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ABSTRACT 

 

Analytical Study of a Control Algorithm Based on Emotional Processing. 

(December 2005) 

Manik Chandra, B. Tech., Indian Institute of Technology Kanpur, India 

Chair of Advisory Committee: Dr. Reza Langari 
 
 
 

This work presents a control algorithm developed from the mammalian emotional 

processing network. Emotions are processed by the limbic system in the mammalian 

brain. This system consists of several components that carry out different tasks. The 

system level understanding of the limbic system has been previously captured in a 

discrete event computational model. This computational model was modified suitably to 

be used as a feedback mechanism to regulate the output of a continuous-time first order 

plant. An extension to a class of nonlinear plants is also discussed. 

 

The combined system of the modified model and the linear plant are represented as a set 

of bilinear differential equations valid in a half space of the 3-dimensional real space. The 

bounding plane of this half space is the zero level of the square of the plant output. This 

system of equations possesses a continuous set of equilibrium points which lies on the 

bounding plane of the half space. 

 

The occurrence of a connected equilibrium set is uncommon in control engineering, and 

to prove stability for such cases one needs an extended Lyapunov-like theorem, namely 



 iv

LaSalle’s Invariance Principle. In the process of using this Principle, it is shown that this 

set of equations possesses a first integral as well. A first integral is identified using the 

compatibility method, and this first integral is utilized to prove asymptotic stability for a 

region of the connect equilibrium set. 
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CHAPTER I 

INTRODUCTION 
 

Introduction 
 

Increased scientific attention is being drawn towards understanding the decision 

architecture of the Human Brain. Interest has been showed by neurophysiologists, 

cognitive scientists, artificial intelligence researchers, and control engineers. Till late, 

emotions were considered a negative trait by neurophysiologists and cognitive scientists 

and were considered a weakness of the human individual. Rational thought is considered 

to be objective and repetitive [1]. Repetition suggests the existence of a well defined 

mapping between input and outputs that shall be followed by the system and multiple 

instances would allow the decision system to reveal this hidden relation.  

 

On the other hand, Emotional thought is considered to be involuntary and there exists 

little conscious control over such thought. Nonetheless, these involuntary emotions can 

easily and frequently change conscious thought [1]. Thus under certain conditions, inner 

symptoms and cues are given more relevance than external stimuli. LeDoux [2] 

presented several examples where the emotional capability of a human subject was lost 

due to some accident/surgery; however cognition and other capabilities were unaffected. 

This indicates that the two systems, the emotional system and the cognitive system, are 

separate and also that the connection from the emotional to the cognitive system is far 

stronger than the reverse relation.  

______________ 
This thesis follows the style of IEEE Trans. of Systems, Man and Cybernetics. 
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However it has been understood lately that emotions actually help in learning. As an 

example [3]: one single occurrence of an emotionally charged-up situation remains in 

one’s memory for years to come, whereas the memory of some task that one performs 

daily would not be equally vivid and easily recalled. This actually questions the common 

perception that repetition ‘memorizes’ information into our brain. Through this example, 

one can also comment that sustained cognitive inputs were not able to develop the effect 

that one single internal cue can generate.  

 

Learning is a process by which a decision scheme's outputs are made more appropriate 

based upon experience. An appropriate decision is one which makes the attainment of 

the desired goal more probable [4]. Hence research in artificial intelligence is also 

aiming to understand the value judgments that emotions bring in. Situations such as an 

unmanned vehicle in a battle scenario need an artificial driver which would be able to 

emulate a human's decision mechanism and take the right decision in "real-time" and 

also incorporate information from previous exposures to similar scenarios. In fact, 

Samad mentions that the only intelligent systems that exist are biological and hence 

biomimicry is the first logical step to develop artificial intelligence and autonomous 

systems, unless one can think about and develop an autonomous system which is not 

inspired by a biological system [5]. Even the development of a non-biologically inspired 

autonomous system would involve the study of biological intelligence and search for its 

shortcomings. 
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The emotional system has also been attributed the task of what engineers would call 

multi-objective optimization. Without emotions, a human being would not be able to 

develop complicated ideas and thoughts. Without the emotional system, a human brain 

would only process and evaluate different stimuli for different objectives: the inter-

related evaluation and associations, which we call as context, are also provided by the 

emotional system. For example: compromises and strategies would not be possible 

without the relative emotional prioritization of various goals [1]. In fact this very 

prioritization demarcates species of higher intelligence from those of lower intelligence. 

Young reptiles have to fend for their own food and can be eaten by their own mothers, 

while primates are able to make compromises and provide nutrition to their young ones. 

 

The evaluation or prioritization that each individual allocates to the same set of stimuli, 

introduces individual traits. A particular individual may allocate more importance to a 

particular feature or emotion so that its decision would be strikingly different from 

another individual's. Again the outcomes of such previous situations would ensure the 

evaluations that the particular individual would make in the current situation. Note that 

such emotional prioritization in individuals is at a level higher than the varying ability of 

emotional prioritization in different species as shown in the example above. Albus [4] 

terms such individual prioritization as derived from the higher levels of the so-called 

Behavior Generating Hierarchy.  

 

 



 4

Background 
 

From a control engineering perspective, the task of learning and making decisions more 

appropriate is the purview of adaptive control. By bio-inspired adaptive control, one's 

attention is readily drawn towards Artificial Neural Networks. However, artificial neural 

networks model the synaptic connections and the Hebbian learning phenomena at the 

level of individual neurons, which allow incorporating complex information into the 

decision scheme where no conventional or mathematical input-output relations are 

available. One may also consider emotions to be intangible and un-modeled; and 

eventually, inside the human brain, they are represented in networks of neurons. We will 

explore, in a later paragraph that Artificial Neural Networks are relevant and are being 

used for some studies, but the habituation or sensitization of neurons is at a much lower 

level than the emotional mechanism. The brain emotional mechanism is a macro-level 

setup which would incorporate a very large number of neurons clustered into various 

components of the emotional system network. By looking at the emotional system, one 

is looking at and emulating the system level architecture that a biological intelligence 

scheme would have. One need not choose an artificial network of neurons to implement 

this system level design. 

 

Albus and Samad, as referred earlier, have individually proposed that the most logical 

and probable strategy towards understanding and implementing artificial intelligence is 

to understand and mimic the biological decision architecture present in the central 

nervous system of humans and other higher mammals. This higher mammalian central 
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nervous system has been perfected over millions of years of evolution and is very much 

the standard and de facto decision scheme against which our entire understanding of 

basic concepts of intelligence, learning and autonomy is defined and verified. 

 

Interestingly there exists a reverse inclination amongst a school of neurophysiologists 

who believe that the easiest way to understand the complicated functionalities of the 

brain and the central nervous system is to model them as adaptive control models, or as 

their artificial neural network equivalents [6], [7].  

 

The main interest that neurophysiologists had was to identify how the brain was able to 

handle tasks such as involuntary bodily processes, reflex action as well as voluntary 

motor coordination, cognition, etc. And why different parts of the brain were utilized for 

such purposes, as was experimentally discovered through innumerable 

electroencephalogram experiments on normal and special individuals. The main agenda 

was to identify modes in which the central nervous system’s components behaved. For 

example [7]: classifying the task as of adaptive signal processing or adaptive filtering. In 

fact, a more structural approach also exists which classifies the components acting as a 

scaling device, (which will be called a gain in control engineering terminology) vis-à-vis 

a time-delay device (a differentiator/integrator).  

 

Due to the complexity of the mammalian nervous system, this study is not limited to 

theorizing models [6] but intricate experiments [7] have also been used to validate these 
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models. And this, in a way, lends force to the earlier proposition that a clear 

understanding of natural intelligence is a logical step towards modeling intelligence and 

autonomy into artifacts. 

Feedback 
Motor 
Command 

 
 

Feedback Controller 

 
 

Controlled Object 

 
 

Inverse Model 

+
+

- 

+

Error 

Feedforward 
Motor Command

Motor 
Command

Figure 1: Feedback error learning scheme to acquire inverse model of the controlled 
object (as referenced in [7]).  

 

Barlow [7] presents a number of control models, developed by several researchers of this 

school of thought, to explain the architecture of the human brain, specifically the human 

cerebellum. Barlow summarizes the various attempts by several researchers over 

decades, and shows that the tendency is towards an adaptive control representation, due 

to the several features that Adaptive Control Theory offers, e.g. time-development of 

parameters, even under situations where limited prior knowledge of the system is 

available. Earlier non-adaptive models were proposed, but they suffered from several 

shortcomings which only adaptive systems could provide. Figure 1 [7] presents a 

schematic flow diagram of motor behavior acquisition in vertebrates. Any control 
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engineer would clearly identify this diagram as the closed loop diagram of an adaptive 

process.  Barlow also presents a number of Artificial Neural Network models of the 

cerebellum and other parts of the brain involved in complete circuits of some bodily 

task. It is also pointed that the use of Artificial Neural Networks is also due to its ability 

to manipulate weights of the various signal paths according to the error between the 

desired state and the current state.  

  
 
However the models presented therein are mainly explanations of how the human 

cerebellum acts like an adaptive controller while regulating bodily processes like posture 

and locomotion. A control mechanism based on the emotional setup in the brain is still 

not available. 

 

Apart from the role that emotions play, the human brain is known to be having several 

redundant connections in its setup. In fact calling them redundancies is not very 

appropriate as these alternate pathways provide robustness and also validate and support 

each other's outputs. Also all connections are not identical, some of them are fast 

connections, and often inferior in the quality of judgment they result in.  The Limbic 

System, which, due to experimental work by neurophysiologists, is considered to be the 

emotional processing mechanism in the mammalian nervous system, is made of two 

loops. The Orbitofrontal Cortex acts as an outer loop and receives information from the 

Amygdala, as well, which only receives sensory input. It is interesting to note that 

emotional responses can occur without the sensor information going into the higher 
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brain, where more complicated processing is undertaken [2]. Hence this loop structure 

provides for a mechanism where a quick decision from the inner loop can be actually 

modified by the outer loop. 

 

Hence an emotion-based control mechanism has still not been researched primarily due 

to two reasons: the role of emotions in the human brain was not understood and also due 

to the unavailability of a mathematical/computational model of the emotional learning 

mechanisms in the brain. 

 

However it should be clear from the outset that by an emotion based control mechanism, 

one does not mean an artificial emotion processing setup or an artificial agent that can 

generate emotions. Neither are we attempting an Artificial Intelligence problem. 

Artificial Intelligence and control systems have different goals. In fact, by itself, 

emotional learning and intelligence are not equivalent: emotional learning is only a small 

but crucial component of the entire concept of intelligence. Besides emotions, an 

intelligent being ought to display perception, reasoning, planning, self-consciousness 

besides other high level abstract features which have little to do with control engineering 

[3], [4]. 
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Overview of the thesis 

 
After having introduced and discussed the background necessary for this study in the 

preceding pages, we now give the outline of the document here. The next chapter 

discusses the core parts of the mammalian emotional network, which is called the 

Limbic System. It also discusses a computational model which was derived for cognitive 

studies, which is then suitably modified for application to a linear system. Chapter III 

discusses the unusual equilibrium nature of the system developed in chapter II and 

provides some definitions from stability theory and discusses the issues that need to be 

addressed for proving stability. Then in chapter IV we present the concept of first 

integrals related to differential equations which are of benefit to our task of proving 

stability.  Finally in chapter V an outline of a proof of stability of the system of ordinary 

differential equations is presented. And we conclude in chapter VI with a few remarks 

about the present developments and their limitations and probable future work. 
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CHAPTER II 

COMPUTATIONAL MODELING OF THE EMOTIONAL  

PROCESSING NETWORK 

 

The limbic system 
 
The emotional processing setup inside the mammalian brain is called the limbic system.  

The limbic system is closely associated with the functions of memory and learning, 

besides emotional processing and emotional learning. The limbic system evolved further 

into what is called the neocortex configuration [1]. The neocortex configuration was the 

system that allowed Homo sapiens to have an emotional life, including complicated 

combinations of elementary and even contradictory emotions. The size of the neocortex 

is considered proportional to the complexity and the breadth of the spectrum of the 

emotions the individual feels (or more correctly ‘emotes’). This occurs due to the 

existence of more neuron connections within the limbic system or the neocortex, which 

allow the processing of multiple and more comprehensive responses to the same set of 

stimuli. It is the occurrence of these varied responses in higher animals that marks them 

as intelligent and ‘higher’ than other animals whose central nervous systems lacks the 

limbic setup and hence can only process the inputs to fewer and often single responses. 

E.g. when threatened a lower animal will flee, whereas higher animals might behave 

along different plans. 
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The name limbic system was suggested by MacLean in 1952 [2] to a regrouping of a 

part called limbic cortex with other parts. The term ‘limbic’ in the limbic cortex had a 

structural implication, whereas MacLean’s sense was more function-oriented when he 

clubbed other related sub cortical regions to form the system. When this theory was put 

forth, the experimental sciences were not as well developed, so MacLean suggested that 

the primitive architecture of this setup leads to the irrationality, multiplicity and 

confusion about emotional behavior. However later on it emerged that the existence of 

several well-defined loops or processing paths actually provide this setup a sophisticated 

computational power which accounts for complicated emotional behavior. 

 

It should be clarified here that the current understanding of the limbic system and the 

neocortex was never static and has been disputed often and changes suggested 

periodically. LeDoux [2] in his book gives a good discussion about it. MacLean’s theory 

about the limbic system has not been able to generate sufficient experimental evidence; 

however some parts of this theory have not been discarded outright and have been 

accepted as being true though poorly organized. Hence usually a consensus is agreed 

upon which says that some limbic areas of the brain are related with certain emotional 

processes and such relations are generalized to say that the entire limbic system is 

related to emotional thought and processing. LeDoux goes further to even say that the 

classical limbic areas have been experimentally shown to not being dedicated to 

emotions, but the theory still persists, as an elementary proposition that links evolution 

and emotions. However, our emphasis here is engineering and for our engineering goals, 
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such a theory is good enough to pick up and try a few ideas that might not have been 

studied as yet and can lend important insight into engineering as well as the original 

biological context. 

 

The architecture of the limbic system 
 

 Figure 2: A generic view of the important components of the human limbic system. 
Other higher mammals also possess similar structure. 

 

The primary components of the human limbic system are shown above in Figure 2. The 

amygdala and the orbitofrontal cortex are the main components involved in emotional 

processing. Amygdala is the lobe where the stimuli from the sensory lobes are mapped 

to emotional responses [8]. It has been experimentally verified that this lobe undergoes 
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classical conditioning over the various stimuli presented to it. The output of this lobe is 

further transmitted to hypothalamus and other structures. The hypothalamus is 

responsible for generating the emotional reactions. The amygdala receives three kinds of 

input signals: first, the sensory information from the sense organs; second, the internal 

significance of the stimuli, and third, the mode of operation for the being itself. [8] As 

can be seen these signals mix external and internal cues to deliver complete information 

and context to the individual. 

 

The orbitofrontal cortex has been experimentally shown to possess an inhibitory role in 

the whole emotional processing network. The orbitofrontal cortex tries to reduce the 

strength of earlier established connections which are no longer appropriate as the goal or 

the context has changed. Hence one can say that the orbitofrontal cortex is responsible 

for the working memory of the individual which comprises of similar events in the past 

and a representation of the events and actions of the present situation. Hence the 

orbitofrontal cortex regulates the mapping of the stimuli to the emotional response 

occurring through the amygdala. This can be called habituation of the senses to some 

stimulus which though present repeatedly has little relevance to the main mode of 

operation or has delivered its information content to the brain and has therefore lost its 

importance status, and the focus has shifted after assimilating this information content. 

The Hippocampus is believed to provide the orbitofrontal cortex with information about 

the current context. The orbitofrontal cortex receives the same set of data as the 

amygdala, but it forms a sort of outer loop as it also receives the amygdala states.  
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Hence the orbitofrontal cortex tracks the difference between the system predictions and 

the actual reinforcer from the amygdala and learns to inhibit the system output 

proportionate to the mismatch. Different regions of the orbitofrontal cortex are 

functionally related to the different sensory stimuli and provide different levels of 

regulatory action to different stimuli. 

 

The thalamus acts as a relay organ between the cortical parts and the other parts of the 

network. It is believed that the thalamus alters the sensory stimuli with some emotionally 

charged stimuli. However this mechanism is not very clearly understood as yet [8]. For 

instance the olfactory stimuli do not pass through the thalamus.  

 

The hypothalamus is situated below the thalamus and mainly operates on the endocrine 

system and the pituitary gland. The pituitary gland is the all important center of the 

endocrine system where hormonal secretion is controlled which enacts through the 

different body organs, all the emotional processing undertaken by the limbic system.  

 

As was pointed earlier, the understanding of the limbic system is not accurate and 

equally convincing in all regards. Hence neurophysiologists are still actively engaged in 

refining and suggesting newer explanations of the emotional processing system. A keen 

reader with a background in neuroanatomy can find several other published resources 

similar to [2], [8], [9], [10]. 
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A computational model of the limbic system 
 

From an engineering viewpoint we need a computational model of the emotional 

processing network that can represent the system relationships of the individual 

elements. What the previous pages discussed was a descriptive model of the emotional 

processing network. It was a qualitative discussion about the various parts of the brain 

and more stress was given to make the functioning of the system easy to understand.  

Such a model presents the salient features only and serves well for an introduction. 

However little stress was laid upon how this understanding was attained or developed 

and one can easily be mislead with a model that appears to explain the underlying 

phenomena, but is flawed or may not be verified as exhaustively as it should be. 

 

By a computational model, one implies a model which can be worked with. It is not a 

description of the phenomena, but is rather an attempt to show it running. A 

computational model through this definition appears to be a model that can be 

represented as a set of equations that quantitatively define the phenomenon. From an 

engineering viewpoint, a computational model is the outcome of a system identification 

process: not only is the functional form identified but also the parameter values are also 

learnt. For the current aim of picking up the limbic system and using it for control 

engineering purposes, there is no need to identify the parameter values. The parameters 

would be set by the control engineering problem that one would like to study using this 

emotional processing model. 
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Morén and Balkenius [11], and Morén’s Ph.D. thesis [8] offer us a computational model 

of the limbic system. This model is certainly not complete and neither does it intend to 

equally capture all dimensions of the human limbic architecture. However it has been 

verified by the authors above to provide simulation results which match with 

experimental data and also agree with the descriptive understanding developed in the 

field of brain modeling. Hence such a model agrees with our definition of the 

computational model, that we just elucidated above. 
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Sensory Cortex 

Orbitofrontal 
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Thalamus 
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+ A 
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 Figure 3: A computational model of the limbic system [8]. 

 

Figure 3 above represents the Morén-Balkenius model in a simple, yet effective manner 

and which is good enough for our engineering aims. Primarily it can be seen that there 

are two input signals: namely the sensory input coming from the stimulus being 
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registered in the sense organs. The other signal called the Primary Reward is an internal 

signal. In fact, the understanding of this Primary Reward signal (also referred to as 

Emotional Signal ES, for reasons to be mentioned later) is inconclusive as yet: the exact 

source of this Emotional Signal ES is unclear, as of now it is considered to be a generic 

signal from the thalamus , hypothalamus and  the basal ganglia regions of the brain. The 

understanding of the main parts of the emotional processing network has not been 

mastered, as yet; hence our understanding of these regions is all the more primitive. In 

fact this lack of previous information is a good sign for innovation, and the generation of 

the reward signal will become important for our study within the next few pages.  

 

The functional relationships between the various signals are now defined. The signal 

entering the orbitofrontal cortex (OFC) and the amygdala blocks are called the SIi for 

Sensory Input, as processed (or filtered) through the sensory cortex and the thalamus. 

Note that here all quantities have a subscript, as inside the natural emotional processing 

network, there are several such loops, and all of the outputs from individual loops are 

summed up in the end to give the Model Output MO.  The amygdala and the OFC blocks 

are basically gains,  acting over the Sensory Input SI and these gains are 

updated by  depending on the emotional signal and other signals. The 

output signal from the amygdala is A

ii OCA GG  and 

ii OCA GG ΔΔ  and 

i and that from the orbitofrontal cortex is the OCi. 

The following lists the signal representations and the update rules that actually define the 

mathematics inside the emotional processing network, as given in [8]: 
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Here α, β are constants and represent rates of learning for the individual components. It 

should be noted that α and β remain the same over the various loops. A higher value of 

α, β means that the system values are updated faster, as in each iterative pass, the update 

is larger. Ro is called the internal reinforcer for the orbitofrontal cortex (OFC). 

 

Also note that the manner in which these equations are constructed, the updates or the 

learning in the amygdala gain GAi are monotonic: the amygdala gain GAi can only 

increase. However the OFC gain update rules are not monotonic. In the presence of a 

reward, the internal reinforcer represents the discrepancy between the reward and the 

amygdala outputs Ai minus the OFC output OCi. However if there is no reward, then the 

OFC behaves differently: the internal reinforcer is only the surplus of the amygdala 

outputs over the OFC outputs (OCi). That means that without a reward, the OFC gain 

GOCi is updated upwards if the amygdala responds more sharply than the OFC. Hence 

this leads to a setup in which OFC regulates the amygdala response. An interpretation 

can be worked out that the amygdala attempts to match the reward/emotional signal and 
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whenever it is unable to do so the orbitofrontal cortex (OFC) tries to fine-tune the 

system. Hence it can be said that the amygdala tries to learn the associations between the 

sensory and the emotional inputs. And the updates of amygdala are monitored by the 

OFC gains, which inhibit the amygdala if the response is more acute than necessary. 

Note that as the amygdala gain updates are monotonic, the amygdala gains are not 

inhibited, but the amygdala response is inhibited by increasing the OFC gain.  

 

The set of rules as defined by these equations is independent of time as of now. Morén 

[8] comments that the absence of time related effects is the shortcoming of this model, 

and all stimuli are considered to be pulses, lasting one clock period. 

 

One also needs to identify the Emotional Signal ES or the Primary Reward. Morén [8] 

outlines several theories for the Reward or the Reinforcing Signal. The Emotional Signal 

is of importance to the entire model. It is understood that this signal is generated 

internally & combines external sensory inputs with internally generated cues to develop 

a complete understanding of the situation: internal as well as external. The internal cues 

represent the goals of the individual against which it is comparing its performance as 

measured by the sensory inputs. Hence this signal is called the Emotional Signal. In fact 

if we pay attention to LeDoux’s definition [2] quoted below then it is more appropriate 

to call this signal as emotional signal, which is what we will follow in this thesis. 

“When information from the external world is integrated with sensations arising from 

within the body, we have feelings.”  
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 Previous work 
 

A number of attempts have been reported [12], [13] which utilize the above model for 

varied control engineering applications: e.g. control of MIMO and nonlinear systems. 

These articles used the Morén-Balkenius model as a feedback law to generate control 

input to the plants. However no reasoning into the probable causes for the applicability 

of this model for such tasks was presented. One should not implement any function as a 

feedback law: firstly, an underlying rationale for doing so should be available and 

secondly a method should be available in order to generalize the concepts introduced so 

that a controller can be designed for other problems as well. 

 

Also the examples presented were not in continuous time mode: these were Simulink® 

based simulations of continuous time descriptions of plants being fed back with a control 

scheme which was in discrete time mode. The gain development rules were written as 

difference equations, very close to what Morén presented.  

 

However these results present an initial interest in the area of using ideas from the 

emotional processing network for control engineering purpose. Interest in understanding 

biological systems and modifying salient features for application to artificial systems is 

the most prominent thrust in engineering research as of now. They have presented that 

the emotional processing network is a suitable candidate for feedback law and more 

work is needed to understand it. 
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Application to a linear system 

 

 

The Morén-Balkenius model is now adapted to be used as the feedback law for the 

regulation of a first order linear time invariant system given by: 

buayy +−= 11      (2) 

where y1 is the state, u is the control input and a>0. Figure 4 outlines this feedback law. 

Using the limbic system model, we propose the following linear feedback rule which 

uses the model output MO for a single set of amygdala and OFC (i.e. i=1 only)  

MO= A1 – OC1= (GA- GOC).SI    (3) 

as the control input u for the system. As the amygdala and the OFC gains are dynamic in 

nature, we define two more state variables, y2 and y3 representing GA and GOC  

Sensory Input 

Amygdala (GA) 

Sensory Cortex 

OFC   (GOC) 

Thalamus 

Emotional Signal (ES) 

Model Output (MO) 

OC 

Plant 

Plant  
Output

Control 
Input (u)

- 
 

+ 

y1 

u=MO 

A 

SI 

Figure 4: The plant in a closed loop with the controller. 
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respectively. We also define the Sensory Input SI to be the plant output or state y1. Note 

that we are allowed flexibility in deciding the SI and it can involve derivatives of the 

plant output as well, but for analytical simplicity we have chosen SI to be y1. Hence we 

can write the following: 

                                   ( ) 132 yyyu −=       (4) 

Now we define the Reward or the Emotional Signal ES as a combination of the external 

signal x1 (external to the controller) and the internal signal u. 

uwywES .. 211 +=                                                            (5) 

The weights w1 and w2 help in defining the relative importance that has to be given to 

either signal. Actually the external signal should be the error, but as this is a regulation 

problem, the error is identical to the output. From a biological perspective, by mixing 

these two signals we are attempting to incorporate the separate information of what 

needs to be done and what can be done at the present situation. 

 

The update rules are rewritten to relate the time derivatives of the gains with the same 

functional form as in the emotional processing network. This is valid as it can be 

understood that the discrete updates are occurring at a high frequency and the sampling 

time can be absorbed into the constants. Also we remove the max operator as well, for 

analytical simplicity. Further work shall show that for continuous time development the 

maximum operator is not required as such. 
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Hence (1) is simplified to yield the following set of equations:  

OCAMO

ESOCASI
dt

dG

AESSI
dt

dG
SIGOC

SIGA

OC

A

OC

A

−=

−−=

−=

=
=

).(.

).(.

.
.

β

α             (6) 

The above equations capture the supervisory nature of the orbitofrontal cortex (OFC) in 

an elementary sense. In the presence of a nontrivial Sensory Input SI, if one of the gains 

GA or GOC stops evolving, i.e. when the Emotional Signal ES equals the amygdala output 

A or when the Model Output MO equals the Emotional Signal ES, then the update of the 

other gain depends on the magnitude of the OFC output OC. 

 

Hence after incorporating (4) and (5) we write the update rules as: 

( )( ) 2

1132222 1 ywywywy +−−=α                                               (7) 

( ) ( )( ) 2

1132223 11 ywywywy −−−−= β                                       (8) 

Hence (2), (4), (7) and (8) make up the closed loop system. We can see that the feedback 

law is linear in terms of the plant output but the gains are time varying and these 

variations are nonlinear in plant output. 

For further analytical simplicity if we define x1 as y1
2, x2 as (y2-y3) and x3 as y3 then the 

above system of equations can be written as: 

( )
( )( ) ( )

( )
1

122

1322

2

3

2

1

1
1
2

x
wxw

wxxw
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x
x
x
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d
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⎥
⎥
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⎤
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⎢
⎢

⎣
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−−
++−−+

−
=
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⎥
⎥
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⎤
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⎢

⎣

⎡

ββ
βααβα                          (9) 
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Here  as it is a squared quantity. This is the form of the equations that we will 

work with. This set of equations appears very simple: such equations are called bilinear. 

The right hand side is linear in  and also linear in combinations of  and , but is not 

linear in totality. 

01 ≥x

1x 2x 3x

 

As an extension, a nonlinear plant can also be worked upon and a set of equations 

similar to (9) above can be developed. For a family of systems nonlinear in the state y1 

and affine in the control u given by  

buyfyy += )( 2
111       (10) 

a development similar to that undertaken above will result in a set of equations given by: 

( )( )
( )( ) ( )

( )
1

122

1322

21

3

2

1

1
1

2
x

wxw
wxxw
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x
x
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dt
d
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⎥
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⎢
⎢
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⎡

−−
++−−+

+
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ββ
βααβα    (11) 

where . ( ) ( )2
11 yfxg =

It can be seen that the linear case is the simplest form of this family of plants. 

 

The set of equations (9) is in a bilinear form. The most notable system of this form is the 

Volterra-Lotka model [14] of interacting populations which is slightly different from (9) 

and is written in terms of the various populations xj  (j=1,2,3…n) as: 

j
ji

iij xxax ⎟
⎠
⎞⎜

⎝
⎛= ∑

≠

       (12) 

This equation (12) is also bilinear but the rate of each population depends linearly on 

itself and not on one variable x1 as in (9) or (11). This is a crucial difference and makes 
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these equations categorically different from each other. The Volterra-Lotka model has 

been studied extensively and has been developed into a canonical format [15], and 

varied nonlinear analyses have been applied to it [16], [17], [18] in order to study 

features of practical issues like endemics, epidemics, vaccination projects, predator-prey 

models and other related cases. A variant of the Volterra-Lotka format was used by [19] 

to model the spread of a communicable disease in an isolated population which can be 

called a 2 variable analog to our system (9). 

If x1 represents the number of infected individuals and x2 represents the number of 

uninfected or ‘susceptible’ individuals, then the rate at which the infected population 

changes is due to the interaction between the two groups bx1 x2 and the number of people 

dying due to the disease -ax1. Hence: 

2111 xbxaxx +−=             (13a) 

Similarly the rate of change of the number of uninfected individuals is the interaction 

term bx1 x2. Hence we have: 

211 xbxx −=             (13b) 

It can be seen that (13) possesses an equilibrium set given by S= {x∈ 2: x1 =0} which 

intuitively means that the spread of the disease is stable when there is no disease, 

irrespective of the size of the total population. 
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CHAPTER III 

EQUILIBRIUM SETS, INVARIANT SETS AND STABILITY 
 

A qualitative understanding of the system 
 

The nature of the solution of a system of differential equations can be understood from 

its nullclines and equilibrium points. We rewrite our system of equations (9) below for 

convenience after substituting a, b, c…g for the various coefficients in (9): 

0                11

2
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3

2

1
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⎥
⎥
⎥

⎦
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⎢
⎢
⎢
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⎡

+
++

+−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
xx

gfx
edxcx

bxa

x
x
x

dt
d    (14) 

From (14) one can also derive an informal understanding of the dynamics of the set of 

equations. Firstly x1 is the square of the plant output, hence as the output is regulated the 

rates of development of the gains becomes slow once the plant output is smaller than 

one. One can suitably scale the plant output to take advantage of this feature. In the 

above, we did not take into account the change due to the development of x2, and x3 as 

denoted by the quantities in the parentheses in (14). The parentheses contain the 

nullclines of the system. Any trajectory through a sample point {x1, x2, x3} in the 3-space 

of xi’s shall move rapidly if it is away from these nullclines. As this sample point 

approaches one of the nullclines, the corresponding xi slows down and stops as it touches 

the nullcline, but as other rates are non-zero, the trajectory moves ahead. 
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Another concern due to time-varying gains might be the occurrence of trivial feedback 

gain which would result in trivial control input even in the presence of non-zero 

measurement. However in (14) x2 represents the feedback gain and the arrangement of 

the nullclines again assures that a trajectory shall not get trapped in the plane represented 

by x2=0 and shall cross it. Hence the feedback gain will be zero momentarily which can 

be allowed for stable plants, but will be undesirable for unstable ones. 

 

We find that the entire plane 01 =x comprises of equilibrium points of the system (14). 

There cannot be other equilibrium points of the system without implying  and  are 

identical. The occurrence of a set of non-isolated equilibrium points is unusual for 

control engineering problems, which usually have a few isolated equilibrium points. The 

occurrence of the equilibrium set can be attributed to the dependence of each equation 

on . This is the crucial difference that made our set of equations different from the 

Volterra-Lotka equations (12), which have a trivial equilibrium point at the origin and 

another (if possible) at the intersection of the nullclines

1x 3x

1x

0=∑
≠ ji

ii xa . Hence the equations 

appear similar in form but they are of remarkably different nature.  

 

The occurrence of an equilibrium set warrants the extension of standard definitions of 

stability and the theorems that are used to prove stability of systems in the presence of 

isolated equilibrium points which are presented next. 
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Few definitions 
 

The occurrence of equilibrium sets in control engineering problems is unusual. However 

extensions of most concepts associated with isolated equilibrium points are available. 

 

For the dynamical system represented by the following ordinary differential equation 

)(xfx =     ∈∀x n   (15) 

we present the following definitions [20]: 

 

DEFINITION 1: The subset Γ of an equilibrium set S= {x∈ n: f(x) =0} of the system of 

equations (15) is called a connected branch of S, if for any  x1, x2 ∈ S there exists a 

continuous curve in Γ connecting x1 and  x2, and if there exists a positive number δ such 

that there is no other equilibrium point of the system except Γ itself in the open 

neighborhood B(δ, Γ)= {x∈ n: d(x, Γ)< δ} of Γ, where d(x,Γ)= inf y∈Γ ||x-y|| denotes the 

distance from x to Γ.  

 

DEFINITION 2: The connected branch of equilibrium set Γ is stable if for any x0=x(t0) 

and any scalar ε>0 there exists a δ>0 such that if d(x(t0), Γ) <δ then d(x(t), Γ)<ε for t>t0.  

 

DEFINITION 3: The connected branch of equilibrium set Γ is asymptotically stable if in 

addition to being stable it has the property that d(x(t), Γ) →0 as t→∞ if d(x(t0), Γ) <δ. 
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Invariant sets are a more generic concept and they incorporate equilibrium sets as a 

special subset. We need the concept of invariant sets as stability results for non-isolated 

equilibria are defined in terms of invariant sets. We present the following definitions 

from [21]: 

 

DEFINITION 4:  A set M is invariant with respect to a dynamical system (15) if 

x(0) ∈ M  ⇒  x(t) ∈  M,  ∀ t ∈ . 

 

DEFINITION 5:  A set M is positively invariant with respect to a dynamical system 

(15) if 

x(0) ∈  M  ⇒  x(t) ∈  M,   ∀ t>0. 

 

Hence all equilibrium points and sets are covered in invariant sets. However, motion is 

allowed within the invariant sets (e.g. limit cycles and other closed paths) whereas 

equilibrium sets are defined by the states where the time derivative , and no motion 

is allowed. 

0=x
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Stability in the presence of equilibrium sets 
 

Lyapunov’s methods are the standard method to prove stability of dynamical systems. 

However Lyapunov’s methods are not applicable to our system of interest (14). 

Lyapunov’s theorem (or Lyapunov’s direct method) requires the candidate Lyapunov 

function to be positive definite in the region of interest, but the existence of non-isolated 

equilibrium points poses problems in this regard. Hence this method is not applicable to 

cases with non-isolated equilibrium points. Lyapunov’s indirect method (if applicable) 

also fails for our problem as the matrix that results from linearization about any 

equilibrium point possesses zero eigenvalues and the indirect method fails to comment 

about such cases. 

 

To prove stability for cases with equilibrium sets one uses LaSalle’s invariance theorem 

which is stated below [21]: 

 

THEOREM 1: Let D ⊂ n be a domain for the system of equations (15). Let Ω⊂ D be a 

compact set that is positively invariant with respect to (15). Let V: D→  be a 

continuously differentiable function such that ( ) 0≤xV in Ω. Let E be the set of all points 

in Ω where . Let M be the largest invariant set in E. Then every solution of (15) 

starting in Ω approaches M as time t→∞. 

( ) 0=xV
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Note that LaSalle’s invariance principle holds for a more general case of the occurrence 

of invariant sets, which include connected branches of equilibrium sets and/or limit 

cycles.  

 

LaSalle’s theorem generalizes Lyapunov’s theorem for invariant sets, but it also relaxes 

the need of the positive definiteness of the Lyapunov function V(x) and the negative 

definiteness of  for asymptotic stability as required in Lyapunov’s Theorem. 

The compact set also provides a notion of the domain of attraction for the invariant set as 

well, which is not given by Lyapunov’s theorem. 

( ) 0=xV

 

LaSalle’s result does not provide any help in guessing the Lyapunov-like function V(x). 

On the contrary the relaxations dilate the set of possible Lyapunov-like functions. In fact 

one is confronted with another issue of finding a compact set which is positively 

invariant to start with. Finding a positively invariant compact set involves discovering 

surfaces that the flow shall not cross. In this regard, one needs to fall back on the nature 

of the solution. But as one does not know the exact solution of most sets of differential 

equations one has to devise a workaround which is the subject of the next chapter. 
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CHAPTER IV 

FIRST INTEGRALS OF DIFFERENTIAL EQUATIONS 
 

What are first integrals? 
 
DEFINITION 1: For the ordinary differential equation system  

  )(xfx =    ∈∀x n   (16) 

a continuously differentiable function defined over a domain D ⊂ n, I: D →   is a first 

integral if I(x) is non-constant over the field and the time derivative . Hence a 

first integral can be considered a quantity which is conserved over the motion governed 

by (16) in the domain D. Note that time dependent first integrals also exist, and remain 

constant over the solution of the system. 

0)( =xI

 

Any constant is a trivial first integral. A system that has a first integral on the whole n is 

called a conservative system. It is not necessary that all ordinary differential equations 

possess a first integral [22]. At the same time a system of equations might have multiple 

independent first integrals as well. If I(x) is a first integral then I(x)+c, c.I(x), log(I(x)) 

etc. are called dependent first integrals. ∈c  is a constant. 

 

A first integral is useful because it connects its level curves and trajectories of the system 

[23]. A trajectory will lie completely on a level surface of a time-independent first 

integral. Hence each level curve of the first integral is a union of trajectories. Uniqueness 
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of the solution assures that the union is disjoint. In fact, for systems in 2 any trajectory 

is a first integral. Hence the entire phase portrait can be identified from the level surfaces 

of the first integral. 

 

Need of first integrals 
 

Our interest in first integrals is due to two reasons. Firstly, the property that they remain 

constant over time can help us in finding Lyapunov-like functions. The use of first 

integrals to prove stability through Lyapunov’s theorem and its corollaries is well-

established [24]. Note that using a first integral for a Lyapunov-like function V(x) means 

that we are looking for a stricter condition where the time derivative  always 

than what is necessary for LaSalle’s theorem . This might make the task of 

identifying suitable Lyapunov-like functions all the more difficult.  

0)( =xV

0)( ≤xV

 

However extensions to cases which require LaSalle’s theorem call for and utilize a 

second property: that a trajectory cannot cross a level curve of the first integral. This 

provides us with a method to identify surfaces which can be used for constructing 

positively invariant sets by using a higher level curve as one of the boundaries of the set 

in question. 

 

Finding Lyapunov and Lyapunov-like functions has always been an intriguing task and 

till date intuition and experience are the surest tools for this purpose. But we encountered 
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earlier that a system of equations can have multiple first integral. Hence if we have a 

method to find first integrals, then this tradeoff for a stricter situation can help us. 

 

A method to find first integrals 
 

A general method to find first integrals for any kind of ordinary differential equation does 

not exist. However a method for equations in 3 exists. Note that this does not imply that 

all differential equations in 3 will have at least one first integral. This method can find a 

first integral only if it exists. 

 

The method to find first integrals for a system of ordinary differential equations is called 

the compatibility analysis and is based on Frőbenius Integrability Theorem [22]. It allows 

a method to find conditions on the parameters of a vector field for the existence of time-

independent first integrals and provides an explicit method for their computation. The 

calculations involved are quite involved and the computation nearly always requires a 

computer algebra system. For our calculations we have used the commonly available 

technical software Maple. We introduce the method in the following pages, but first we 

discuss some preliminaries [22] on the next page: 
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DEFINITION 2: For a system of differential equations (16) a differentiable vector field is 

defined as: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣
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∂
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⎥
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⎦

⎤

⎢
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⎢

⎣

⎡
=∂=
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n x

x1
1

xf .
f

f
.f  δ      (17) 

Note this definition is analogous to the definition of a Lie Derivative. 

 

DEFINITION 3: The Lie Bracket between two vector fields is defined as: 

[ ] fδgδgf, gf −=      (18) 

 

DEFINITION 4: Two vector fields , in fδ gδ 3 are called compatible if: 

0]}gf,[g,f,det{ =      (19) 

 

THEOREM 1 (Frőbenius) [22]: Assume that the two vector fields  and  in fδ gδ 3 admit 

the same non-trivial globally defined time-independent first integral I(x), that is, 

0.g.f xx =∂=∂ II         

Then the three vector field f, g and [f,g] are linearly dependent for all points x∈ 
3, which 

implies:  

0]}gf,[g,f,det{ =      (20) 
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The compatibility condition implies that the two vector fields are considered parallel (at 

least locally). Hence a local first integral to one system is admissible to the other as well. 

 

The algorithm to find first integrals comprises of the following steps: 

1) Find a linear vector field compatible with  gδ fδ

2) Find two first integrals u(x), v(x) of . gδ

3) Compute 
).f(
).f(),(

v
uvuG

x

x

∂
∂

=  

4) Find a first integral I=I(u, v) of the first order equation ),( vuG
dv
du

=  

 

Essentially for a given , this method finds a vector field with known first integrals 

for which the compatibility condition with is satisfied. Then it finds out first integrals 

for the vector field and using Frobenius’ theorem it tries to find out a common integral 

which is applicable to the original system. Since the vector field  is a linear vector field 

in 

fδ gδ

fδ

gδ

gδ

3, it is relatively easier to find out first integrals for .  gδ

 

One of the important points in this method is the fact that G(u,v) is a function of u, v only, 

which follows from the compatibility condition and the fact that G(u,v) itself is a first 

integral of f. The result of the last integration: I(u,v)=I(u(x),v(x))  is a first integral which 

is common to both vector fields, and is the first integral that we have been looking for. 

 

 



 37

The compatibility condition method is advantageous over other methods in the fact that it 

is constructive: it does not reject candidate functions, but it yields a first integral if the 

system of equations permits one. Also this method can find transcendental first integrals 

as well, unlike other methods. 

 

Finding a first integral to our problem 
 

Our aim is to find a first integral (if it exists) for the following system of ordinary 

differential equations 
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Assume that there exists a linear vector field  corresponding to the system of equations 

in 

gδ

3: 

)(xgx =      (22) 

Where g(x) depends linearly on x through a 3x3 matrix L with constant coefficients 

 xg(x) L=        

The compatibility condition between  and  attains the form of: fδ gδ
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xxxRxLxLxLfxgx
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,       ∀x∈ 
3  (23) 

In the above expression, P, Q, R are quadratic homogenous polynomials defined by: 

[f,g]= (P,Q,R)      (24) 
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The compatibility condition (23) is a polynomial of fifth degree in x and of second degree 

in the unknowns Lij (i,j=1,2,3). On collecting the coefficients of terms with same power 

of x and equating them to zero we get a set of eighteen nontrivial simultaneous equations 

quadratic in Lij which are given on the following pages: 

a f L21
2 + e f L11 L21 - d g L11 L31 - a d L31 2 - b e L21 L31 - c g L11 L21 - a c L21 L31 +  

b g L21
2=0 

 

b d L31
2 – d f L11 L31=0 

 

d f L11 L21 - b d L21 L31=0 

 

f 2L11 L23 – f 2L13 L21 + c 2 L12 L31 - b c L22 L31 - c f L12 L21 - c 2 L11 L32 - c f L11 L33  

- b f L23L31+ c f L13 L31 - d f L12 L31 + c f L11 L22 + b c L21 L32 + b f L21 L33 + 2 b d L31 L32  

- d f L11 L32=0 

 

d2 L12 L31 + d f L13 L21 - b d L21 L33 – b d L23 L31 - d2 L11 L32 + d f L11 L23=0 

 

2 b d L31 L33 - 2 b d L22 L31 + 2 d f L11 L22 - 2 d f L11 L33 - 2 c d L11 L32 + 2 c d L12 L31=0 

 

b g L21 L33 - 2 b e L22 L31 - b g L23 L31 - 2 a c L21 L32 + 2 a f L21 L22 - a f L21 L33 + a f L23 

L31- 2 a d L31 L32 - 2 c e L11 L32 - c g L11 L33 + 2 c e L12 L31 + c g L13 L31 - d g L11 L32- 2 c 
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g L12 L21 - d g L12 L31 + 2 b g L21 L22 + 2 e f L11 L22 – e f L11 L33  + e f L13 L31+ 2 f g L11 L23  

- 2 f g L13 L21=0 

 

-2 d g L11 L33 – b e L23 L31 - a d L21 L32 + 2 a f L21 L23 + a d L22 L31 - a c L21 L33 - a c L23 

L31- 2 a d L31 L33 - 2 d e L11 L32 - b e L21 L33 – c g L13 L21 - d g L12 L21 + d g L11 L22 - c g 

L11 L23+ 2 b g L21 L23 + 2 d e L12 L31 + e f L11 L23 + e f L13 L21=0 

 

- e 2L11 L32 + e 2L12 L31 + g 2L11 L23 - g 2L13 L21 - a e L21 L32 – a g L21 L33 + a e L22 L31+ a g 

L23 L31 + e g L11 L22 - e g L12 L21 - e g L11 L33 + e g L13 L31=0 

 

-f 2 L13 L22 - c f L12 L33 + b c L11 L32 + b d L32
 2 + f 2 L12 L23 - d f L12 L32 - b c L12 L31 - b 2 

L21 L32+ b f L22 L33 + b f L21L12 + b 2 L22 L31 + c f L13 L32 – b f L22 L11 – b f L23 L32=0 

 

d f L13 L23 – b d L23 L33 - d 2 L13 L32 + d 2 L12 L33=0 

 

-b 2 L21 L33 - c 2 L13 L32 + c 2 L12 L33 + 2 b d L32 L33 + b 2 L23 L31 + b f L21 L13 – b f L23 L11+ 

b cL23 L32 - b c L13 L31 + b d L11 L32 - b d L12 L31 + b c L11 L33 + d f L12 L22 - 2 d f L12 L33 

-c f L12 L23 + c fL13 L22 - b c L22 L33 - b dL22 L32=0 

 

a fL22
2 - a d L32

2 + b g L22
2 + b gL21 L12 – 2 a b L22 L31 – b g L22 L11 + b g L22 L33  

+ 2 a b L21 L32- b gL23 L32 + b e L11 L32 - b e L12 L31 + a f L22 L11 – a cL22 L32 – a fL22 L33 - 

a L21 f L12 + a L23 f L32 - a c L11 L32 + a c L12 L31 - c L12 L33 g + c L13 g L32 + 2 f L12 L23 g - 

2 f g L13 L22- d g L12 L32 – c g L12 L22 + e f L12 L22 – e f L12 L33 – b e L22 L32 + e f L13 L32=0 
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b d L33
 2 + 2 d fL13 L22 - 2 b d L22 L33 - b d L13 L31 - d f L13 L33 + b d L11 L33 + 2 c d L12 L33- 

2 c d L13 L32=0 

 

-a d L11 L33 + b g L23
 2 + a d L13 L31 + a d L22 L33 - a d L33

 2 + e f L13 L23 + a f L23
 2  

- a d L23 L32 - 2 d e L13 L32 + d g L13 L22 - b e L23 L33 - c g L13 L23 - d g L13 L33 - d g L12 L23 

- a c L23 L33+ 2 d e L12 L33=0 

 

-2 a b L23 L31 + a c L13 L31 + b g L21 L13 - b g L23 L11 + b e L11 L33 - b e L13 L31 + 2 a b L21 

L33+ 2 e f L13 L22 + 2 a f L22 L23 - a f L21 L13 - 2 a d L32 L33 + a f L23 L11 - 2 a c L23 L32 - a c 

L11 L33 - 2 c g L12 L23 - a d L11 L32 - 2 b e L22 L33 + a d L12 L31 - 2 c e L13 L32  

+ 2 b g L22 L23 - 2 d g L12 L33 + 2 c e L12 L33=0 

 

a 2 L22 L31 - a 2 L21 L32 + g 2L12 L23 - g 2L13 L22 + a e L12 L31 + a g L22 L11 – a g L21L12 

+ a gL23 L32 – a g L22 L33 - a e L11 L32 – e g L12 L33  + e g L13 L32=0 

 

a 2 L23 L31 - a 2L21 L33 - e 2L13 L32 – a e L23 L32 + a e L22 L33 – a g L21 L13 + a e L13 L31 

+ e 2 L12 L33 - e g L12L23 + a g L23 L11 - a e L11 L33 + e g L13 L22=0 

(The complete set of eighteen equations shall be referred to as equation (25).) 

 

The above equations were solved using the Maple computer algebra system to yield 

several nontrivial solutions, of which the following was chosen due to its symmetry for 

further calculations: 
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0     where
00
00

00

L 2 =−−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= dcKfKK
f
b

λ
λ

λ

         (26) 

 

Hence the compatible linear vector field is given by: 

xx L=       (27) 

where L is given by (26) 

 

For the above system, the following were identified as first integrals: 

( ) 13x fxbxu −=      (28a) 

( ) 13x Kfxbxv −=      (28b) 

 

Processing further we have the following first order equation in u and v. 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
+

+
afbg

afKbeu
afbg

bdv
afbgK

bd
du
dv   (29) 

 

The solution (trajectory) of the above first order equation in u and v shall be a first 

integral as well: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −+−= 1332 exp.)x( x

b
fxAegK

d
KKxxI   (30) 

where 
)(

  and 
afbgK

bdAd (Kf-c)K
+

==  
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The above is a first integral to our system of differential equations (21). There might exist 

other first integrals arising from the other nontrivial solutions of (25) as well.  

 

Now in the next chapter we shall present a method which shall utilize a first integral for 

proving stability for systems of ordinary differential equations which possess a connected 

equilibrium set. 
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CHAPTER V 

PROOF OF STABILITY 
 

Outline 
 

Our system of differential equations (14) possesses a connected branch of equilibrium set 

on the x1=0 plane. Hence this necessitates the use of LaSalle’s theorem. For using 

LaSalle’s theorem we need a method to develop positively invariant sets in the region of 

interest. This requires a method to identify surfaces which the flow of the equations will 

not cross in positive time. For this we rely on the understanding of the nature of the flow 

that can be derived from the form of the equations without attempting to solve them and 

on the first integrals that were developed using Frobenius’s compatibility result.  

 

Once the positively invariant sets are identified, the problem is not solved: as there are 

nullcline planes in the region of interest where the nature of the flow and hence the nature 

of the surfaces shall change, resulting in the fact that the positive invariance of the set 

might be lost. Hence there might be trajectories where the existence of such a positively 

invariant set cannot be shown. For such cases, we again rely on the nature of the flow and 

use a union of such sets to develop a superset which would contain the trajectory from its 

starting point to all future time, hence ensuring positive invariance. Once positive 

invariance is ensured, LaSalle’s theorem ensures that the trajectories converge onto the 

invariant set which comprises of a section of the equilibrium set contained in the 

positively invariant set developed above. 
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A 2-dimensional example 

Before we discuss the full fledged 3-dimensional case represented by the set of equations 

given by (14), we shall first consider a 2-dimensional problem to understand the basic 

steps involved. For this purpose we consider a problem analogous to the spread of an 

infectious disease in a population, given by (13) in chapter II. Such a 2-dimensional 

problem can be derived from (14) by putting 03 ≡x  in it and rewriting it as:  

( ) 0                    ≥∀−= yycxay    (31a) 

bxyx =       (31b) 

Consider that a, b, c are all positive. One can easily see that the above set of equations 

has the x-axis as its equilibrium set. One can also divide (31a) by (31b) and solve for the 

trajectory passing through any 2 generic points (xi, yi) and (xf, yf): 

i
ii

f
ff x

b
c

b
x

a
yx

b
c

b
x

a
y

lnln +−=+−     (32) 

One can observe from various such trajectories that ( ){ }0,:, =≤= ycxyxS  is the stable 

set of equilibrium and ( ){ }0,:, =≥= ycxyxU  is the unstable set.  

 

We can also show this analytically using LaSalle’s Theorem: 

 Consider the domain , where we choose the following Lyapunov-like function: 0≤x

( )
b
x

a
yyxV −=,      (33) 
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As y is positive, the time derivative of this Lyapunov-like function is negative 

throughout: 

( ) 0, ≤−= cyyxV      (34) 

Hence if we choose the following compact set (see figure 5) 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

>≤⎟
⎠
⎞

⎜
⎝
⎛ −=≥≤=Ω constant a is 0  ,, ,0,0:, KK

b
x

a
yyxVyxyx  (35) 

then it is positively invariant, as V(x, y) is radially unbounded. (See [21] for explanation) 

Now we find the set E where the time derivative of V(x,y) is zero is given as: 

( ) ( ){ 0 ,,:, }=Ω∈= yyxyxE      (36) 

We can also see that E is an invariant set as well, hence we have: 

( ) ( ){ }0 ,,:, =Ω∈== yyxyxEM     (37) 

Therefore due to LaSalle’s theorem, any trajectory starting in the set Ω shall approach M 

as time tends to infinite. 

 

Now consider the region with positive x. To construct a positively invariant set, we 

choose a starting point (xo, yo) where xo≤ c as any trajectory starting with xo > c will not 

be bounded. Now we choose yo such that the trajectory passing through (xo, yo) also 

passes through (0, c) which implies: 

c
b
c

b
cx

b
c

b
x

a
y

o
oo lnln +−=+−     (38a) 
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x=
c 

x 
y  (xo, yo) 

x=
x o

 

Ω+Ω 

(y/a)- (x/b)=K 

Figure 5: The construction of positively invariant sets in 2-dimensional problem. By 
increasing K and by choosing xo sufficiently closer to the x axis, one can 
cover the entire region of attraction. 

 

 

Now consider the region Ω+ in figure 5 bounded by (38a) and 

cxxo ≤≤      (38b) 

0≥y       (38c) 

This set Ω+ is a compact and positively invariant set. We now choose the following 

Lyapunov-like function over Ω+ whose time derivative is zero throughout Ω+: 

( ) x
b
c

b
x

a
yyxV ln, +−=     (39) 

Hence in this case, we have E= Ω+. And the largest invariant set in E is given as: 

( ) ( ){ }0 ,,:, =Ω∈= + yyxyxM    (40) 

Hence, by LaSalle’s theorem, any trajectory starting within Ω+ shall eventually approach 

the largest invariant subset M. By choosing a sufficiently large K and xo arbitrarily close 

to the y-axis one can show that that the set ( ){ }0,:, =≤= ycxyxS  is stable. 
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 Construction of positively invariant sets for the complete problem 
 

Now we consider the complete 3-dimensional problem given by (14). We shall now 

discuss how to build a positively invariant set for (14) which is reproduced below: 

0                11

2

32

2

3

2

1

≥∀
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
++

+−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
xx

gfx
edxcx

bxa

x
x
x

dt
d    (41) 

 

On observing (39), one notes that, as x1 is a positive quantity throughout, the sign of the 

right-hand-side of the equations and hence the flow is identified by the planes: 

02 =− abx           (42a) 

032 =++ edxcx       (42b) 

02 =+ gfx           (42c) 

The planes represented by (42a), (42b), (42c) and x1=0 are the nullclines for system (41). 

Henceforth, we shall refer to (42a), (42b) and (42c) as the nullcline planes, though the 

complete nullcline comprises of these planes and the x1=0 plane. Interestingly, these 

nullcline planes are independent of x1 and depend on only the states that have been 

introduced by the feedback loop. Hence we need to look at only the x2- x3 planes (i.e. x1 = 

any positive constant surface) to identify the flow of the 3 variables. Our re-declaring 

variables while writing (9) has ensured that the planes (42a) and (42b) are parallel to one 

of the axes. Looking at the original equations (9), it is clear that (42b) and (42c) intersect 

on the x2 axis. The exact positioning of the point depends on the user-defined values of  
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-a
+

bx
2=

0 

g+
fx

2=
0 

x2 

x 3
 

 

Figure 6: The nature of flow represented in any plane x1=positive constant. The blank 
circle shows increasing x1, while the solid circle shows decreasing x1. The 
horizontal arrows show the direction of x2 and the vertical arrows are for x3.  

 

 

 

w1 and w2 in (5). We can always choose the parameters to ensure that planes represented 

by (42b) and (42c) intersect on that side of (42a) where ( ) 0121 <−= xabxx . 

 

Figure 6 shows the three planes, as straight lines as they would appear on any x2 - x3 

plane. Equation (42a) defines the boundary between the regions where x1 increases or 

decreases: the blank circle in the figure above represents motion of x1 coming out of the 

plane of the figure, i.e. increasing, while the solid circle represents a decrease in x1 and 

hence motion into the plane of the figure.  The horizontal arrows in Figure 5 represent the 

direction in which x2 would move, and similarly the vertical arrows represent the 

direction for x3.  
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-a
+

bx
2=

0 

g+
fx

2=
0 

x2 

x 3
 

 

Figure 7: Construction of compact positively invariant sets in the various regions 
demarcated by the nullcline planes in the 3-dimensional problem. Only the 
“footprint” on the x1=0 plane is shown above. 

 

 

The direction of motion of x2 is determined by the side of the plane represented by (42b) 

on which the sample point lies. Motion along x2 shall be zero on the plane represented by 

(42b). Similarly as a sample point crosses the plane represented by (42c) the direction of 

motion of x3 is also reversed. Note that a different choice of parameters might result in 

other configurations of the arrows. However the analysis will be on similar lines as 

presented here. 

 

Now if we imagine planes perpendicular to the figure but along the arrows of the 

crosshair, then any trajectory starting from a point between the arrows will never intersect 

these planes, as the direction of the flow of the system are away from these planes. Now 
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consider a trajectory starting from xx =)0(  where x  lies to the left of the plane given by 

(42a) in Figure 6. Consider the following set in non-negative x1 half space of 3 

⎭
⎬
⎫

⎩
⎨
⎧

====
=Ω

)()( and  , 0,
 planes by the bounded and includingregion 

33221 xIxIxxxxxx         (43) 

As x1 is decreasing on this side of the plane represented by (42a), and the first integral 

I(x) is continuous, it assures that I(x) and each of the three planar boundaries in (43) have 

a continuous intersection. This ensures that each boundary is closed and the set is also 

closed.  

 

It is difficult to show the above 3-dimensional sets on paper, but we represent their 

footprint on the x1=0 plane as shown in Figure 7 above: the lines along the cross hair 

pictographically represent the planar boundaries and the smooth curve represents the first 

integral. Hence the set xΩ  has three planes intersecting at the vertex ( 0,, 21 xx )and is 

closed by the level curve of the first integral I(x) passing through x . 

 

It can be seen that if xΩ  does not intersect any of the nullcline planes then it is a 

positively invariant set as the level curves of the first integral are disjoint, and the flow 

moves away from the surfaces of the planes along x2 and x3 directions. Also such 

positively invariant sets are compact, as discussed above. Hence we develop positively 

invariant and compact sets in the flow of (41) Cases where such a set cannot be 

developed are discussed later.  
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Main proof 
 

We shall prove that {x∈ 3: x1=0, bx2-a≤0} is the stable equilibrium set. We break up the 

proof into cases depending on the intersection of the trajectory with the nullcline planes, 

as the nature of planar boundaries changes over the nullcline planes. Following is the 

outline of proof: 

 

Case 1: Trajectory does not intersect nullcline planes:  Find a set xΩ  in non-negative x1 

half space of 3 as outlined in the previous section. 

Case 1a: Set does not intersect nullcline planes:  If the set xΩ  does not intersect the 

three planes given by (42a)-(42c) then it is a positively invariant compact set. And due 

to LaSalle’s theorem, all trajectories starting within this set shall asymptotically 

approach the largest invariant subset, which is{ }0,| 1 =Ω⊂ xxx x . 

 

Case 1b: Set intersects nullcline planes: If a set xΩ  intersects the nullcline planes (42b) 

or (42c) then the intersecting boundary might allow the flow to cross them, as across 

the nullcline planes the direction of change of x2 or x3 is reversed. If a set xΩ  cannot be 

constructed which does not intersect the nullcline planes, then a union of such sets will 

be necessary to provide a positively invariant compact set. We shall utilize a union of 

sets constructed on the lines of xΩ to get a positively invariant compact set: the 

boundaries would still be aligned along the flow arrows and the first integral. The part 
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Figure 8: Construction of compact positively invariant sets by union. The leaking 
boundaries shown by dashed lines have been brought inside by union with 
other similarly constructed sets. 

of the original boundary of xΩ  which now has the flow going across it shall be brought 

into the interior of the union. To do this, we shall place another set which would be 

bounded by the same level curve of the first integral and planar boundaries along the 

direction of flow on this side of the nullcline plane as shown in the figure above. It can 

be shown that to develop a positively invariant set we will need a finite number of such 

unions. This can also be seen in figure 8 above. This is brought about if we choose the 

last set to have the point of intersection of (42b), (42c) and x1=0  as one of its vertices, 

then the nature of the flow assures that these boundaries do not allow flow to cross 

them. Hence its compactness is not at stake. 
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Case 2. Trajectory intersects nullcline planes:  If the trajectory itself intersects the 

nullcline planes, then we can divide the trajectory into two parts: the trajectory from the 

starting point to the last intersection with the nullcline planes and the tail of the 

trajectory which is the part of trajectory from the last intersection onwards. The tail of 

the trajectory can be analyzed by Case 1 listed above. The trajectory from the initial 

point to the last intersection shall lie on a continuous level curve of the first integral and 

will be suitably bounded. 

 

The possibility of the flow getting trapped in a closed path is unlikely as qualitatively 

there is little symmetry in the flow to make this possible. Extensions to Bendixson’s 

negative criterion to systems of higher dimensions possessing first integrals [25] were 

applied but the negative criterion was not satisfied and hence a conclusion was not 

reached. A suitable analytical method is not available for identifying limit cycles and 

closed path in higher dimensions. As mentioned earlier, by observing the nature of the 

flow, the author considers it unlikely that there might be other closed orbits that might be 

a part of the invariant set.  

 

 

 



 54

CHAPTER VI 

CONCLUSION 
 

This thesis discussed a control algorithm developed from the emotional processing 

network. From a control engineering outlook, we achieved a feedback loop in which the 

feedback gains were updated depending on the error. This control loop generates an 

equilibrium set. Intuitively it seems likely that a continuous equilibrium set would have a 

stronger and wider region of attraction than an isolated equilibrium point and that 

variation in parameters or the initial condition will have reduced effect on the 

performance. Further a method to develop Lyapunov-like functions and to use the nature 

of the flow to prove stability is shown. 

 

From a biological perspective, this work developed an elementary mathematical 

reasoning into the causes for the mammalian emotional network to be stable. This 

reasoning can be considered as good as the original model is, and shall inherit the 

shortcomings of the original computational model of the limbic system. The original 

computational model was not intended to be a generic model for all cases; hence this 

reasoning will not be valid for those cases. 

 

A comparison with established adaptive control algorithms which are also error-driven is 

not presented here. Some comparisons with other established control approaches are 

reported in [12], [13]; however continuous time systems are not covered. 
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Further developments of this algorithm can be focused on two lines: attempting higher 

order and MIMO systems and attempting several amygdala and orbitofrontal cortex 

loops.  

 

Higher order plants would present a challenge in finding the first integrals as the 

Frobenius method is fairly involved for the present case itself. In fact the Frobenius 

method is only limited to 3-dimensional problems: hence extensions or other algorithms 

need to be searched for. Few cases of nonlinear plants were attempted, but the elegance 

of the method for choosing positively invariant sets was diminished as one of the 

nullclines is no longer a plane.  

 

Having multiple loops raises a more basic issue than the analytical complexity. A 

biological situation is far more complex than an engineering problem, and it is clear that 

there are multiple sensory measurements that need to be taken into account for an 

appropriate decision. However for engineering goals, we shall have to identify methods 

so that each loop of the amygdala and the orbitofrontal cortex would be different from 

others: either have multiple measurements or have different weights for the same input to 

develop different emotional signals. 
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