On the state agreement problem for multiple unicycles
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Abstract—In this contribution, a feedback control strategy = agreement problem for linear models of motion is [25]. The

that drives a system of multiple nonholonomic kinematic agreement problem for general nonlinear models has been
unicycles to agreement is introduced. Each agent is assigned considered in [18]

with a specific subset of the rest of the team, called the agent’s - o .
communication set, that includes the agents with which it can In this contribution, a feedback control strategy that drives

communicate in order to achieve the desired objective. The @ System of multiple nonholonomic unicycles to agreement
proposed nonholonomic control law is discontinuous and time- is introduced. The problem treated in this work is similar to
invariant and tools from nonsmooth stability theory and graph  the problem solved in [17]. In that reference, the authors use
theory are used to check the stability of the overall system. a time varying periodic smooth controller, inspired by the

Similarly to the linear case, the convergence of the multi-agent K in 129 | h | .
system relies on the connectivity of the communication graph WOrK In [29], to solve the agreement problem. Inspired by

that represents the inter-agent communication top0|ogy. our preViOUS work on decentralized naVigation of multlple
nonholonomic agents [19],[6],[27] we propose in this paper
|. INTRODUCTION a distributed nonholonomic feedback control strategy that is

Multi-agent Navigation is a field that has recently gainedliscontinuous and time invariant. These type of controllers
increasing attention both in the robotics and the contrdiave in general better convergence properties than time-
communities, due to the need for autonomous control ofarying ones. An experimental comparison between these
more than one mobile robotic agents in the same workspadwa/o types of nonholonomic controllers that supports our
While most efforts in the past had focused on centrapreference to time-invariant strategies has appeared in [14].
ized planning, specific real-world applications have leath that reference, it was deduced that time varying controllers
researchers throughout the globe to turn their attention were too slow and oscillatory for most practical situations.
decentralized concepts. The motivation for this work come@n the other hand, time-invariant controllers achieved a
from many application domains one of the most importargignificantly better performance. Clearly, this is the best we
of which is the field of micro robotics ([20],[11]), where can hope for regarding the nonholonomic feedback strategy
a team of a potentially large number of autonomous micr¢either smooth and time-varying or nonsmooth and time-
robots must cooperate in the sub micron level. invariant), as it is a well known fact that that nonholonomic

Among the various specifications that the control desigBystems do not satisfy the Brocket's necessary smooth feed-
aims to impose on the multi-agent team, convergence oBck stabilization condition ([2]). Another distinction of this
the multi-agent system to a desired formation is a designork is that we considered merely bidirectional communica-
objective that has been pursued extensively in the last feiien topology, whereas directed graphs are taken into account
years. The main feature of formation control is the coopin [17]. The extension of the proposed framework to directed
erative nature of the equilibria of the system. Agents musgiraphs is a topic of ongoing research. The stability of the
converge to a desired configuration encoded by the intgproposed scheme is analyzed using tools from algebraic
agent relative positions. Many feedback control schemes thgitaph theory and nonsmooth stability theory.
achieve formation stabilization to a desire formation in a The rest of the paper is organized as follows: section
distributed manner have been proposed in literature, see fbrdescribes the system and the problem that is treated
example [28],[17],[15],[9],[7] for some recent results. Of parin this paper. Assumptions regarding the communication
ticular interest is also the so-called agreement or rendezvoiggology between the agents are presented and modelled
problem, in which agents must converge to the same poiiit terms of an undirected graph. Section Il begins with
in the state space ([23],[12], [24],[5],[13], [21],[16]). some background on algebraic graph theory and nonsmooth

There have been many approaches to the state agreen@mlysis that is used in the sequel and proceeds with the
problem under both the vehicle motion modelling and thétroduction of the distributed nonsmooth time invariant
control design perspective. In most cases, single integrat@edback control strategy that drives the multi-agent team
(holonomic) models of motion are taken into account, whiléo a common configuration in the state space as well as the
the information exchange topology has been considered batarresponding stability analysis. Some computer simulation
static and dynamic, as well as bidirectional or unidirectionaresults are included in section IV while section V summarizes
A recent review of the various approaches of the statde results of this paper and indicates current research efforts.
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R? denote the position of agent (see figure 1). The As an example, the next figure represents the communi-
configuration space is spannedy- [q1, . .., qn]T. Each of cation graph of a team of seven agents with corresponding
the N mobile agents has a specific orientatéiwith respect communication sets:

to the global coordinate frame. The orientation vector of the

agents is represented By= [0, ... 6y]. The configuration of Ny = {2,6}, N2 = {1,5}, N3 = {6, 7}

each agentis representedjy=[ g; 0; | € R*x(~m.7. N, _ 5y Ny — (2,4,7}, Ng = {1,3,7}, Ny = {3,5,6}
Agent motion is described by the following nonholonomic

kinematics:
T; = u;cosb;
yi;uisinﬁi ,iENZ[l,...,N] Q)
GZ- = W;

whereu;,w; denote the translational and rotational velocity
of agenti, respectively. These are considered as the control
inputs of the multi-agent system.

Fig. 2. The communication graph of a seven-agent team
ui
Hence, the problem treated in this paper can be stated as
( follows: “under the preceding assumptions, derive a set of
yi distributed control laws that drive the team of agents from
qi\ any initial configuration to a common configuration in the
state spack

Ill. CONTROL STRATEGY AND STABILITY ANALYSIS

X

Fig. 1. Nonholonomic agent

In this section, the proposed feedback control strategy
and the corresponding stability analysis of the system are
presented. The mathematical tools required for this analysis

: L : are discussed in the next two subsections.
The design objective in this paper is to construct feedback

controllers that lead the multi-agent system to agreement, i &, Tools from Algebraic Graph Theory

all agents should converge to a common pp@nt in the State |, this subsection we review some tools from algebraic

space. Each agent is as&gned with a spgmﬂc subsedf graph theory that we shall use in the stability analysis of the

the rest of the team, called agefst communication sethat |+ coctions. The following can be found in any standard

includes the agents with which it can communicate in Ord%xtbook on algebraic graph theory(e.g. [1],[10]).

to achieve the desired objective. Following the literature on For an undirected grapl with n vertices theadjacency

cooperative control [22],[28], inter-agent communication Call Atrix A — A(G) = (as;) is then x n matrix given by

be encoded in terms of @@mmunication graph I
Definition 1: The communication grapiG = {V, E} is v { Lif (i,j) € E

an undirected graph that consists of a set of vertices " 0, otherwise

{1, ..., N} indexed by the team members, (ii) a set of edge

i:re{s(éhi)irie‘?-; Zr‘:t i%%sgg{;gg% p:(':ri?icoeft%?ges that theni, j are calledadjacent A pathof lengthr from a vertex
P 9 P ' 1 to a vertexj is a sequence of+ 1 distinct vertices starting

Each aggnt has only knpwledge of the st_ate qf agents ”Wﬁh i and ending withj such that consecutive vertices are
belong to its communication set at each time instant. Thi

2o _ ,z§djacent. If there is a path between any two vertices of the
fact highlights the distributed nature OT thg approach: In thi raphG, thenG is calledconnected(otherwise it is called
paper, we assume that the communication graph is stat

; . . o sconnected The degreed; of vertexi is defined as the
i.e. the neighboring seW; of agenti is constant. The case

N . . . >~ number of its neighboring vertices, i.e.
of switching interconnection topology is a topic of ongoing

research. di ={#j: (i,j) € E}

We also assume that the communication graph is undi- A h . | i ofd’s. Th .
rected, in the sense that in the sense that Let A be then x n diagonal matrix ofd;'s. The (combina-

torial) Laplacianof G is the symmetric positive semidefinite

ieN; & jeN,Vi,jeN,i#] matrix £ = A — A. The Laplacian captures many interesting
topological properties of the graph. Of particular interest
It is obvious that(i, j) € E iff i € N; & j € N;. in our case is the fact that for a connected graph, the

Tt there is an edge connecting two vertiges, i.e. (i,j) € E,



Laplacian has a single zero eigegvalue and the correspondi@g Proposed control design

eigenvector is the vector of gne&,. . - Denote the stack vectar = [z,y]” into the coefficients
As an example, the Laplacian matrix of the communicatiothat correspond to the, y directions of the agents respec-
graph in figure 2 is given by: tively. We also use the function
(2 -1 0 0 0 -1 0 ] Lz=0
sgnlxr) =
-1 2 0 0 -1 0 0 gnl) {—1,x<0
¢ 0 2 0 0 -1 -1 The functionarctan 2(z,y) that is also used in the sequel
L=]0 0 0 1 -1 0 0 is the same as the arc tangent of the two variableand
0 -1 0 -1 3 0 -1 y with the distinction that the signs of both arguments are
-1 0 -1 0 0 3 -1 used to determine the quadrant of the result. We also use
00 1.0 -1 -1 3 ] arctan 2(0,0) = 0. Finally, the notation(a); is used to

denote the-th element of a vectod.
Convergence of the agents to a common configuration is
In this subsection, we review some elements from nonguaranteed by the following theorem:
mooth analysis and Lyapunov theory for nonsmooth systems Theorem 3:Assume that the communication graph is
that we use in the stability analysis of the next sections. connected. Then the discontinuous time-invariant feedback
For a differential equation with discontinuous right-handcontrol strategy:
sode we have the following definition: 7 ) 0 o \1/2
Definition 2: [8] In the case when the state-space is finite “i = 581 {i 08 0; + yyi sin 03} - (77 + vy) @)
dimensional, the vector function(.) is called aFilippov wi = —(6; — Onn,) ()
solutionof & = f(x) if it is absolutely continuous and €

B. Tools from Nonsmooth Analysis

K|[f](z) almost everywhere where where
Yai = (;C.T?)Z s VYyi = ([’y)z
K{f](z) = cof lim f(zs)lz: ¢ N} and the “nonholonomic angle”
where N is a set of measure zero. 0. —
Lyapunov stability theorems have been extended for nons- nh, = arctan 2 (Yyi, Yai)

mooth systems in [26],[3]. The following chain rule providesand where£ denotes the Laplacian matrix of the communi-
a calculus for the time derivative of the energy function ircation graph, drives the agents to a common configuration
the nonsmooth case: in the state space.

Theorem 1:[26] Let = be a Filippov solution ta: = f(z)  Proof: We use the smooth positive semidefinite function
on an interval containing andV : R™ — R be a Lipschitz
and regular function. Thel (z(t)) is absolutely continuous, V= Z%

(d/dt)V(x(t)) exists almost everywhere and
as a candidate Lyapunov function, where

LV e Ve = () ERIE) B T
£€OV (z(t)) 2. vy
where “a.e.” stands for “almost everywhere”. _ JEN
In this theoremV is Clarke’s generalized gradienThe ~ First note that
definition of the generalized gradient and of tiegularity g%ﬁ
of a function can be found in [4]. In the case we encounter o«
in this paper, the candidate Lyapunov function function ZV% - Z :
we use is smooth and hence regular, while its generalized ‘ ’ %
gradient is a singleton which is equal to its usual gradier}j{nd
everywhere in the state spad#®/ (z) = {VV (z)}Vz. > (gi—qj),i=3j
We shall use the following nonsmooth version of LaSalle’s i _ ) ieN: . o
invariance principle to prove the convergence of the pre- og; | —(@—aj),j€Ni,jF#i
scribed system: 0,7 ¢ N
Theorem 2:[26] Let 2 be a compact set such thatso that
every Filippov solution to the autonomous system=— v O, i
f(x),z(0) = z(ty) starting in{2 is unique and remains if? Z dq; = Bq; + Z aq; =
forall t > ty. LetV : Q — R be a time independent regular i Y Tooien; Y
function such thav < 0vv € V(if V is the empty set then S g—a)+ > (—(ai—q)) =
this is trivially satisfied). Defines = {z € 2|0 € V'}. Then ieN; ieN;
every trajectory i) converges to the largest invariant 36t, 2. Z g —2- Z G=2-djg—2- Z 4

in the closure ofS. iEN; iEN; iEN;



and of the graph is at mostV — 1. Hence ||¢; —g;|| <

9. i V2¢(N —1), Vi,j e N.
90 1 a By the nonsmooth version of LaSalle’s invariance princi-
Z Vv = Z : =2 : ple(theorem 2), the trajectories of the system converge to the
i g 5313 dn - gn largest invariant set contained in the set
> 4 S — (Vi = Yyi = 0) V (i cos 0; + yyisin6; = 0),
JEN1 Vie N
—2 : =2(A0L)-2(40h)¢= However,using similar arguments as in [27], for eack
Z q; N, we have|w;| = T whenevery,; cos6; + 7y;sinf; = 0,
JeNN due to the proposed angular velocity control law. In par-
- ZV% =2(L®)q ticular, this choice of angular velocity renders the surface

~azi c0s 8; + vy sinf; = 0 repulsive for agent, whenever

L . , is not located at the desired equilibrium, namely when
The last equation is a direct consequence of the fact that the Pquitit y
o . . V=i = Yy = 0. Hence the largest invariant sét contained
communication graph is undirected. : .
. S . in S is
Since the proposed control law is discontinuous we use the

concept of Theorem 1 for the time derivative of the candidate §2 B ={7ai =i =0,Vi € N'}

Lyapunov function. Sincé” is smooth we have In addition (y,; = v,; = 0) Vi guarantees that the agents
converge to a common configuration. This is easily derived
oV ={VV} = {Z v%} by the fact that

(’7301’ = VYyi = O)VZ = Lq =0
so that
where L = L ® I,. We can now compute
V= Z Yi =

Lg=0=Lx=Ly=0

1 €o8 01 wherez, y the stack vectors of in the z, y directions. The
Uy sin by fact that the formation graph is connected implies that the
V= {Z (V%)T} K : = Laplacian has a simple zero_e)igenvalue with corresponding
i upn cos Oy eigenvector the vector of oned,. This guarantges that both
un sin Oy x,y are eigenvectors of belonging to spahl}. Hence
K [uy] cos 6, for all i € NV, all ¢; have a common vector_value_, implying
K [uy] sin 6, that all agents converge to a common configuration at steady
T ] state.$
2q° (L®Iy) : - It must be stressed out that the proposed feedback control
K [un]cosfn strategy (2),(3) is purelydecentralized since each agent
K [un]sinfy requires information only of the states of agents within each
K [u1] cos 6, K [uq] sin 6, neighboring set at each time instant. This is a consequence
9 (Lx)T : Iy (L.y)T : of the deﬂnmons of the termsm,fyyi,&}hi gnd the form of
: . the Laplacian matrixC of the communication graph.
K [un]cosOn K [un]sinfn

IV. SIMULATIONS

To verify the result of the previous paragraphs we provide

some computer simulations of the proposed control frame-
But since K [sgn(x)] » = {|z|} the choice of control laws work (2),(3).

(2),(3) results in

= Z {2K [u] (L), cos b; + (Ly), sinb;)}

A. Four unicycles

V=2%" {— Vi OS 0; + vy sin 03] (77 + 7§i)1/2} <0 In the first simulation, four nonholonomic agents starting

i from arbitrary initial position, navigate under the proposed
Since the candidate Lyapunov function is quadratic in theontrol scheme. The communication sets in this simulation
agents’ relative positions, its level sets are compact arthve been chosen as

invariant for the trajectories of the closed loop system.
Specifically, we have N1 ={2,3,4}, N2 = {1,3}, N3 = {1,2}, Ny = {1}

. It is easily verified that the corresponding communication
V<e=llg—qil <V2 V(i,j) € E . . .
se=lla =gl = v2e v, J) graph is connected(see Figure 3). In Figure 4 Screenshots

Connectivity of the communication graph ensures thdtV show the evolution in time of the multi agent team. In
the maximum length of a path connecting two verticeshe first screenshot, Adenotes the initial position of agent



Fig. 3.
simulation

4

2

B. Six unicycles

In the second simulation, a team of six nonholonomic
agents starting from arbitrary initial position, navigate under
the proposed control scheme. The communication sets in this
simulation have been chosen 8§ = {2,3,4,5}, Ny =

The communication graph of the four-agent team in the firs{l 3} N; = {1 2} N, = {1} Ny = {1 6} Ng = {5}

It is easily verified that the corresponding communication
graph is connected in this case as well. As in the previous

i respectively. In the last screenshot the agents converge tc -
common configuration. Figure 5 shows a plot of the function o 43 - ég
~; of each agent with respect to time. One can observe th ",

these functions tend to zero as the agents converge to

common point.

A2

001

0006

0004

0002

0,004

0,006

0.008

z
\

o

e — -

WD

<

Fig. 6. Convergence to a common configuration for six unicycles

simulation, screenshots I-V in figure 6 show the evolution

Fig. 4. Convergence to a common configuration for the four unicyclesin time of the of the six unicycles under the proposed

Cost Functions

Fig. 5.
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Plots of they; function for each agent

control strategy. In the first screenshot; Aenotes the initial
position of agent; respectively. In the last screenshot the
agents converge to a common configuration. Figure 7 shows
a plot of the functionsy; of each agent.

V. CONCLUSIONS

In this contribution, a feedback control strategy that drives
a system of multiple nonholonomic unicycles to agreement
has been introduced. The problem treated in this work is
similar to the problem solved in [17]. In that reference,
the authors use a time varying periodic smooth controller,
inspired by the work in [29], to solve the agreement problem.
Inspired by our previous work on decentralized navigation of
multiple nonholonomic agents [19], we have proposed in the
current paper a distributed nonholonomic feedback control
strategy that is discontinuous and time invariant. These type
of controllers have in general better convergence properties
than time-varying ones. Clearly, this is the best we can hope
for regarding the nonholonomic feedback strategy (either
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Fig. 7. Plots of they; function for each agent in the second simulation [16]
[17]
smooth and time-varying or nonsmooth and time-invariant),
as it is a well known fact that that nonholonomic systemf g
do not satisfy the Brocket's necessary smooth feedbajk
stabilization condition ([2]). Another distinction of this work
is that we considered merely bidirectional communicatioh'°]
topology, whereas directed graphs are taken into account in
[17]. The extension of the proposed framework to directed
graphs is a topic of ongoing research. The stability of th 21
proposed scheme was analyzed using tools from algebr |c]
graph theory and nonsmooth stability theory.

Current research involves extending the proposed framt?]
work to directed graphs and switching interconnection topol-
ogy. More general motion models such as three-dimensionas]
kinematics are also currently pursued. As a parallel result
of this work, formation convergence to arbitrary feasiblgo,
formation configurations for multiple unicycles is also under

investigation. [25]
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