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Abstract— Geometric active contours represented as the zero
level sets of the graph of a surface have been used very
successfully to segment static images. However, tracking in-
volves estimating the global motion of the object and its local
deformations as functions of time. Some attempts have been
made to use geometric active contours for tracking, but most
of these minimize the energy at each frame and do not utilize
the temporal coherency of the motion or the deformation.
Recently, particle filters for geometric active contours were
used for tracking deforming objects. However, the method is
computationally very expensive since it requires a large number
of particles to approximate the state density. In the present
work, we propose to use the unscented Kalman filter together
with geometric active contours to track deformable objects in
a computationally efficient manner.

I. INTRODUCTION

The problem of tracking dynamic deformable objects has

been a topic of substantial research in the field of controlled

active vision; see [1], [2] and the references therein. In this

paper, we propose a scheme that combines the advantages

of the unscented Kalman filter and geometric active contours

(realized via level set models), for dynamic tracking.

In order to appreciate this methodology, we briefly review

some previous related work. Various finite dimensional pa-

rameterizations of continuous curves have been proposed,

perhaps most prominently the B-spline representation used

for a “snake model” as in [2]. Isard and Blake (see [1] and

references therein) applied the B-spline representation for

contours of objects and proposed the Condensation algorithm

[3]. The authors in [4], [5] also use B-splines along with

the unscented Kalman filter for rigid object tracking. Since

these approaches only track the finite dimensional group

(e.g., Euclidean, affine) parameters they cannot handle local

deformations of the deforming object (see e.g., the fish

example in Section IV-A). One possible solution proposed

in [6], is to use deformable templates to model prior shapes

allowing for many possible deformation modes of shapes.

Another approach for representing contours is via the level

set technique [7], [8] which is an implicit representation of

contours. For segmenting a shape using level sets, an initial

guess of the contour is deformed until it minimizes an image-

based energy functional. Different energy functionals which

utilize different features of the image have been used in the

literature; see e.g. [9], [10], [11], [12]. Some previous work
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on tracking using level set methods is given in [13], [14],

[15], [16].

In [15], the authors propose a definition for motion and

shape deformation for a deformable object. Motion is pa-

rameterized by a finite dimensional group action while the

shape deformation is given by the elastic deformation of

the object contour (defined by an infinite dimensional group

of diffeomorphisms) modulo the finite dimensional motion

group. This is called the deformotion model. This approach

relies only on the observed images for tracking and does

not use any prior information on the dynamics of the group

action or of the deformation. As a result it fails if there is

an outlier observation or if there is occlusion. To address

this problem, in [16], the authors propose a generic local

observer to incorporate prior information about the system

dynamics in the “deformotion” framework.

Other approaches closely related to our work are given in

[2], [17], [18]. Here the authors use a Kalman filter in con-

junction with active contours to track nonrigid objects. The

Kalman filter was used for predicting possible movements

of the object, while the active contours allowed for tracking

deformations in the object.

In [19] the authors use particle filters in combination with

geometric active contours for tracking deformable objects.

Compared with the approach in [19], our method has the

advantage of only requiring a small number of determin-

istic sample points, and is therefore computationally very

efficient. It however suffers the limitation of assuming a

unimodal probability distribution of the state vector and thus

cannot handle multimodal distributions.

This paper is organized as follows: In the next section we

discuss the unscented transformation, the unscented Kalman

filter, the level set method, and the Chan-Vese model for

curve evolution. In Section 3 we describe the state space

model and the algorithm in detail. Experimental results are

given in Section 4. Limitations and future work are discussed

in Section 5.

II. PRELIMINARIES

In this section, we review some basic notions from the

theory of unscented Kalman filtering, as well as level set

techniques which we will need in the sequel.

A. The Unscented Transformation

Julier and Uhlmann [20], [21] proposed a novel approach

to generalizing the application of the Kalman filter to nonlin-

ear systems. This approach is based on a statistical technique
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known as the unscented transformation. The unscented trans-

formation leads to a more accurate filter than the traditional

Extended Kalman Filter and avoids the costly computation

of jacobians [20], [22], [23].

Let x denote a n-dimensional random variable with mean

x̂ and covariance P. Let g be any arbitrary nonlinear function

such that y = g(x). To calculate the statistics of y we

proceed as follows: A set of (2n + 1) weighted points or

sigma points are deterministically chosen as:

χ0 = x̂, ω0 = κ/(n + κ) (1)

χi = x̂ + (
√

(n + κ).P)i, χi+n = x̂ − (
√

(n + κ).P)i,

ωi = ωi+n = 1/{2(n + κ)}, i = 1, ..., n

where, κ is a scaling parameter, (
√

(n + κ).P)i is the ith

column of the matrix square root of (n + κ).P and ωi

is the weight associated with the ith sigma point. Note

that
∑2n+1

i=0 ωi = 1 and the obtained sigma points have

same mean and covariance as x. Each sigma point is now

propagated through the nonlinear function: γi = g(χi) with

i = 0, ..., 2n + 1. The estimated mean and covariance of y
are computed as follows:

ŷ =
2n+1∑
i=0

ωiγi, Py =
2n+1∑
i=0

ωi(γi − ŷ)(γi − ŷ)T

B. The Unscented Kalman Filter

Let x(k) denote the n-dimensional state at time k. The

system evolves according to the equation:

x(k + 1) = f(x(k)) + v(k + 1) (2)

where f(.) is the state transition function and v(k+1) is

a q-dimensional process noise vector. The m-dimensional

measurement vector y is linked to the state of the system

through the equation:

y(k + 1) = h(x(k + 1), u(k + 1)) + w(k + 1) (3)

where h(.) is the observation function in which u(k + 1)
is new information available at time (t + 1) and w(k) is

a r-dimensional measurement noise vector. Although more

general assumptions about noise can be carried by the

unscented Kalman filter, we assume in what follows that,

for all integers (i, j):

E[v(k)] = E[w(k)] = 0 E[v(i)wT (j)] = 0

E[v(i)vT (j)] = δ(i, j).Q E[w(i)wT (j)] = δ(i, j).R

with Q and R being constant matrices of dimensions (q× q)
and (r × r) respectively. Q is the process noise covariance

matrix, R is the observation noise covariance matrix. The

prediction and update steps of the Kalman filtering algorithm

are carried as follows, within the unscented framework:

1) Prediction: Assume that the state x(k) at time t = k,

the corresponding mean x̂(k) and covariance matrix P(k|k)
are known. The unscented transform is applied to the state

vector x(k) to obtain a set of (2n + 1) sigma points χi(k|k)
as presented above in Section (II-A).

The predicted state can be computed by applying the state

transition function f(·) to each of the χi(k|k) to obtain a

new set of sigma points χi(k + 1|k):

χi(k + 1|k) = f [χi(k|k)] i = 0, ..., 2n + 1 (4)

Considering the process noise as additive and independent

of the state prediction, the predicted mean and covariance of

the state, can be computed as follows [22]:

x̂(k + 1|k) =
2n+1∑
i=0

ωi.χi(k + 1|k) (5)

P(k + 1|k) =
2n+1∑
i=0

ωi{χi(k + 1|k) − x̂(k + 1|k)}

·{χi(k + 1|k) − x̂(k + 1|k)}T + Q

(6)

The predicted observation (measurement) is computed by

applying the observation function h(.) to each of the χi(k +
1|k) to obtain a new set of sigma points γi(k + 1|k) as:

γi(k + 1|k) = h[χi(k + 1|k), u(k + 1)] i = 0, ..., 2n + 1
(7)

Considering the measurement noise as additive and indepen-

dent of the measurement prediction, the predicted mean and

covariance of the measurement, can be computed as follows:

ŷ(k + 1|k) =
2n+1∑
i=0

ωi.γi(k + 1|k) (8)

Pyy(k + 1|k) =
2n+1∑
i=0

ωi{γi(k + 1|k) − ŷ(k + 1|k)}

·{γi(k + 1|k) − ŷ(k + 1|k)}T + R

(9)

The predicted cross correlation is given by:

Pxy(k + 1|k) =
2n+1∑
i=0

ωi{χi(k + 1|k) − x̂(k + 1|k)}

·{γi(k + 1|k) − ŷ(k + 1|k)}T

(10)

2) Update: The update step is carried out in the same

manner as within the traditional Kalman filter framework.

The Kalman gain L, for time t = k + 1 is: L(k + 1) =
Pxy(k + 1|k).Pyy(k + 1|k)−1

The actual measurement z can be taken into account,

leading to the estimate of the state statistics:

x(k + 1) = x̂(k + 1|k) + L.(z − ŷ) (11)

and

P(k + 1) = P(k + 1|k) − L.Pyy(k + 1|k).LT (12)
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C. The Model of Chan and Vese

Active contours evolving according to edge based and/or

region based flows are very commonly used for image seg-

mentation (see [24] and the references therein). The level set

representation is the most widely used tool for implementing

such geometric curve evolution equations.

Many methods [25], [26], [11] which incorporate geomet-

ric and/or photometric (color, texture, intensity) information

have been shown to segment images in the presence of noise

and clutter. In the present paper we have used the Mumford-

Shah functional [9] as modelled by Chan and Vese [10]

to obtain the curve evolution equation, which we describe

briefly. We seek to minimize the following energy functional:

Eimage = ν

∫
Ω

|∇H(Φ)|dx dy +
∫

Ω

(I − c1)2H(Φ)dx dy

+
∫

Ω

(I − c2)2(1 − H(Φ)) dx dy

(13)

where c1 and c2 are defined as c1 =
∫

I(x,y)H(Φ)dx dy∫
H(Φ)dx dy

, c2 =
∫

I(x,y)(1−H(Φ))dx dy∫
(1−H(Φ))dx dy

and H(Φ) is the Heaviside function

defined as

H(Φ) =

{
1 if Φ ≥ 0 ,

0 otherwise

I(x, y) is the image and Φ is the level set function

corresponding to the segmenting curve. The above energy

functional Eimage can be minimized using calculus of vari-

ations. The Euler-Lagrange equation for minimizing this

functional can be implemented by the following gradient

descent [10], [9]:

∂Φ
∂t

= δε(Φ)
[
ν div

( ∇Φ
|∇Φ|

)
− (I − c1)2 + (I − c2)2

]
(14)

where, δε(s) = ε
π(ε2+s2)

D. Shape Statistics

In [11] the authors apply PCA (principal component

analysis) on a set of signed distance functions in order

to obtain the major modes of variation of shapes. Let Φi

represent the signed distance function corresponding to the

curve Ci. All the Φi’s are aligned using a suitable method of

registration [27]. The mean surface, μ, is computed by taking

the mean of the signed distance functions, μ = 1
n

∑
Φi. The

variance in shape is computed using PCA, i.e., the mean

shape μ is subtracted from each Φi to create a mean-offset

map Φ̄i. Each such map, Φ̄i, is placed as a column vector in

an Nd × n-dimensional matrix M, where Φi ∈ RNd

. Using

Singular Value Decomposition (SVD), the covariance matrix
1
nMMT is decomposed as:

UΣUT =
1
n

MMT (15)

where U is a matrix whose column vectors represent the set

of orthogonal modes of shape variation and Σ is a diagonal

matrix of corresponding singular values.

An estimate of a novel shape Φ of the same class of object

(and registered with the learnt shapes) can be represented by

an m-dimensional vector of coefficients, α = UT
m(Φ − μ),

where Um is a matrix consisting of the first m columns of U .

Given the coefficients α, an estimate of the shape Φ,namely

Φ̃, can be obtained as

Φ̃ = Umα + μ (16)

III. IMPLEMENTATION

A. The State Space Model

The authors in [15] separate the motion of an object into

two distinct parts: a “global” rigid motion, and a “defor-

mation” which is given by any departure from rigidity. They

also show that the overall motion of a moving and deforming

object can be described by a set of non-unique rigid motion

parameters and a “deformation” function. Accordingly, in

this paper, we assume that the “global” motion of an object

is given by the translation of its centroid, and any other

“deformation” is captured by the curve evolution equation

(14) described in the previous section.

We propose to combine the advantages of the unscented

Kalman filter and the geometric active contours in order to

track both aspects of the motion of an object. A curve being

an element of the infinite dimensional space S1 �→ R ∗ R,

a finite dimensional approximation is needed to include

the contour into the state space and control it through the

Unscented Kalman filter. This finite dimensional approxima-

tion is obtained using the method presented in II-D, which

results in a projection in an orthogonal PCA base (of finite

dimension) and gives access to shape statistics.

In our framework, the state vector is thus composed

of the coordinates of the centroid of the object (xc, yc)
and the curve coordinates in the PCA base (m-dimensional

coefficient vector α), i.e.:

x(k) =

⎛⎝xc

yc

α

⎞⎠ (k) =
(

X
α

)
(k)

Consequently, the dimension of the state vector is m+2. The

observation space in this model is also a m+2-dimensional

vector given by:

y(k) =

⎛⎝xm

ym

β

⎞⎠ (k) =
(

Y
β

)
(k)

where β is the m-dimensional coefficient vector representing

the measurement contour and (xm, ym) is the measured

position. The predicted covariance matrices for the state x

and the measurement y can be written as:

P(k+1|k) =
(

P 0
0 Σ

)
, Pyy(k+1|k) =

(
Pyy 0
0 Σyy

)
where P and Pyy are 2 × 2 covariance matrices for the

centroid co-ordinates and Σ and Σyy are m×m diagonal ma-

trices obtained as given in (15). Note that we have assumed

that the centroid location is independent of the deformation

in shape. The process noise matrix Q and measurement noise
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R are assumed to be constant throughout the state evolution

process and are given by:

Q =
(

QX 0
0 QΣ

)
,R =

(
RX 0
0 RΣ

)
B. Measurement model

The measurement function at time k, h(X(k), I(k)), where

X(k) is an (m+2)-dimensional seed point (corresponding to

a curve centered at a certain position), and I(k) is the image

that becomes available at time t = k, can be described as

follows:

1) Build a cloud of l points X(i)(k), for i ∈ [|1..l|] around

X(k) (these (m+2)-dimensional points correspond to

curves centered at certain positions). One way to build

this cloud of points is to define a fixed set of (m + 2)
dimensional vectors S = {s1, s2, ..., sl} and to take

X(i)(k) = X(k) + si.

2) Run equation (14), for r iterations for each of the

X(i)(k): r can be chosen according to the expected

dynamics of deformation of the object. This results

in a local exploration of both the position and shape

spaces in the neighborhood of X(k).
3) Select the curve with the minimum Chan-Vese energy

(best fitting curve) as the measurement: The centroid

of the selected curve is then taken as a measurement

for the centroid of the system. The projection of

the selected curve, using equation (16), provides a

measurement of the shape coordinates in the PCA base.

As can be noticed the measurement function h(X, I) is

highly non linear because of the cumulative effects of the

curves evolutions, the selection of the best-fitting curve

and its projection into the PCA base. This non-linearity

of the measurement function justifies the use of the un-

scented Kalman filter over more classical Kalman filtering

approaches in our framework.

C. Algorithm

Based on the description above, the algorithm can be

summarized as follows:

1) Assume the state x(k) and covariance P(k) are known,

at time t = k.

2) Obtain the 2(m + 2) + 1 sigma points χi as presented

in equation (1).

3) Obtain the state predictions using equation (4) to (6).

4) Obtain the measurements predictions using equation

(7) to (9), taking X(k + 1) = χi(k + 1|k) (for i =
0, ..., 2(m + 2) + 1) as seed points in the definition of

the measurement function presented above, which also

take I(k+1) as an argument. Typically, using l = 1 (and

s1 = 0), in the definition of h above, seemed to provide

reasonable estimates for the predicted measurement

statistics, for the data tested.

5) Obtain the actual measurement z by taking X(k+1) =
x(k) (for example) as a seed point and apply the

measurement function on I(k+1). A typical set S can

be chosen to be:

S = {

⎛⎜⎜⎜⎝
0
0
0
...

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
±3
0
0
...

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
±3
0
...

⎞⎟⎟⎟⎠}

6) Complete unscented Kalman filtering process by com-

puting equations (10) to (12).

IV. EXPERIMENTS

In this section we describe some experiments performed

to test the proposed tracking algorithm. Results of applying

the proposed method on three image sequences are given

below. Geometric active contour implementation was done

using the narrow band method [28] and the model of Chan

and Vese [10]. In these experiments, the state transition

function f in equation (2) was chosen to be identity. For each

sequence a PCA base of the object to track was computed

off-line as described before: A small training set of s images

was extracted from each sequence and used to compute m
components representing the possible modes of variation of

the tracked object (eigenvector matrix Um).

A. Fish Sequence

The Fish video demonstrates the tracking ability of the

proposed method under large deformations and partial occlu-

sions. This type of deformations are difficult to track using

the standard Condensation filter [1]. The number of images

in the training set and of principal directions was 8, i.e.,

s = m = 8 (total number of images in the sequence: 356).

The tracking was accurate throughout the whole sequence,

despite the relatively small number of direction of variations

allowed for the shape (Figure 1).

B. Car Sequence

In this sequence, the car is partially occluded as it passes

behind a lamp post. The Chan-Vese model applied to tracking

this sequence fails at the occlusion (Figure 2). Including

the curve in the state space allows only a few directions

of variation in the shape; hence the overall shape of the

curve does not vary too much from one frame to the next

(Figure 3). The results shown on this figure are for s =
m = 6. Note that, even though the vector α provides a

shape prior with only 6 possible directions of variation,

the proposed model can indeed track large deformations or

overcome partial occlusions.

C. Walking Couple Sequence

In the classical Walking Couple video, the difficulty

resides in maintaining the identity of each person during

tracking: throughout this sequence, the two persons often

touch each other and the contour usually leaks from one

person to the other and ends up encompassing the two people

(Figure 4). The identity of each person can be maintained

using the proposed method since for each image, leaks are

rejected by projecting the contour onto the PCA base (which

constrains the curve to adopt a shape resembling a walking

person). For this sequence, the PCA base was computed from
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shapes of the man walking (person on the right); s and m
were 8 and 6 respectively. The woman (left) was accurately

tracked throughout the sequence, highlighting the robustness

of the PCA representation (Figure 5).

V. LIMITATIONS AND FUTURE WORK

In this paper, we combined the advantages of the un-

scented Kalman filter and geometric active contours to pro-

pose a novel method for tracking deformable objects. The

proposed method is fast and computationally efficient com-

pared to the one presented in [19]. The proposed algorithm

can deal robustly with large deformations, partial occlusions

and identity maintenance.

However, the above framework has limitations, which we

intend to overcome in our future work. First, prior knowledge

of the principal directions of variation is required. Second,

shape variation in directions other than the ones represented

by Um cannot be accommodated. One solution is to update

Um with time. We are currently working on including this

possibility into our framework.
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(a) Frame 110 (b) Frame 175 (c) Frame 195 (d) Frame 219

Fig. 1. Fish Sequence: Tracking with the proposed method

(a) Frame 20 (b) Frame 40 (c) Frame 50 (c) Frame 67

Fig. 2. Car Sequence: Tracking with Chan-Vese model alone - Obstacle cannot be handled

(a) Frame 20 (b) Frame 34 (c) Frame 50 (d) Frame 65

Fig. 3. Car Sequence: Tracking with the proposed method

(a) Frame 3 (b) Frame 11 (c) Frame 13 (d) Frame 20

Fig. 4. Walking Couple Sequence: Tracking with Chan-Vese model - Identity cannot be maintained

(a) Frame 3 (b) Frame 11 (c) Frame 13 (d) Frame 20

Fig. 5. Walking Couple Sequence: Tracking with the proposed method
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