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Abstract— In this paper, we show that the sufficient con-
ditions for the existence of Zeno behavior in hybrid systems
derived in [3] correctly predict such executions in a model-
ing instance of the fluid-flow approximation of the TCP-like
protocol for wireless communication networks.

I. INTRODUCTION

Hybrid systems are systems that display both continuous

and discrete behavior, and so are endowed with powerful

modeling capabilities. Unfortunately, the yin to this yang is

that hybrid models may exhibit non robust and pathological

behaviors due to their structural interconnections. Zeno be-

havior provides a notorious, and peculiar, example of this; its

existence can be disruptive to both analysis and simulation.

This motivates the need to understand Zeno behavior and,

specifically, detect it a priori.
The literature on Zeno behavior can be categorized within

three general areas: analysis, elimination (or regularization)

and detection (either sufficient or necessary conditions for

the existence of Zeno behavior). The first area studies the

dynamical properties associated with this phenomenon, its

relation to real world systems, and the computational prob-

lems it arises. The second area attempts to understand how

to modify a hybrid model in order to guarantee the absence

of such a behavior (see, for instance, [4], [7], [11]). The

final area, providing necessary and/or sufficient conditions

for the existence of Zeno behavior, has drawn some interest

in recent years; while the Literature has results on necessary

conditions, which are based on the interconnections between

the domains of the system, we focus here on sufficient

conditions, which focus on the structure of the vector fields.
In [3], the first—as far as the authors are aware—sufficient

conditions for the existence of Zeno behavior in hybrid

systems with non-trivial (or non-constant) dynamics were

provided; there, a simple class of hybrid systems with simple

dynamics, termed diagonal first quadrant (DFQ) hybrid
systems was studied. These results were generalized in [6]

to include arbitrary nonlinear dynamics through the use of

Lyapunov-type techniques.
This work utilizes the framework of hybrid systems to

model Communication Networks that employ the Trans-

mission Control Protocol (TCP). These complex models of
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networks, based on fluid-flow approximations, are naturally

discretized into systems that display both discrete and contin-

uous behavior, i.e., hybrid systems. The use of this paradigm

can further our understanding of the performance of these

algorithms. In particular, this paper presents a real world

application of the sufficient conditions given in [3] to a

modeling instance of Zeno behavior in TCP networks. That

is, we are able to detect a priori the existence of Zeno

behavior in a hybrid system model of these systems.

This paper is structured as follows: after an introduction

to the classical framework for hybrid systems (Sec. II), and a

brief summary of the sufficient conditions for Zeno behavior

presented in [3] (Sec. III), the problem setup is established

(Sec. IV); a fluid-flow model for the Reno-type TCP is

presented in the wired and wireless cases, Furthermore, a

simple topology is introduced and it is demonstrated how

a network with this topology can be naturally modeled as a

hybrid system. We begin by performing a qualitative analysis

of the hybrid trajectories of the resulting hybrid system. The

existence of Zeno trajectories is then mathematically estab-

lished for a simple configuration; the sufficient conditions

for the existence of Zeno trajectories [3] are utilized (Sec.

V) after properly transforming the model to a DFQ hybrid

system. Finally, possible extensions of the methods utilized

in the paper are discussed (Sec. VI).

II. THE SETTING: HYBRID DYNAMICAL SYSTEMS

Throughout the paper, we will utilize the classical frame-

work for deterministic hybrid systems [14]. Let us start

by formally defining a hybrid system, its execution and a

dynamical property that will be under study.

Definition 1: Define a hybrid system as a tuple

H = (Q,E,D,G,R, F ),

where

• Q = {1, ...,m} ⊂ Z is a finite set of discrete states,

• E ⊂ Q × Q is a set of edges which define the

connections between states, where for e = (i, j) ∈ E
we denote its source by s(e) = i and its target by

t(e) = j,

• D = {Di}i∈Q is a set of domains, where Di is a

compact subset of R
n,
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• G = {Ge}e∈E is a set of guards, where Ge ⊆ Ds(e),

• R = {Re}e∈E is a set of reset maps, where Re : Ge ⊆
Ds(e) → Dt(e) are smooth maps,

• F = {fi}i∈Q is a set of vector fields such that fi is

Lipschitz on R
n; the solution to the ODE specified by

fi with initial condition x0 ∈ Di at time t0 is denoted

by xi(t), where xi(t0) = x0.

Executions. An execution or hybrid trajectory1 of the hybrid

system H is a tuple:

χ = (τ, ξ, η),

where

• τ = {τi}i∈N with τ0 = 0 ≤ τ1 ≤ · · · ≤ τj ≤ · · · is a

hybrid time sequence or a sequence of switching times,

• ξ = {ξi}i∈N with ξi ∈
⋃

i∈Q Di is a sequence of initial
conditions,

• η = {ηi}i∈N with ηi ∈ E is a hybrid edge sequence.

Additionally, we require that χ = (τ, ξ, η) must satisfy the

conditions that for i ∈ N,

ξi = xs(ηi)(τi)
τi+1 = min{t ≥ τi : xs(ηi)(t) ∈ Gηi}

s(ηi+1) = t(ηi)
ξi+1 = Rηi(xs(ηi)(τi+1))

We finally require that xs(ηi)(t) ∈ Ds(ηi) for all t ∈
[τi, τi+1], which is quite a natural assumption.

Hybrid systems display a phenomenon which does not

occur in dynamical systems: Zeno behavior. In simple terms,

Zeno behavior occurs when there is a hybrid trajectory

that takes an infinite amount of discrete transitions in a

finite amount of time. More precisely, we give the following

definition:

Definition 2: A hybrid system H is Zeno if for some

execution χ of H there exists a finite constant τ∞ (called

the Zeno time) such that

lim
i→∞

τi =
∞∑

i=0

(τi+1 − τi) = τ∞.

The execution χ is called a Zeno execution.

Zeno behaviors. The definition of a Zeno execution results

in qualitatively different types of Zeno behavior: the two

fundamental kinds2, as first introduced in [5], are defined as

follows: for an execution χ that is Zeno, χ is

Chattering Zeno: If there exists a finite C such

that τi+1 − τi = 0 for all i ≥ C.

Genuinely Zeno: If τi+1 − τi > 0 for all i ∈ N.

1Here we are considering only infinite executions since these are the
executions that display Zeno behavior; introducing the definition of a finite
execution would require unnecessary complication. For the more general
definition see [14] or [15].

2In principle, other types of Zeno could be possible; for instance, when
both the conditions we describe are verified infinitely often. In the paper,
we consider the two extreme cases as they compliment each other and thus
allow for a better understanding of Zeno behavior.

The difference between these two phenomena is especially

prevalent in their detection and elimination. As argued in [3],

Genuinely Zeno executions are much more complicated in

their behavior.

III. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF

ZENO EXECUTIONS

As mentioned in the introduction, there have been many

attempts to regularize Zeno behavior by either changing

the original model with the addition of some delays [15],

introducing additional domains to add delays geometrically

[4] and constraining the dynamics when they lie in a neigh-

borhood of the Zeno point [7]. In [10], it was first suggested

that in a very special case, a stochastic approximation of

the deterministic hybrid system could effectively rule out

Zeno behavior, while properly converging at the limit to

the original dynamics; this idea has been reformulated and

extended to a more general setting in [1].

On the detection side, the same authors in [3] have derived,

for the first time, a sufficient condition for the existence of

Zeno behaviors for a certain class of linear hybrid systems.

After introducing the class of hybrid systems considered in

the aforementioned work, we summarize the main result.

DFQ hybrid systems. A diagonal first quadrant (DFQ)
hybrid system is a hybrid system of a very special form.

Specifically, we say that HDFQ = (Q,E,D,G,R, F ) is a

DFQ hybrid system if the following further conditions hold

on the set of domains, guards, reset maps and vector fields:

1) D = {Dq}q∈Q is, for every q ∈ Q, of the form3

Dq = {x ∈ R
n : x1 ≥ 0 and x2 ≥ 0},

2) G = {Ge}e∈E is, for every e ∈ E, of the form

Ge = {x ∈ R
n : x1 = 0 and x2 ≥ 0},

3) R = {Re}e∈E is, for every e ∈ E, of the form

Re(x) = Re(x1, x2, . . . , xn) = (x2, x1, . . . , xn)T ,

4) F = {fq(x)}q∈Q is, for every q ∈ Q, of the form

fq(x) = Λqx + aq,

where aq ∈ R
n and Λq ∈ R

n×n is a diagonal matrix;

we denote (Λq)i,i by (λq)i.

Remark 1: DFQ hybrid systems, while clearly very sim-

ple in their structure, can be used to understand general

hybrid systems. In [6], it is argued that first quadrant (FQ)

hybrid systems (which are only slightly more general than

their DFQ counterpart) can be used to understand the sta-

bility properties of general hybrid systems by considering

morphisms between these systems, i.e., “hybrid” Lyapunov

functions. In this way, FQ hybrid systems are to hybrid

systems as the real line is to dynamical systems—thus by

understanding FQ hybrid system we can understand general

hybrid systems.

3The form of these domains is the motivation for the term “first quadrant”.
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We refer to Γ = (Q,E) as the underlying graph of HDFQ;

as is intuitively obvious, it is often useful to analyze subsets

of this graph. The following Theorem, proven in [3], provides

sufficient conditions for the existence of Genuinely Zeno

behavior in DFQ hybrid systems. The first two conditions

in this theorem ensure the existence of a trajectory, while

the third one is a contraction requirement.

Theorem 1: Let HDFQ be a DFQ hybrid system and
Γ� = (Q�, E�) be a cycle of the underlying graph Γ of this
hybrid system. Then if Λq�

x + aq�
, q� ∈ Q�, satisfies the

conditions:

(λq�
)1 ≤ 0

(aq�
)1 < 0 < (aq�

)2∣∣∣∏q�∈Q�

(aq�
)2

(aq�
)1

∣∣∣ < 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⇒ HDFQ is Genuinely

Zeno

IV. CONGESTION CONTROL OF COMMUNICATION

NETWORKS

The dynamical properties of TCP schemes for the wired

and wireless internet have been recently investigated by

means of control theoretical techniques. Along this lines,

this paper will adhere to the widespread use of the fluid-

flow approximation model introduced by Kelly (see [12],

[13]). This dynamical model mathematically accounts for the

additive increase-multiplicative decrease characteristic of the

TCP on wireline networks and aptly describes its properties.

TCP model. A communication network is described via its

J links and its R users (sender-receiver pairs). The relations

between these two entities are described by a 0-1 routing

matrix A = {ajr}, where ajr = 1 if user r ∈ R uses link

j ∈ J , and ajr = 0 otherwise. Each j ∈ J has a finite

capacity Cj < ∞. We model the sending rate of each user,

xr(t) for all r ∈ R, with the following dynamical relations:

d

dt
xr(t) = kr

⎛⎝wo
r − xr(t)

∑
j:ajr=1

pj

⎛⎝ ∑
s:ajs=1

xs(t)

⎞⎠⎞⎠ ,

where kr is a positive scale factor affecting the adaptation

rate, and the constant wo
r can be physically interpreted as

the number of connections that the user establishes with the

network. The functions pj , each specific to a single link, sum

up to form the congestion signal feedback from the network

to a particular user, and depend on the sum of the rates of

all the users that exploit the particular link. In the wireless

case, the loss functions pj have to account for possible non

negligible channel error, along with loss due to congestion.

One possible way around this problem has been described

in [2], [8] and [9], where the number of connections the

user establishes with the network is modified dynamically

according to the observed loss functions.

In the sequel, it will be shown that a specific hybrid system

(in fact, a DFQ hybrid system) can be used describe this

model of a communication network by approximating the

Fig. 1. The network topology for the Case Study.

nonlinear parts of its structure; within this new framework,

it will be shown both analytically and a priori via the

sufficient conditions given in Theorem 1, that in some

instances the presence of both Chattering and Genuinely

Zeno phenomena will arise. Interestingly, this relates to the

presence of oscillations in steady-state in real TCP schemes.

Model for case study. We shall consider the two-users/two-

links network shown in Figure 1. The first link is assumed to

be a wireline one, while the second is thought to be wireless.

The model is expressed with the following pair of differential

equations:

ẋ1 = k1

(
w1 − x1

(
p1(x1 + x2) + p2(x1)

))
,

ẋ2 = k2

(
w2 − x2p1(x1 + x2)

)
.

It is reasonable to assume that C1 > C2. The shape of the

price functions pj determines the typology of the scheme;

the only restriction on these functions is that they must be

positive and increasing. In this particular instance, we shall

approximate them with an indicator function centered around

the congestion threshold. In order to cope with the second

wireless link, according to a scheme proposed in [2], [8] and

[9], the number of connections that the first user establishes,

w1, is binarily switched as follows:

w1 =

⎧⎨⎩
wl

1 if (x1 > C2)∨
((x1 ≤ C2) ∧ (x1 + x2 ≥ C1) ∧ (ẋ1 ≤ 0))

wh
1 else

It makes sense to assume that 0 < wl
1 < wh

1 . We can interpret

the previous condition as follows: the first user increases the

number of packets he sends through the network faster if

the second link is uncongested; conversely, he decreases the

number of connections—or, equivalently, additively increases

the number more slowly—if the second link gets congested

and as long as the first link remains clogged. Another

plausible interpretation of the modifications in the value of

w1 is by a concept related to both that of “fast recovery”

and that of “congestion avoidance”; the protocol tries to

facilitate the decongestion of the second link by mitigating

the effect of the additive-increase part of the model, while

multiplicatively decreasing the congestion window rather

than draining it all.

The hybrid model. The introduction of the indicator
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G(1,2+) = G(2 ,2+)

G(2+,2 ) = G(2+,4)

G(1,3) = G(3,1) G(3,4) = G(4,3)

D4D±
2

D3D1

x x+ Region for

Equilibria

Fig. 2. The hybrid system model of the case study; the figure indicates
the domains, the guards, and the region for the equilibria of the system.

function and of the discontinuity on the value of w1 enables

us to reformulate the previous model as a hybrid system.

It will be composed of five modes—see Figure 2—and be

specified by the following tuple:

HTCP = (Q,E,D,G, R, F ),

where

• Q = {1, 2+, 2−, 3, 4},

• E = {eij = (i, j) : (i, j) ∈ Q×Q, i �= j and (i, j) �=
(1, 2−), (4, 2+)},

• D = {D1, D
+
2 = D2+ , D−

2 = D2− , D3, D4}, where

D1 = {x ∈ (Ro
+)2 : (x1 + x2 ≤ C1) ∧ (x1 ≤ C2)}

D±
2 = {x ∈ (Ro

+)2 : (x1 + x2 ≥ C1) ∧ (x1 ≤ C2)}
D3 = {x ∈ (Ro

+)2 : (x1 + x2 ≤ C1) ∧ (x1 ≥ C2)}
D4 = {x ∈ (Ro

+)2 : (x1 + x2 ≥ C1) ∧ (x1 ≥ C2)}
• G = {Geij

}eij∈E where Geij
= ∂Di∩∂Dj , for (i, j) �=

(2+, 2−), (2−, 2+), with ∂Di the boundary of domain

Di, and

G(2+,2−) = {x ∈ (Ro
+)2 : (x1 + x2 ≥ C1) ∧ (x1 = C2)}

G(2−,2+) = {x ∈ (Ro
+)2 : (x1 + x2 = C1) ∧ (x1 ≤ C2)}

• R = {Reij
}eij∈E where Reij

= Id, the identity map,

• F = {f1, f
+
2 , f−

2 , f3, f4} where

f1(x2, x2) =
(

k1w
+
1

k2w2

)
f+
2 (x1, x2) =

(
k1(w+

1 − x1)
k2(w2 − x2)

)
f−
2 (x1, x2) =

(
k1(w−

1 − x1)
k2(w2 − x2)

)
f3(x1, x2) =

(
k1(w−

1 − x1)
k2w2

)
f4(x1, x2) =

(
k1(w−

1 − 2x1)
k2(w2 − x2)

)

where here w−
1 and w+

1 can be viewed as wl
1 and wh

1

without the conditions on the velocity.

Qualitative dynamical analysis. Within the set of all

possible hybrid trajectories, we will focus our attention at this

stage on two particular subsets—those generated by initial

conditions in D1. Assume, to begin with, that the constants

of the various vector fields assume values that locate the

equilibria in the region shown in Figure 2. Both variables

shall increase, until the intersection of the separation guard

with either domain D3 or domain D+
2 . In the first case,

right after the event, the vector field will be pointing towards

the left of the same guard. This is tantamount to chattering

behavior, as shown by a simulation in Figure 3 (Bottom).

The trajectory may slide on the guard and be qualitatively

studied via solutions a la Filippov.

In the second scenario, which occurs along the intersection

of the guards between domains D1 and D+
2 , the trajectory

will switch to the new mode, where it will flow towards an

equilibrium point above the line x1 + x2 = C1. This will

happen until the guard between domains D+
2 and D4 is hit,

which induces the first user to switch to D−
2 and decrease the

number of connections. This event will steer the trajectory

towards a new equilibrium below x1 + x2 = C1, until the

first guard G(2−,1) will again again be intersected. Repeating

this reasoning , it is possible to show that the trajectory is

Zeno “by hand”—given the linear structure of the vector

fields, we can solve for the trajectories with relative ease, find

an explicit formula for the time steps within each domain,

compute their sum and check its finiteness.

In the next section, by applying the sufficient conditions

for the existence of Zeno Behavior presented in Theorem 1,

we will be able to give explicit guarantees on when HTCP

is Zeno.

V. A PRIORI DETECTION OF ZENO BEHAVIOR

In this section, we will first modify the hybrid model intro-

duced in the previous section with the goal of transforming

it into a DFQ hybrid system (Sec. III). Then, within this

new framework, we shall show that the sufficient conditions

for the existence of Zeno behavior apply in this particular

modeling instance.

We will restrict our attention to a hybrid subsystem of the

hybrid system HTCP, which is represented for clarity in

Figure 4. Define

H sub
TCP = (Qsub, Esub, Dsub, Gsub, Rsub, F sub),

where

• Qsub = {+,−},

• Esub = {e+ = (+,−), e− = (−, +)},

• Dsub = {D+, D−} where D+ = D− are defined by

the affine constraints:

Bx + b =
(

1 1
−1 0

) (
x1

x2

)
+

( −C1

+C2

)
≥ 0

Note that these constraints imply that D± = D±
2 ,
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Fig. 3. Top — A hybrid trajectory presenting Genuinely Zeno behavior.
Bottom — A hybrid trajectory with Chattering Zeno behavior.

• Gsub = {Ge+ , Ge−}, where

Ge+ = {x ∈ (Ro
+)2 : (x1 + x2 ≥ C1) ∧ (x1 = C2)}

Ge− = {x ∈ (Ro
+)2 : (x1 + x2 = C1) ∧ (x1 ≤ C2)}

• Rsub = {Re+ , Re+}, where Re± = Id, the identity

map,

• F sub = {f+, f−}, where

f±(x1, x2) = −I

(
x1

x2

)
+

(
w±

1

w2

)
:= −Ix + a±

where here we have assumed4 that k1 = k2 = 1.

The hybrid system H sub
TCP is important because of its ability

to predict Zeno behavior in HTCP, that is, we have the

following (easily verifiable) lemma:

Lemma 1: If H sub
TCP is Genuinely Zeno, then HTCP is

Genuinely Zeno.

Coordinate transformations. To transform H sub
TCP into a

DFQ hybrid system it is necessary to “bend” the guards of

the domains D± to become the axes of a first quadrant, while

maintaining the proper orientation of the flow. To this end,

consider a dynamical system ẋ = f(x) with x ∈ R
n, and

a diffeomorphism ψ : R
n → R

n that transforms the state

4In the remainder of this paper we shall make this assumption without
much loss of generality.

D+
2 = D+

Ge+

x2 = C2

x1 = C1 C2

D2 = D

Ge

e e+

x2 = C2

x1 = C1 C2

Fig. 4. The reduced hybrid system object of analysis.

space to x̂ = ψ(x). A solution x(t) of the system will then

be transformed into a solution x̂(t) = ψ(x(t)) of the ODE:

˙̂x =
∂ψ

∂x
f(x) =

∂ψ

∂x
f(ψ−1(x̂)) = f̂(x̂).

Note that in the case when ψ is an affine transformation, i.e.,

ψ(x) = Hx + h, then ψ−1(x̂) = H−1x̂ − H−1h.

A specific transformation. There are multiple ways of

defining such a diffeomorphism, but all of them should

yield equivalent results when applying the sufficient con-

ditions. We shall come up with an affine transformation

x̂ = ψ(x) = Hx + h by utilizing the affine constraints

defining the domains. For both the modes, we want an

affine transformation that will transform the affine constraints

Bx+ b ≥ 0 into the affine constraints Ix̂ ≥ 0, which indeed

define the first quadrant. A trivial calculation shows that it

is sufficient to choose H = B and h = b. Properly orienting

the new trajectories yields the following transformations for,

respectively, mode D+ and D−:

ψ+(x) =
(

0 1
1 0

)
Bx + b; ψ−(x) = Bx + b.

Notice that in the first case we flip the coordinates. For the

vector fields ẋ = −Ix+a± on D±, the transformations ψ±

will yield the following vector fields:

˙̂x = f̂+(x̂) = −Ix̂ +
(

0 1
1 0

)
b +

(
0 1
1 0

)
Ba+;

˙̂x = f̂−(x̂) = −Ix̂ + b + Ba−.

We can now formally define a DFQ hybrid system from

H sub
TCP as follows:

H TCP
DFQ = (Q̂, Ê, D̂, Ĝ, R̂, F̂ ),

where Q̂ = Qsub, Ê = Esub; as H TCP
DFQ is a DFQ

hybrid system we need only specific F̂ = {f̂+, f̂−} (since

the domains, guards and reset maps must be given by the

specifications outlined in Sect. III) which are:

f̂±(x̂) = −Ix̂ + â±, where
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â+ =
(

C2 − w+
1

−C1 + w+
1 + w2

)
; â− =

( −C1 + w−
1 + w1

C2 − w−
1

)
Application of the sufficient conditions. The structure of

H TCP
DFQ allows the use of the conditions developed in [3] and

summarized in Theorem 1. Because of the specific structure

of H TCP
DFQ , the conditions of this theorem read:

(i±) â±
1 < 0 < â±

2

(ii)
∣∣∣ba+

2 ba−
2

ba+
1 ba−

1

∣∣∣ < 1

since the condition on the negativity of the first eigenvalue

is met: λ̂± = −1. In other words, we have the following

result, which is actually just a simple application of Theorem

1, coupled with Lemma 1.

Theorem 2: HTCP is Genuinely Zeno if

(i) C2 − w+
1 < 0 < −C1 + w+

1 + w2

(ii) −C1 + w−
1 + w2 < 0 < C2 − w−

1

(iii)
∣∣∣ (C2−w−

1 )(−C1+w+
1 +w2)

(C2−w+
1 )(−C1+w−

1 +w2)

∣∣∣ < 1

To make the conditions given in this theorem slightly more

transparent we assign specific values to w+
1 , w−

1 and w2

based on the values of the channel capacities as follows:

w+
1 = C2 + α, w−

1 = C2 − α, w2 = C1 − C2 − β,

in this case, we would like to know what values of α and β
yield Zeno trajectories. Applying Theorem 2, we have:

Corollary 1: HTCP is Genuinely Zeno if 0 < β < α.

Extensions. It is possibile to extend these results. If a

similar change in the number of connections is employed

on the model with the original shape for the prices (which

in general may be positive, smooth and increasing functions

of the congestion through the specific link), it would still

be possible to introduce a hybrid model of this system. We

would have to deal with non-linear vector fields though,

which will require results that the authors are currently

investigating.

VI. CONCLUSIONS

In this work, the sufficient conditions for the existence

of Zeno trajectories in hybrid systems, as derived in [3],

have been applied to the study of a special instance of

wireline/wireless communication network where the flow is

regulated by TCP-like protocols. We considered the fluid-

flow model of these protocols. The scheme was first modified

to handle the errors on the wireless link followed by a

simplification of its structure by the introduction of piecewise

linear approximations, which allowed us to reframe the

model as a hybrid system. After proper massaging, the

application of the sufficient conditions proved the existence

of Zeno trajectories and gave conditions under which such

trajectories occur.

The result, along with being a non-trivial application of

the aforementioned conditions, sheds some light on a rather

important issue for TCP schemes. It is known that the intro-

duction of approximations on the scheme, via discretizations

or through the use of discontinuous functions, introduces

disruptive phenomena in the system such as oscillations

and chattering behavior. In this paper we showed that Zeno

behavior can also be an outcome of modifications to the

theoretical fluid-flow scheme. This fact advocates caution

in the study of these schemes, and suggests the aid of

“guarantees”, both practical as well as theoretical, when

dealing with these complex networks.
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