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Abstract— This paper considers the application of the neural
networks for the guaranteed cost control problem of discrete–
time uncertain systems that have in both state and input delays.
In order to guarantee the stability of the closed–loop delay
systems with the neurocontroller, the Linear Matrix Inequality
(LMI) condition is established, while the neurocontroller is used
to reduce the cost of the uncertain time–delay systems caused
by the LMI design parameter. The novel contribution is that the
neurocontroller is substituted for the additive gain perturbations.
It is newly shown that although the neurocontroller is included in
the uncertain discrete–time delay systems, the robust stability for
the closed–loop systems and the reduction of the cost are attained.
Finally, a numerical example is given to verify the efficiency.

I. INTRODUCTION

Recent advance in theory of Linear Matrix Inequality (LMI)
has allowed a revisiting of the guaranteed cost control ap-
proach for the uncertain discrete–time delay systems [2], [3].
The LMI design method is a very well–known and powerful
tool, it can not only efficiently find feasible and global solu-
tions, but also easily handle various kinds of additional linear
constraints. However, in [2], [3], the control gain variations
[4] have not been considered. It is very important to study
the robustness of the discrete–time delay systems with the
control gain variations because any useful design procedure
to generate a controller which also has sufficient room for
readjustment of its coefficients is needed [4].

Up to now, neural networks (NNs) have been extensively
studied to construct the intelligent control systems. Some
control methodologies have been proposed by combining NNs
with modern control theories [5], [6]. However, there is a
possibility that NN can not stabilize systems because the
general stability of the systems including NNs has not been
considered [6]. Very recently, in order to ensure the robust
stability of the neurocontroller, the additive gain perturbation
approach has been used [8], [7]. As a result, it is shown that the
neurocontroller succeeds in achieving the cost reduction and
guaranteeing the robust stability for the systems. However, the
guaranteed cost control for the uncertain discrete–time delay
systems with the neurocontroller has not been investigated.

This paper investigates the guaranteed cost control for the
discrete–time systems that have in both state and input time–
delays. Firstly, a class of the fixed state feedback controller of

the uncertain time–delay systems with the gain perturbations
is newly derived and some sufficient conditions to design the
guaranteed cost controller are established by means of LMI. In
order to reduce the cost performance caused by the parameter
uncertainties in the LMI, NNs are substituted for the additive
gain perturbations. It should be noted that the NNs use not
only the present state value but also the past state value of
the uncertain systems. For this reason, the proposed method is
suitable for uncertain discrete–time delay systems for reducing
the cost. Finally, in order to verify the effectiveness of the
proposed method, numerical examples are shown.

II. PRELIMINARY

Consider uncertain discrete–time systems that have in both
the state and the input delays as follows

x(k + 1) = A(k)x(k) + A1(k)x(k − d1)
+B1(k)u(k) + B2(k)u(k − d2), (1)

u(k) = K(k)x(k), (2)

wherex(k) ∈ �m is the state,u(k) ∈ �n is the control input,
d1 andd2 are unknown constant integers representing the num-
ber of delay units in the state and input, respectively. Without
loss of generality, we can assume that0 ≤ di ≤ di

∗, i = 1, 2,
wheredi

∗ is known previously.A(k), A1(k), Bi(k), i = 1, 2
can be described as follows

A(k) = A + ∆A(k), A1(k) = A1 + ∆A1(k),
Bi(k) = Bi + ∆Bi(k),

whereA, A1, B1 and B2 are known real constant matrices
of appropriate dimensions,∆A(k), ∆A1(k), ∆B1(k) and
∆B2(k) are uncertain matrices representing time–varying pa-
rameter uncertainties in the systems. These parameter uncer-
tainties are assumed to be of the following form[

∆A(k) ∆A1(k) ∆B1(k) ∆B2(k)
]

= DF (k)
[

Ea Ea1 Eb1 Eb2

]
,

where D, Ea, Ea1, Eb1 and Eb2 are known real constant
matrices andF (k) ∈ �p×p is an unknown matrix satisfying
FT (k)F (k) ≤ Ip. On the other hand,K(k) ∈ �q×q is the
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Fig. 1. Block diagram of proposed system.

state feedback gain matrix with additive gain perturbation and
can be described as follows

K(k) = K + ∆K(k),

whereK is the fixed state feedback gain and∆K(k) repre-
sents the additive gain perturbation of the form

∆K(k) = DkN(k)Ek. (3)

HereDk andEk are known real constant matrices andN(k)
is the output of NN satisfyingNT (k)N(k) ≤ Iq.

Associated with the system (1) is the cost function

J =
∞∑

k=0

[
xT (k)Qx(k) + uT (k)Ru(k)

]
, (4)

where Q and R are given as positive definite symmetric
matrices. In this situation, the definition of the guaranteed cost
control with the additive gain perturbations is given below (see
e.g. [1]).

Definition 1: For the uncertain system (1) and cost function
(4), suppose that there exist a control gain matrixK and
a positive scalarJ∗ such that the closed–loop systems is
asymptotically stable and the closed–loop value of the cost
function (4) satisfiesJ < J∗. If such condition is met,J∗ is
said to be a guaranteed cost andK is a guaranteed cost control
gain matrix of the uncertain systems (1) and cost function (4).

III. LMI–BASED DESIGN APPROACH FOR
GUARANTEED COST CONTROLLER

The objective of this section is to design the fixed guaran-
teed cost control gain matrixK for the uncertain system (1)
by means of the LMI design approach. The following theorem
gives the sufficient condition for existence of the guaranteed
cost control.

Theorem 1: Consider the uncertain time–delay systems (1)
and the cost function (4). For the admissible uncertainties and
the gain perturbations, if the LMI (5) has the feasible solutions
such as the symmetric positive definite matrixX ∈ �n×n

and Y ∈ �m×n, and positive scalarεi > 0, i = 1, 2, then
K = Y X−1 is the guaranteed cost control gain matrix.

Furthermore, the corresponding value of the cost function
(4) satisfies the following inequality (6) for all admissible

uncertainties and the gain perturbations

J < J∗ = xT (0)X−1x(0) +
d1∑

i=1

xT (−i)L−1x(−i)

+
d2∑

j=1

uT (−j)M−1u(−j). (6)

Proof: Applying the state feedback controller (2) to the
system (1), the following closed–loop system can be derived.

x(k + 1) = [A(k) + B1(k)K(k)]x(k) + A1(k)x(k − d1)
+B2(k)K(k)x(k − d2). (7)

Let us define the following Lyapunov function candidate

V (x(k)) = xT (k)Px(k) +
d1∑

i=1

xT (k − i)Sx(k − i)

+
d2∑

j=1

uT (k − j)Tu(k − j), (8)

whereP , S and T are symmetric positive definite matrices.
Then, the corresponding difference along any trajectory of the
closed–loop system (7) is defined by

∆V (k) = V (k + 1) − V (k)
< −xT (k)(Q + KT (k)TK(k))x(k). (9)

Thus, the matrix inequality (10) can be derived. Let us intro-
duce the matricesX = P−1, L = S−1 and M = T−1. The
rest of the proof can be done by using the similar technique
in [7], it is omitted.

Note the upper bound in (6) depends on the initial condition
of the system (1). In this paper, to remove this dependence,
the deterministic method [1] is adopted.

Theorem 2: If the LMI (5) has feasible solutionsX, Y , M ,
N , ε1 andε2, then the state feedback control law

u(k) = Y X−1x(k) (11)

is the guaranteed cost control law and the corresponding
closed–loop cost function satisfies

J ≤ (1 + d∗
2)λmax(UT X−1U) + d∗

1λmax(UT L−1U), (12)

whereλmax(·) denotes the maximum eigenvalue of matrix,U
is a given matrix.
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< 0, (5)

where Σ = −X + ε1DDT + ε2B1DkDT
k BT

1 , Θ = −ε1I + ε2Eb1DkDT
k Eb1[

x(k)
x(k − d1)
u(k − d2)

]T [
Π [A(k) + B1(k)K(k)]T PA1(k) [A(k) + B1(k)K(k)]T PB2(k)

AT
1 (k)P [A(k) + B1(k)K(k)] AT

1 (k)PA1(k) − S AT
1 (k)PB2(k)

BT
2 (k)P [A(k) + B1(k)K(k)] BT

2 (k)PA1(k) BT
2 (k)PB2(k) − T

][
x(k)

x(k − d1)
u(k − d2)

]

< 0, (10)

where Π = [A(k) + B1(k)K(k)]T P [A(k) + B1(k)K(k)] + S + KT (k)TK(k) + Q + KT (k)RK(k)

Proof: Since the proof can be done by using the similar
technique in [2], it is omitted.

Various efficient convex optimization algorithms can be
applied because the LMI (5) consists of a convex solution
set. Moreover, its solutions represent the set of the guaranteed
cost control gain matrixK. Consequently, let us consider the
optimization problem that allows us to determine the optimal
bound.

Theorem 3: Consider the LMI (5) and the following con-
strained conditions.[ −αI UT

U −X

]
< 0,

[ −βI UT

U −L

]
< 0. (13)

The design problem of the optimal guaranteed cost con-
troller can be formulated as the following optimization prob-
lem.

minz = (1 + d∗
2)α + d∗

1β. (14)
Proof: Since the proof can be done by using the similar

technique in [2], it is omitted.
In this paper, the LMI condition (5) and (13) will be used

for the optimization problem.

IV. NEURAL NETWORKS FOR ADDITIVE GAIN
PERTURBATIONS

The LMI approach for the uncertain time–delay systems
usually results in a conservative controller design due to the
existence of the uncertainties and gain perturbations. The main
purpose of this paper is to introduce NN as additive gain
perturbations into the uncertain systems to improve the cost
performance. Note that the proposed neurocontroller regulates
its outputs in real–time under the robust stability guaranteed
by the LMI approach.

It can be much expected that the reduction of the cost will
be attained when the neurocontroller succeeds in managing the
uncertain systems as the nominal linear systems. Therefore, let

us consider the following nominal system.

x̂(k + 1) = Ax̂(k) + A1x̂(k − d1) + B1û(k)
+B2û(k − d2), (15)

û∗(k) = K̂x̂(k), (16)

where x̂(k) ∈ �n is the state and̂u(k) ∈ �m is the control
input. K̂ is the state feedback gain derived by the LMI
approach for the nominal system (15). Comparing with the
uncertain system, it is well–known that the cost performance
of the nominal system is smaller. In the proposed method, the
NN should be trained in real–time so that the state discrepancy∣∣∣∣x̂(k + 1) − x(k + 1)

∣∣∣∣ between the behavior of the nominal
system and the uncertain time–delay systems becomes as
small as possible at each stepk. Since the proposed uncertain
systems have time–delay, it is expected that more reduction
of the cost would be attained when the NNs use not only the
present state value but also the past state value in the uncertain
systems.N(k) as the equation (3) can be expressed as the
nonlinear function of the statex(k), the weight coefficient of
NN w(k) and the thresholdθ(k) as follows.

N(k) = f
(
x(k), x(k − d1), w(k), θ(k)

)
. (17)

An energy functionE(k) is defined as the discrepancy be-
tween the behavior of the nominal system and the one of
the uncertain time–delay systems at stepk. At each step, the
weight coefficients are modified so as to minimizeE(k) given
as

E(k) =
1
2
(x̂(k+1)−x(k+1))T (x̂(k+1) − x(k+1)), (18)

E(k) can be calculated by using the observed state value,
x(k + 1). If E(k) can be minimized as small as possible, the
discrepancy

∣∣∣∣x̂(k +1)−x(k +1)
∣∣∣∣2 would also be minimized

so that the cost of the uncertain time–delay systems are close
to the cost of the nominal system.
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In the learning of NN, the modification of weight coefficient
∆w(k) is given by

w(k + 1) = w(k) − η
∂E(k)
∂w(k)

, (19a)

∂E(k)
∂w(k)

=
∂E(k)
∂N(k)

∂N(k)
∂w(k)

, (19b)

where η is the learning ratio. The term
∂E(k)
∂N(k) can be

calculated from the energy function (18) as follows:

∂E(k)
∂N(k)

= −(
x̂(k + 1) − x(k + 1)

)
B1(k)DkEkx(k) (20)

and
∂N(k)
∂w(k) depends on the NN used and can be derived using

the chain rule. With (15)–(20), NN can be trained so as to
decrease the costJ on–line.

The utilized NN is a three–layer feed–forward network as
shown in Fig. 2. A linear function is utilized in the neurons of
the input and the hidden layers, and a sigmoid function in the
output layer. The descriptions of each layer’s input and output
are the same as those in [7]. From equation (17), the input
layer of NN is described as follows

UN (k) =
[

x(k) x(k − d1)
]
. (21)

V. NUMERICAL EXAMPLE

In this section, the effectiveness of the proposed method is
verified for the uncertain time–delay systems given below.

A =
[

2 1
0 1

]
, A1 =

[
0.2 0.1
0 0.1

]
, B1 =

[
1
1

]
,

B2 =
[

0.1
0.1

]
, D =

[
2
2

]
, Ea =

[
0.2 0.3

]
,

Ea1 = 0, Eb1 = 0.4, Eb2 = 0.2, F (k) = 1.0,

Dk =
[

0.3 0.2
]
, Ek = 0.4

N(k) =
[

N1(k) 0
0 N2(k)

]
, d∗

1 = 2, d∗
2 = 5,

U = diag(1.5 1.5).

The initial condition isx(0) = [2 − 2]T , and the weighting
matrices are chosen asQ = diag(1, 1) and R = 1.0,
respectively.

The state feedback control gainK which is based on the
proposed LMI design method with the neurocontroller is given
by

K =
[

K1 K2

]
=

[ −1.3915 −0.9722
]
. (22)

For the system without uncertainties (15), the state feedback
control gainK̂ is obtained as follows:

K̂ =
[

K̂1 K̂2

]
=

[ −1.4522 −1.0000
]
. (23)

For the system without the proposed neurocontroller, that is,
N(k) ≡ 0, the state feedback control gain̄K which is based
on the existing method [3] is designed.

K̄ =
[

K̄1 K̄2

]
=

[ −1.3898 −0.9908
]
. (24)

The neurocontroller is composed of 30 neurons in the hidden
layer, four neurons in the input layer, and two neurons in
the output layer, respectively. The learning ratio is set as
η = 0.8. The initial weights are randomly set in the range
of [−0.05, 0.05].

The costJ of the proposed method is115.4286, while the
cost J̄ without the neurocontroller is129.5551. The costĴ
of the system without uncertainties is107.2273. It is easy to
find that the proposed method make the cost of the uncertain
time–delay systems reduce by using neurocontroller.

VI. CONCLUSION

In this paper, the application of NNs for the discrete–time
uncertain systems that have in both state and input delays
have been investigated. To reduce the cost, the NNs has been
substituted for the gain perturbations. Moreover, using the LMI
approach, the robust stability of closed–loop delay systems
is guaranteed even if the systems include NN. Numerical
examples have shown that the proposed method is effective
for the uncertain time–delay systems.
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