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Abstract— This paper considers the application of the neural the uncertain time—delay systems with the gain perturbations
networks for the guaranteed cost control problem of discrete— s newly derived and some sufficient conditions to design the
time uncertain systems that have in both state and input delays. 4 ,aranteed cost controller are established by means of LMI. In
In order to guarantee the stability of the closed—loop delay
systems with the neurocontroller, the Linear Matrix Inequality order to_ re_d‘“?e the cost performance C"f‘used by the para_\r_neter
(LMI) condition is established, while the neurocontroller is used uncertainties in the LMI, NNs are substituted for the additive
to reduce the cost of the uncertain time—delay systems causedgain perturbations. It should be noted that the NNs use not
by the LMI design parameter. The novel contribution is that the  only the present state value but also the past state value of
neurocontroller is substituted for the additive gain perturbations. the uncertain systems. For this reason, the proposed method is

It is newly shown that although the neurocontroller is included in itable f tain di teti del t f duci
the uncertain discrete—time delay systems, the robust stability for Suitable for uncertain discrete—time delay systems for reducing

the closed—loop systems and the reduction of the cost are attained.the cost. Finally, in order to verify the effectiveness of the
Finally, a numerical example is given to verify the efficiency. proposed method, numerical examples are shown.

. INTRODUCTION 1. PRELIMINARY

Recent advance in theory of Linear Matrix Inequality (LMI) Consider uncertain discrete—time systems that have in both
has allowed a revisiting of the guaranteed cost control agire state and the input delays as follows
proach for the uncertain discrete—time delay systems [2], [3].

The LMI design method is a very well~known and powerful z(k+1) = A(k)z(k) + A1 (k)z(k — dv)
tool, it can not only efficiently find feasible and global solu- +B1(k)u(k) + Ba(k)u(k — da), (1)
tions, but also easily handle various kinds of additional linear u(k) = K(k)z(k), @)

constraints. However, in [2], [3], the control gain variations
[4] have not been considered. It is very important to studyherexz(k) € R™ is the stateu(k) € R™ is the control input,
the robustness of the discrete—time delay systems with theandd, are unknown constant integers representing the num-
control gain variations because any useful design procedides of delay units in the state and input, respectively. Without
to generate a controller which also has sufficient room féess of generality, we can assume that d; < d;*, i =1, 2,
readjustment of its coefficients is needed [4]. whered;* is known previouslyA(k), Ai(k), Bi(k),i=1, 2

Up to now, neural networks (NNs) have been extensivean be described as follows
studied to construct the intelligent control systems. Some
control methodologies have been proposed by combining NNs Ak) = A+ DAK), A(k) = A1+ Ady(k),
with modern control theories [5], [6]. However, there is a  Bi(k) = B+ AB;(k),

possibility that NN can not stabilize systems because tr\}\ﬁ]ere A, A, B, and B, are known real constant matrices
general stability of the systems including NNs has not be% apprc’)pria’te dimensionsAA(k), AA;(k), ABi(k) and

considered [6]. Very recently, in order to ensure the robu Bu(k) are uncertain matrices representing time-varying pa-

stability of the neurocontrolier, the additive ga}in perturbatiol%meter uncertainties in the systems. These parameter uncer-
approach has been used [8], [7]. As a result, it is shown that ttré? ties are assumed to be of the following form
neurocontroller succeeds in achieving the cost reduction andq

guaranteeing the robust stability for the systems. However, the [ AA(k) AAi(k) ABi(k) ABy(k) ]
guaranteeq cost control for the uncertain dlscrgte—tlme delay — DF(k) [ E, E. Ey Ep ] :
systems with the neurocontroller has not been investigated.

This paper investigates the guaranteed cost control for twhere D, F,, E,1, Ey1 and Ep are known real constant
discrete—time systems that have in both state and input timmeatrices andF'(k) € RP*? is an unknown matrix satisfying
delays. Firstly, a class of the fixed state feedback controller Bf (k) F (k) < I,. On the other handk (k) € R7*7 is the
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Fig. 1. Block diagram of proposed system.

state feedback gain matrix with additive gain perturbation amuhcertainties and the gain perturbations
can be described as follows

dy
K(K) = K + AK (k). J<Jr = xT(O)Xflx(o)+;xT(—i)L*1x(—z‘)

. ) . da
where K is the fixed state feedback gain and< (k) repre- T, a1 )
sents the additive gain perturbation of the form +Z;u (=) M u(=3). ©6)
=
AK (k) = DN (k)E},. 3) Proof: Applying the state feedback controller (2) to the

system (1), the following closed—loop system can be derived.
o the cutput of NN SaatinGV T OV £ 1y D) = LA+ B K] (6) + ARyl —
Associated with the system (1) is the cost function + B2 (k) K (k)z(k — da). ()
oo Let us define the following Lyapunov function candidate
J = [a"(k)Qu(k) + u” (k) Ru(k)] , (4) i
=0 V(x(k) = a"(k)Px(k)+> o (k—i)Sx(k —i)
where Q and R are given as positive definite symmetric i=1

matrices. In this situation, the definition of the guaranteed cost &2 T _ b i 8
control with the additive gain perturbations is given below (see + Z u' (k= j)Tu(k — j), (8)
e.g. [1]). =1

Definition 1: For the uncertain system (1) and cost functiowhere P, S and T' are symmetric positive definite matrices.
(4), suppose that there exist a control gain matkixand Then, the corresponding difference along any trajectory of the
a positive scalarJ* such that the closed—loop systems iglosed—loop system (7) is defined by
asymptotically stable and the closed-loop value of the cost _ _
function (4) satisfies/ < J*. If such condition is metJ* is AV(k) = V(];+ 1) VU?
said to be a guaranteed cost dkids a guaranteed cost control < —a (k)(Q+ K™ (k)TK(k))x(k).  (9)

gain matrix of the uncertain systems (1) and cost function (4,5 the matrix inequality (10) can be derived. Let us intro-
duce the matrices{ = P~!, L = S~ andM = T~'. The

Il LMI-BASED DESIGN APPROACH FOR rest of the proof can be done by using the similar technique
GUARANTEED COST CONTROLLER in [7], it is omitted. u

The objective of this section is to design the fixed guaran- Note the upper bound in (6) depends on the initial condition
teed cost control gain matri¥ for the uncertain system (1) Of the system (1). In this paper, to remove this dependence,
by means of the LMI design approach. The following theoref€ deterministic method [1] is adopted.
gives the sufficient condition for existence of the guaranteed Theorem 2: If the LMI (5) has feasible solution&’, ', M,
cost control. N, g1 andez, then the state feedback control law

Theorem 1: Con_sider the uncertain t_img—delay sys_ter_‘ns (1) u(k) = Y Xz (k) (11)
and the cost function (4). For the admissible uncertainties and
the gain perturbations, if the LMI (5) has the feasible solutior§ the guaranteed cost control law and the corresponding
such as the symmetric positive definite matx € %< closed-loop cost function satisfies
andY € R™*" and positive scalag; > 0, i = 1, 2, then N T -1 . T -1
K =Y X! is the guaranteed cost control gain matrix. T < (Ut d2)Amaa(UTXTU) 4 diAmae (U7 L7U), (12)

Furthermore, the corresponding value of the cost functievhere, .. (-) denotes the maximum eigenvalue of matfik,
(4) satisfies the following inequality (6) for all admissibles a given matrix.



by AX +B1Y A1M  BsN  e2B1DyDIE[ 0  e2B1D,DY 0 e2B1 D DY 0 0
(AX + B.Y)T -X 0 0 (BEoX + EnY)T X YT X YT XEF 0
LAT 0 —L 0 LEL, 0 0 0 0 0 0
MBY 0 0 -M MEY, 0 0 0 0 0 0
e2Ey DRy DF BT E.X 4+ EnY EuaL EpM €] 0  e3Ey, DyDF 0 eoEy1 Dy DF 0 0
Q= 0 X 0 0 0 —L 0 0 0 0 0
es Dy DY BT Y 0 0 e2 D DI EL 0 -M 0 eo D DY 0 €2 Dy,
0 X 0 0 0 0 0 —Q ! 0 0 0
es Dy DI BT Y 0 0 e2 D DF E] 0 €2 Dy D} 0 —R™! + 2Dy DF 0 0
0 Erp X 0 0 0 0 0 0 0 —eal 0
L 0 0 0 0 0 0 e2 D 0 0 0 —eal |
<0, (%)
where ¥ = —X + & DD? +e,B1 Dy DB, © = —e11 + e2Fy,1 Dy DY Epy
(k) g al [A(k) + Bi(k)K (F)]T PA1(k)  [A(k) + By (k)K (k)]” PBa(k) (k)
@(k —di) AT (k)P [A(K) + B1(k) K (k)] AT (k)PA; (k) — S AT (k)P By (k) x(k — dy)
u(k — dz) BT (k)P [A(k) + B1(k)K (k)] BT (k)PA; (k) BT (k)PBa(k) — T u(k — d2)
<0, (20)
where II=[A(k) + By (k)K (k)]" P[A(k) + Bi(k)K (k)] + S + KT (k)TK (k) + Q + KT (k)RK (k)
Proof: Since the proof can be done by using the similars consider the following nominal system.
technique in [2], it is omitted. ]
Various efficient convex optimization algorithms can be z(k+1) = Az(k)+ Ar1@(k — dy) + Bra(k)
applied because the LMI (5) consists of a convex solution +Byi(k — ds), (15)
set. Moreover, its solutions represent the set of the guaranteed A (k) = f(i;(k:), (16)

cost control gain matri¥<. Consequently, let us consider the
optimization problem that allows us to determine the Opt'me\llherej:(k) € R is the state andi(k) € R™ is the control
bound. input. K is the state feedback gain derived by the LMI
Theorem 3: Consider the LMI (5) and the following con- put. . g Y :
. o approach for the nominal system (15). Comparing with the
strained conditions. ; L
uncertain system, it is well-known that the cost performance
—al UT -8 UT of the nominal system is smaller. In the proposed method, the
{ U -X } <0, { U —L } <0. (13) NN should be trained in real-time so that the state discrepancy
#(k+1) — z(k + 1)| between the behavior of the nominal
The design problem of the optimal guaranteed cost coystem and the uncertain time—delay systems becomes as
troller can be formulated as the following optimization probsmall as possible at each stepSince the proposed uncertain

lem. systems have time—delay, it is expected that more reduction
of the cost would be attained when the NNs use not only the
minz = (1 + d3)a + di 3. (14) present state value but also the past state value in the uncertain
Proof: Since the proof can be done by using the simil&ystems.N(k) as the equation (3) can be expressed as the
technique in [2], it is omitted. m nonlinear function of the state(k), the weight coefficient of

In this paper, the LMI condition (5) and (13) will be used\N w(k) and the threshold(k) as follows.
for the optimization problem.
N(k) = f(a(k), x(k — di),w(k),0(k)). 17)

IV. NEURAL NETWORKS FOR ADDITIVE GAIN

PERTURBATIONS An energy functionE (k) is defined as the discrepancy be-

tween the behavior of the nominal system and the one of

The LMI approach for the uncertain time—delay systeni8€ uncertain time—delay systems at siepit each step, the

usually results in a conservative controller design due to tigight coefficients are modified so as to minimizek) given
existence of the uncertainties and gain perturbations. The mémh

purpose of this paper is to introduce NN as additive gain 1

perturbations into the uncertain systems to improve the codt(k) = §(fﬁ(k‘+1)—$(k+1))T(f(k+1) —z(k+1)), (18)

performance. Note that the proposed neurocontroller regulates

its outputs in real-time under the robust stability guarantedé{k) can be calculated by using the observed state value,

by the LMI approach. xz(k+1). If E(k) can be minimized as small as possible, the
It can be much expected that the reduction of the cost willscrepancy|i(k+ 1) — z(k + 1)”2 would also be minimized

be attained when the neurocontroller succeeds in managing $bethat the cost of the uncertain time—delay systems are close

uncertain systems as the nominal linear systems. Therefore téethe cost of the nominal system.




nput fayer hidden layer output layer The state feedback control gaii§ which is based on the

y ML w0 o proposed LMI design method with the neurocontroller is given
by

K=[ K Ky |=[ —1.3915 —0.9722 ]. (22)

For the system without uncertainties (15), the state feedback
control gainK is obtained as follows:

K=[ K; Ky |=[ —1.4522 —1.0000 |. (23)

For the system without the proposed neurocontroller, that is,
N(k) = 0, the state feedback control gai which is based
Fig. 2. Block diagram of proposed system. on the existing method [3] is designed.

K=[ Ky Ky | =] —1.3898 —0.9908 | . (24)
In the learning of NN, the modification of weight coefficien

Aw(k) is given by trhe neurocontroller is composed of 30 neurons in the hidden

layer, four neurons in the input layer, and two neurons in

wk+1) = wk) 7775E k)’ (19a) the output Iay_er,. respgctively. The learning rgtio is set as
ow(k) n = 0.8. The initial weights are randomly set in the range
0E(k)  OE(k) ON(k) 19b of [—0.05, 0.05].
ow(k) — ON(k) ow(k)’ (19D) The costJ of the proposed method ikl 5.4286, while the
cost J without the neurocontroller i429.5551. The costJ
where 1 is the learning ratio. The ter OE(k) 0 be of the system without uncertainties 167.2273. It is easy to
calculated from the energy function (18) as follows: find that the proposed method make the cost of the uncertain
u gy functi WS- time—delay systems reduce by using neurocontroller.
OF(k
aNE];) = —(#(k+1) — a(k + 1)) By (k) Dy Erae(k)  (20) VI. CONCLUSION
ON(E) In this paper, the application of NNs for the discrete—time

and depends on the NN used and can be derived usihgcertain SyStemS that have in both state and input delayS
ow(k ; .
the chain’ rule. With (15)—(20), NN can be trained so as ve been investigated. To reduce the cost, the NNs has been
' ' substituted for the gain perturbations. Moreover, using the LMI

The utilized NN is a three—layer feed—forward network a&PProach, the robust stability of closed-loop delay systems
shown in Fig. 2. A linear function is utilized in the neurons of guaranteed even if the systems include NN. l_\Iumenc_aI
the input and the hidden layers, and a sigmoid function in t§&@mples have shown that the proposed method is effective
output layer. The descriptions of each layer's input and outpi@" the uncertain time—delay systems.
are the same as those in [7]. From equation (17), the input REFERENCES
layer of NN is described as follows

decrease the cost on-line.
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