f er - menory,; whose elements are lists
of the type M.

We are now in a position to formally describe the various
actions performed by an agent in between two wake-up
instants; see Table I. Note that the depth-first and randsniz
deployment routines are invoked during PROCESS.

Fig. 4. The figure on the left shows the planned paths from siba¢heir
parent in the vertex-induced tree. The figure on the rightvshihe planned
paths from nodes to their respective children in the veiteced tree.

TABLE |
DESCRIPTION OF VARIOUS ACTIONS TO DEPLOY OVER NODES Q& (s)

Assumes: pi(to) = ... = pn(to) = s € Ve(Q)

B. Global deployment schemes

Note that by virtue of the construction in Section Ill and
the methods to navigate between one node of the verte
induced tree to a neighboring node, we have converted t
original problem into a problem of deployment over a graph

1) Deploying over the vertex-induced trelex this section,
we design algorithms for multiple agents to deploy over thel: BROADCAST; (i, M;(t))
nodes of the vertex-induced tree under the assumption th&{STEN ,
all agents are initially located at the root of the tree. We > Eﬁiﬁﬁyéﬁggﬁguﬂ)éﬁ”_“j{‘;ﬁ SIs0
present two deployment algorithms. It must be noted that3: Swap oldetM;(¢') in buf f er - menor y; with newer M, (t—)
these algorithms may not be optimal in terms of performang eg e'SAe endi 1o buf f er - ui d
measures such as required time. Our main aim is to provide; AggendJMj (t — 7) to buf f er - memor y,

a solution to the visibility-based deployment problem.-Per 7: end if
formance issues will be the subject of future research. PROCESS
Let us first informally describe the deployment algorithms. 1: run Depth-first or Randomized deployment
Each agent repeatedly performs the following tasks 'Vf\s/\'lzvitch move-decision
whenever it is located at a node of the vertex- 2. casestay: Stay at\,
induced tree: 3: caset o-chil d: buffer-uid; =0; buffer-nmessage; = 0;
() Find the maximum UID among all agents ruga'\sf'e?\g'?gg'gﬂ'!-gmiétr)_)ui 4, — s buf fer- message, —
located at the same node; (ii) If this UID is less 0; run MOVE-TO-PARENT(M; (1)) !
than its own UID, then stay else move; (iii) If the 5: end switch
decision is to move then decide upon the next node
to be visited and move to it. The following lemma characterizes the set of agents whose

To decide upon the next node to be visited, two differerfff€Ssages are present in the buffer of any given agent.
methods are described: (i) depth-first deployment, and (ij) Lémma 4.2:For any agent: at any time ¢, if
randomized deployment. The essential difference betweOyf f er-uid; # 0, thenp;(t) € Ng(s) and there exists
the two methods is that in the depth-first deployment, the ne%i With 0 < 7; < 4 such thatp;(t — 7;) = pi(t) for all
node to be visited is decided in a deterministic way whilg € Puf fer-uid,. _
in the randomized deployment the decision is random. We N what follows we shall refer to the depth-first deploy-
formally describe the depth-first and randomized deploymef€nt routine together with the local navigation algorithys
routines in Table IV in the Appendix. Agig. Similarly we shall usedq to refer to the randomized

To ensure that sufficient information is present to impledeployment routine. The following lemma captures the fact

ment the algorithms, we propose the following communicahat in the algorithms4q and Ay, there is always enough
tion region and memory for agerit See also Lemmas 4.2 information to successfully execute the depth-first and ran

0: Assumek s.t. NV, = p;

0: buffer-uid; =0; buf fer-nenory; =0

: Mi(to) = {pi(to), pi(to)}

K : move-decision st ay

Eny agenti, executes the following actions according to the schedu
Section |l at any time between any two wake up instants:

SPEAK

4:

and 4.3.

(i) The communication region specified b§(p;) =
S(p;) N By, (r), where r = min{R,  min{|p; —
v, v e Ve(S(pi))}} if p; € Ve(Q). This ensures that
communication broadcasts reach only agents located
the same node ais

(i) The memoryM; (t) = {pparens Prast, ', v} comprising
of four points in@. The four points refer to the relative

domized deployment algorithms.

Lemma 4.3:For any agent;, let p;(¢) represent the posi-
tion of the agent at any timee 7%, sayt = 7}. Then the
following statements are true:
afl) pi(t) € No(s), saypi(t) = No(s)x;

(i) M;(t — 7)1 represents the location of the parent of
No(s)k, say Ng(s);, wherel = max({j | j €
buf fer-ui d;},i);

locations of the parent node, the last way point (a noddii) [Mu(t—71)s, Mi(t—7)4] = Ng(s)e NNg(s);, where
or mid-point of a gap), the two vertices defining the [ is as defined above; _

gap between the current node and the parent. We IefV) Mi(t)2 € No(s)e N NG (s); whereNg(s); is the last
M;(t), refer to thekth element of the list. node ofGq(s) occupied by agent



2) Convergence analysisin this section, we analyze the roots and the vertex-induced treg;(s) are as shown
the convergence properties of the algorithms described in Fig. 3 (right). Note that) is chosen to represent a typical
Section IV-B. We also give an upper bound on the time tfloor plan. Figs. 5 and 6 show results for the algorithms

completion of the task. Aqgtg and A,q respectively. The nodes of the vertex-induced
Theorem 4.4 (Depth-first deploymenthiven a simple tree of the environment in the simulations are precisely the
polygon @, letpi(tg) = ... = pn(to) = s € Ve(Q), be the locations where the agents in Fig. 5 are located at the end

initial positions of an asynchronous network &f visually-  of the simulation. In Fig. 6, there are more agents than the
guided agents as described in Section Il. Let the behavioumber of nodes in the vertex-induced tree. Hence, the extra
of the agents be governed by the algoritbigy. Then the agents keep exploring the graph without coming to rest.
following are true:

(i) there exists a finite time, after which there is at i J & J i J’
least one agent omin{|Ny(s)|, N} nodes ofG(s); |
(i) if N > %, then the visibility-based deployment prob- j j X j P
lem is solved in finite time. T ﬂ T :ﬂ T ﬂ
We now present a run-time analysis.dfiq. But before that,
let us introduce some notation regarding the lengths ofspath J_LJ ﬂ‘ J J_L J
between two nodes of the vertex-induced tree. Note from j j j
Fig. 4 the path from a node to its parent is shorter than the
path from the parent to the node. T lﬂ T dﬂ T lﬂ

Definition 4.5: Given a simple polygonal environme,
we define the following:

() Loua(Go(5));, the length of the path from a node 10 mbiamenting the algoriiotay: Soc Table IV, The number of vertces of
the child which are part of the edge the environment i, = 46 and the number of agents I¥ = 13 < [45].
(ii) Ebwd(gQ(S))ia the length of the path from a node to Each point of the environment is visible at the end of the sitmra
its parent which are part of the edge
iii) the forward length of the gra| s), L s)) =
(iii) gk g "9 PBo(s), Lwd(Go(s)) i. J - & J J_L J
D it Lwd(90(5)):; -
(iv) the backward length of the graphGg(s) j j ° j
LoneGa(5)) = ST Lo Go (o)) T T ET
Proposition 4.6 (Run-time analysis)f there exist bounds
Amax @Nd prax SUCh thath\! < A . and p! < ppax for all l_L Eﬂi ﬂ' J l_L J
i € {1,...,N} and! € NU {0}, thently < Zmotion + j j j ;
%omm/sens/pro'cWhere jr “f :‘r Tr
Trotion < % (2 (Lwd(Gq () + Lowd(Gq(s))) T T T
~ min{lwi(Gale))s |4 € {1, Nale)] - 1}})’ Fig. 6. From left to right and top to bottom, evolution of a netkw
Toommisensiproc< 2(Amax + pmax) (INQ(s) = 1), implementing the algorithrod,q; see Table IV. The number of vertices of
. . . the environment is = 46 and the number of agenf$ = 15 < [ 45 |. The
andwv is the speed with which the agents move. Moreovelertex-induced tree hak3 nodes, so the extra agents continue o explore
asN and| Ve(Q)| — +o0, if the diameter of) is bounded, the vertex-induced tree. Each point of the environment iblésat the end
then téfd e @(min{]\ﬂ ‘ Ve(Q)|}) of the simulation.
In other words, in the worst case, the run-time is uni-
formly upper and lower bounded by constant multiples of V. CONCLUSIONS
min{N, | Ve(Q)|}. In this paper, we introduce the visibility-based deploymen
Theorem 4.7 (Randomized deploymer@jven a simple problem and provide a solution to it under the assumption
polygon @, let pi(to) = ... = pn(to) = s € Ve(Q), be the  that all agents are initially collocated. This problem issely
initial positions of an asynchronous network &f visually-  related to the classical Art Gallery Problem. We introduce a
guided agents as described in Section Il. Let the behavigew graph to represent a given simple polygonal environment
of the agents be governed by the algoritdpy. Then the called the vertex-induced tree. We then demonstrate that
following are true: with limited memory and based on information obtained
(i) with high probability in finite time, there is at least onethrough line-of-sight sensing and communication, muitipl
agent onmin{|Ng(s)|, N} nodes ofGg(s); agents operating asynchronously can deploy over the nodes
(i) if N > %, then the visibility-based deployment prob-of this tree. Note that once the visibility-based deploymen
lem is solved in finite time with high probability. problem is solved and visibility information from all the
nodes is fused, the task of building a map of the environment
or planning a path between two points of the environment
In this section we present simulation results for the albecomes trivial. Other possible extensions of this work
gorithms, Agiq and A4, described earlier. The algorithmsinclude the design of algorithms that are guaranteed to work
have been implemented IMATLAB. The environment(), even if the agents do not start at the same location. Another

C. Simulations



direction is to investigate the algorithms for robustness t

agent arrivals and failures.
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VIl. A PPENDIX
Local navigation algorithms

The MOVE-TO-PARENT and MOVE-TO-CHILD algo-
rithms are described in Tables Il and Ill respectively.

TABLE I
MOVE-TO-PARENT

Name: MOVE-TO-PARENT (pparent plast, v, v’ })
Goal: Go from nodeNg (s); to its parent,
say Ng(s);
Assumes: (i) [v',v"] = Pg(s)i N Pg(s);,
(i) pparent= Q(S)j-
L. plast:= NQ (5)2
2: p:=Ng(s);
3: Compute shortest path fromto Ng(s);, say [p, v] Ulv, Ng(s);]
wherevw is eitherv’ or v”’
4: while p # Ng(s); do
5. if past # v then
6: Compute shortest path fromp to Ng(s);, say

[p, v] U[v, Ng(s);] wherew is eitherv’ or v”

7: _ mln(slr‘nvmx;)HH'U pH) (’U o p)
8: if uw =0 then
9: Plast = U
10: end if
11: else
120 u= Sl RO (Vo (s),; — p)
13: endif
14: =p+u
15: end while
16: return: {pparent Plast, v’, v’}
B. Depth-first and randomized deployment algorithms

TABLE Il
MOVE-TO-CHILD

Name: MOVE-TO-CHILD ({pparent Plast, v’, v’ })
Goal: Go from nodeN, (s); to its child,
say/\/ (s);
Y Assumes: [v/,v" PQ(S)Z- NPo(s);
]
1 Plast *NQ(S)z
2:p: Q(s)i
. /+’L}//
3: Ptemp = 3
. ’ "
4: while p # premp OR plast # 5%~ do
’ 1"
5. if pemp= YL~ then
. _ min<5mdx leemp PH) _
6: w= Hptemp ol (ptemp p)
7: if w =0 then
8: = argmin{[lv - (v +

Pte
”)/2H | [v/,v"] is visible fromwv, v is a vertex ofQ
across tlhe lgapu’ v"’] from p|a5t}
Plast =
end if
else
u =
end if
pP=p+u
end while
return : {pparent plast, v’, v’}

9:
10:
11:
12:

13:
14:
15:
16:

2

min(smax, ”Ptemp*PH)

Hptemp—P” (ptemp a p)

TABLE IV
DEPLOYMENT ALGORITHMS

sl=max{j|j€ buffer-uid;}
if I < i then
return: st ay
end if
M () = M(t — 1) for k € {1,3,4}
s if [ M;(t)| = 2 then
Compute polygonX defined by the set of vertices @ visible
from p;
. else
Compute polygonX defined by the set of vertices @ visible
from p; which arenot across the gapM; (t)s, M;(t)4]
end if
Compute the list of gaps ofX excluding [M;(t)3, M;(t)4],
say {[v; ,v{ ],-..,[vf , v} ]} such that the list of vertice

1
{pisvi vl ﬁ’ } |s ordered counter-clockwise.

10:
11:

77'k

Depth-first deployment Randomized deployment
1.if & = 0 or (M;()2 €
[v%, Zk] and |[M;(t)] >
2) then
2.  return: to- parent 1: Generate a random number,
3: else saya (uniformly distributed
4. M;(t)1 =pi over the interval0, 1])
5. if  My(t)2 € | 2 letace [%,mT“) where
[Mi(t)s, Mi(t)4] me{0,.. k-1
then it [l ;' =
6: L(t) = v [M;(£)3, M (1)4] then
M;(t)s = 4:  return: t o- parent
7. else 5: else
8: if Mi(t)Q S 6: M;(t) =nps
[vgm,vl’-’ | then 7: M (t)3 = v
9: Mi(tsng = ”§m+1' M;(t)a = vl m
Mi(t)a =l 8 return: to-child
10:  end if 9: end if
11:  endif
12: return:to-child
13: end if




