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An algebraic geometry approach to
nonlinear parametric optimization in control

Ioannis A. Fotiou*, Philipp Rostalski*, Bernd Sturmfels† and Manfred Morari*

Abstract— We present a method for nonlinear parametric
optimization based on algebraic geometry. The problem to
be studied, which arises in optimal control, is to minimize a
polynomial function with parameters subject to semialgebraic
constraints. The method uses Gr̈obner bases computation in
conjunction with the eigenvalue method for solving systemsof
polynomial equations. In this way, certain companion matrices
are constructed off-line. Then, given the parameter value,an
on-line algorithm is used to efficiently obtain the optimizer of
the original optimization problem in real time.

I. INTRODUCTION

Optimal control is a very active area of research with
broad industrial applications [1]. It is among the few control
methodologies providing a systematic way to perform non-
linear control synthesis that handles also system constraints.
To a great extent, it is thanks to this capability of dealing
with constraints that model predictive control (MPC) has
proven to be very successful in practice [2], [3].

Model predictive control uses optimization on-line to
obtain the solution of the optimal control problem in real
time. This method has been proven most effective for
applications. Typically, the optimal control problem can
be formulated into a discrete time mathematical program,
whose solution yields a sequence of control moves. Out of
these control moves only the first is applied, according to
the receding horizon control (RHC) scheme.

The optimal control problem is formulated as a mathe-
matical program, which can be a linear program (LP), a
quadratic program (QP) or a general nonlinear program
(NLP). For hybrid systems, the corresponding mathematical
programs can be mixed integer programs - MILPs, MIQPs
or MINLPs [4]. The class of the optimization problem
depends on the objective function and the class of systems
one wants to derive an optimal controller for.

Technology and cost factors, however, make the imple-
mentation of receding horizon control difficult if not, in
some cases, impossible. To circumvent these issues, the
solution of the optimal control problem is computed off-
line, by solving the corresponding mathematical program
parametrically [5]. That is, we compute the explicit formula
giving the solution of the program (control inputs) as a
function of the problem parameters (measured state). The
solution then is efficiently implemented on-line as a lookup
table.
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In the present work, we extend the concept of the explicit
solution to the class of nonlinear polynomial systems with
polynomial cost function. By polynomial systems we mean
those systems, whose state update equation is given by
a polynomial vector field. For this class of systems, the
resulting mathematical program is a nonlinear (polynomial)
parametric optimization problem.

While the explicit solution is not generally possible
in the nonlinear case, we stress the fact that apartial
precomputation of the optimal control law is still feasible
using algebraic techniques [6]. In this paper, we use the
eigenvalue method [7] in conjunction with Gröbner bases
computation to perform nonlinear parametric optimization
of polynomial functions subject to polynomial constraints.

II. PARAMETRIC OPTIMIZATION

Let u ∈ Rm be the decision-variable vector andx ∈
Rn be the parameter vector. The class of optimization
problems that this paper deals with can generally assume
the following form:

min
u

J(u, x) s.t. g(u, x) ≤ 0, (1)

whereJ(u, x) ∈ R[x1, . . . , xn, u1, . . . , um] is the objective
function andg ∈ R[x1, . . . , xn, u1, . . . , um]q is a vector
polynomial function representing the constraints of the
problem. By parametric optimization, we mean minimizing
the functionJ(u, x) with respect tou for any given value
of the parameterx ∈ X ⊆ R

n, whereX is the set of ad-
missible parameters. Therefore, the polynomial parametric
optimization problem is finding a computational procedure
for evaluating the maps

u∗(x) : Rn −→ Rm

x 7−→ u∗

J∗(x) : Rn −→ R

x 7−→ J∗,

(2)

where
u∗ = argmin

u
J(u, x)

J∗ = min
u

J(u, x).
(3)

For the sake of simplicity, we assume that the feasible set
defined byg(u, x) is compact, therefore the minimum is
attained. Also, in order for (2) not to be point-to-set maps,
we focus our attention to one (any) optimizer.
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A. Posing the problem

Our point of departure is the observation that the
cornerstone of continuous constrained optimization are
the Karush-Kuhn-Tucker (KKT) conditions. All local and
global minima for problem (1) (satisfying certain constraint
qualifications) occur at the so-called “critical points” [8],
namely the solution set of the following system:

∇uJ(u, x) +
∑q

i=1 µi∇ugi(u, x) = 0
µigi(u, x) = 0

µi ≥ 0
g(u, x) ≤ 0.

(4)

For the class of problems we consider, the two first relations
of the KKT conditions (4) form asquare system of poly-
nomial equations. Various methods have been proposed in
the literature for solving systems of polynomial equations,
both numerical and symbolic [9], [10], [11]. Here we
consider symbolic methods since our aim is to solve the
optimization problem parametrically. We should point out
that the underlying philosophy is that we aim at moving as
much as possible of the computational burden of solving
the nonlinear program (1) off-line, leaving an easy task for
the on-line implementation.

B. Off-line vs. on-line computations

The explicit representation of the optimal control law as
a state feedback has been successfully investigated for the
linear, quadratic and piecewise affine case. Among other
advantages of the explicit representation is that one is
able to analyze the controller, derive Lyapunov functions
[12], perform dynamic programming iterations [13] in an
effective way, even compute the infinite horizon solution
for certain classes of constrained optimal control problems
[14].

Unfortunately, such an explicit representation is not al-
ways possible. The enabling factor in the case of linear
systems (or piecewise affine systems) is the fact that the
KKT system (4) can be solved analytically. In the general
polynomial case studied here, we have to solve a system of
(nonlinear) polynomial equations. The next best alternative
then to an explicit solution is to bring the system in such a
form, so that once the parameters are specified, the solution
can be extracted easily and fast.

III. THE EIGENVALUE METHOD

In this section we briefly describe the method of eigenval-
ues ([7], Chapter 2,§4) for solving systems of polynomial
equations. This method is used in conjunction with Gröbner
bases to perform parametric optimization.

A. Solving systems of polynomial equations

Suppose we have a system ofm polynomial equations
fi in m variablesui

f1(u1, . . . , um) = 0
· · ·

fm(u1, . . . , um) = 0.
(5)

These equations form an idealI ∈ K[u1, . . . , um], where
K denotes an arbitrary field:

I := 〈f1, . . . , fm〉 . (6)

The solution points we are interested in are the points on
the variety over the algebraic closureK of K,

V (I) = {s ∈ K
m

: f1(s) = 0, . . . , fm(s) = 0}, (7)

i.e. the set of common zeros of all polynomials in the ideal
I. These points can be computed by means of Gröbner
bases. An obvious choice would be a projection-based algo-
rithm by means of lexicographic Gröbner bases, see ([15],
Chapter 2,§8). Since the computation of a lexicographic
Gröbner basis is very time consuming, we focus on a
different method.

The first step we take towards solving (5) is computing a
Gröbner basis with an arbitrary term-order, e.g. graded re-
verse lexicographic term-order. We defineG = {γ1, . . . , γt}
to be this Gröbner basis ofI.

B. The generalized companion matrix

Consider a polynomial functionh ∈ K[u1, . . . , um]. The
Gröbner basisG and the division algorithm make it possible
to uniquely write any polynomialh ∈ K[u1, . . . , um] in the
following form:

h = c1(u)γ1 + · · ·+ ct(u)γt + h
G
, (8)

whereh̄G is the unique remainder of the division ofh with
respect to the Gröbner basisG. The polynomialh can in
turn be multiplied with another polynomial functionf ∈
K[u1, . . . , um] and their product expressed as follows:

f · h = d1(u)γ1 + · · ·+ dt(u)γt + f · h
G
. (9)

In the generic case, the idealI will be zero-dimensional,
which means that the correspondingquotient ring

A = K[u1, . . . , um]/I (10)

is a finite-dimensionalK-vector space ([15], Chapter 5,
§2). The quotient ring of an ideal can be thought of as the
set of all polynomials that do not belong to the ideal but
belong to the underlying ring. Denote withb = [b1, . . . , bl]

T

the vector of thestandard monomials. A monomial is
standard if it is not divisible by any leading monomial of a
polynomial in the Gröbner basis. These standard monomials
of G form a basis

B = {b1, . . . , bl} (11)

for theK-vector spaceA. As a result, every remainder can
be expressed with respect to this basis as an inner product

ri = aTi · b , (12)

whereai ∈ K l. We can now define the mapmh : A → A
as follows: if pG ∈ A, then

mh(p
G) := h · p

G
= h

G
· pG

G

∈ A. (13)



The following proposition holds.
Proposition 1: Let h ∈ K[u1, . . . , um]. Then the map

mh : A → A is K-linear.
The proof of Proposition 1 can be found in ([15], p. 51).
SinceA is a finite-dimensional vector space and the map
mh is linear, its representation with respect to a basis of
this vector space is given by a square matrixMh. Thel× l-
matrix Mh is called the generalized companion matrix.

C. Computing the companion matrix

To compute the matrixMh, assume that we have the basis
B = {b1, . . . , bl} consisting of the standard monomialsbi of
the Gröbner basisG. Then, for each one of them, compute
the remainderri of the polynomialh · bi with respect to the
Gröbner basisG:

h · bi
G
= ri, ∀ bi ∈ B. (14)

All ri ∈ A can in turn be expressed as an inner product

ri = aTi · b (15)

with respect to the basisB. By collecting all vectorsai for
all basis elements [7], we can construct a representation of
the mapmh with respect to basisB, i.e. calculate the matrix
Mh as follows:

Mh ≡ [aij ] =





aT1
· · ·
aTl



 . (16)

Computing the companion matrix is a standard alge-
braic procedure implemented in various packages, e.g. in
Maple 10.

D. Evaluating polynomial functions on a variety

Consider a polynomial functionh ∈ R[u1, . . . , um]. The
amazing fact about the matrixMh is that the set of its
eigenvalues is exactly the value ofh over the varietyV(I)
defined by the idealI. More precisely,V(I) is the set of
all solution points in complexm-spaceCm of the system
(5). The following theorem holds.

Theorem 1: Let I ⊂ C[u1, . . . , um] be a zero-
dimensional ideal, leth ∈ C[u1, . . . , um]. Then, forλ ∈ C,
the following are equivalent:

1) λ is an eigenvalue of the matrixMh

2) λ is a value of the functionh on the varietyV(I).
The proof can be found in ([7], p. 54).

To obtain the coordinates of the solution set of (5), we
evaluate the functions

h1 : u 7−→ u1

· · ·
hm : u 7−→ um

(17)

on the varietyV(I) defined by the idealI, whereu above
denotes the vector(u1, . . . , um). This can be done by means
of the associated companion matrices of the functionshi.
The following theorem taken from ([9] p. 22) is the basis
for the calculation of these point coordinates.

Theorem 2: The complex zeros of the ideal I are the
vectors of joint eigenvalues of the companion matrices
Mu1

. . .Mum
, that is,

V(I) =
{

(u1, . . . , um) ∈ R
m :

∃v ∈ R
m ∀ i : Mui

v = uiv
}

It has to be noted that any vector-valued polynomial
function h : Rm −→ R can be evaluated over a zero-
dimensional variety in the same way.

IV. THE ALGORITHM

In this section, we present the proposed algorithm, which
consists of two parts: the off-line part, where the general-
ized companion matrices for the optimization problem are
constructed, and the on-line part where this precomputed
information is used and given the value of the parameterx,
the optimal solution is efficiently extracted.

A. Idea

Under certain regularity conditions, ifJ∗ (defined in (3))
exists and occurs at an optimizeru∗, the KKT system (4)
holds atu∗. Consequently,J∗ is the minimum ofJ(u, x)
over the semialgebraic set defined by the KKT equations
and inequalities (4). These conditions can be separated in
a set of inequalities and a square system of polynomial
equations. The method of eigenvalues for solving systems of
polynomial equations as described in section III can be used
for the latter. This method assumes that the ideal generated
by the KKT system (4) is zero-dimensional.

By ignoring the inequalities, a superset of all critical
points is computed and in a second step, all infeasible points
are removed. Finally, among the feasible candidate points
those with the smallest cost function value have to be found
via discrete optimization. By discrete optimization we mean
choosing among a finite set that point, which yields the
smallest objective function value.

B. Off-line Part

In K[u1, ..., um, µ1, ..., µq], where K is the field of
rational functionsR(x1 . . . , xn) in the parameterx, we
define the KKT ideal

IKKT = 〈∇uJ(u, x) +

q
∑

i=1

µi∇ugi(u, x), µigi(u, x)〉 (18)

containing all the equations within the KKT-system (4). All
critical points for the optimization problem (4) and fixedx
are the subset of real points on the KKT-variety

VR

KKT ⊆ VKKT = V(IKKT ) . (19)

Using the method described in section III we can compute
these by means of the generalized companion matrices.

The algebraic part of the algorithm, i.e the computation
of the companion matrices can be done parametrically.
For one thing, one could use Gröbner bases computation
for the idealIKKT and try to compute the corresponding



companion matricesMui
and Mµi

directly. Owing to
the structure of the polynomial equations of theKKT -
system (18), this problem is very poorly conditioned. The
difficulties stem from the fact that the idealIKKT is by
construction decomposable. It contains terms likeµigi(u, x)
which lead to a reducible varietyV (IKKT ).

To overcome this obstacle, we factorize the generators of
the Gröbner basis (i.e. the polynomials appearing in relation
(18)) and express the idealIKKT as an intersection of
super-idealsIj,KKT . The super-idealIj,KKT denotes the
ideal constructed by fixing a subset ofp active constraints
g̃i(u, x) among the set of allq constraintsgi(u, x) – see
(18). The corresponding Lagrange multipliers are denoted
with µ̃i. This leads to

Ij,KKT = 〈 ∇uJ(u, x) +
∑p

i=1 µ̃i∇ug̃i(u, x),
g̃i(u, x) 〉

(20)

with the feasibility inequalities

µ̃i ≥ 0
gi(x, u) ≤ 0 .

(21)

Therefore, the idealIKKT can be expressed as an intersec-
tion of θ := ♯({gi(u, x)}

q
i=1) = 2q super-ideals, whereθ is

the cardinality of the power set of allq constraints. Namely,

IKKT =

θ
⋂

j=1

Ij,KKT . (22)

Relations (20) and (21) lead to a large number of super-
ideals which are much better numerically conditioned than
the original problem, even though they are not necessarily
radical. Since many of the sub-varietiesV(IKKT ) are
empty, a Gröbner basis computation for each idealIj,KKT

identifies these infeasible cases in advance and reduces the
subsequent companion matrix computations tremendously
by discarding them.

The number of solutions over̄K in the non-empty
sub-varietiesVj,KKT = V(Ij,KKT ) can be calculated by
means of the Hilbert polynomial ([15], Chapter 9,§3). For
zero-dimensional varieties this polynomial reduces to an
integer, which is equal to the number of solutions counting
multiplicity.

If the sub-variety has only a single solution, the co-
ordinatesui of the candidate solution can be computed
analytically as arational function of the parametersx. In
this case, the polynomials in the Gröbner basis from a set
of linear equations in the decision variables that can be
solved analytically. For all sub-varieties with more than one
solution, a companion matrix has to be computed. The result
are companion matrices whose entries are rational functions
of the parameterx.

Specialization of the parameters gives a map from the
field K to the field R of real numbers. If the real parameters
are chosen generically enough, then the given Gröbner basis
remains a Gröbner basis, but for special choices of the
parameters some trouble may arise. For instance, it may
happen that a specialization leads to zero denominators.

To handle this case, comprehensive Gröbner bases can be
used [16]. The parametric computation is guaranteed to be
correct only if the sequence of leading coefficients of the
result and the sequence of greatest common denominators
removed in the computations are nonzero [16]. If ordinary
methods such as Buchberger’s algorithm are used to com-
pute Gröbner bases, these issues have to be kept in mind.

A summary of the off-line algorithm appears in Algo-
rithm 1.

Algorithm 1 Off-line Part:

Input: Objective function J(x, u) and constraints
gi(x, u) ≤ 0.

Output: Set of feasible sub-varietiesVj,KKT with their
generalized companion matricesMuj,i

and Mj,µ̃i
, or

an explicit functionu∗
j,i for their candidate optimizer.

1: for all combination of active and inactive constraints
do

2: constructIj,KKT

3: calc. Gröbner basisGj for Ij,KKT

4: if Gj =< 1 > then
5: discard the super-ideal
6: else
7: calculate number of solutions ofVj,KKT by means

of the Hilbert polynomial
8: if ♯Vj,KKT = 1 then
9: Express allu∗

j,i as rational functions in the
parameterx

10: else
11: Compute generalized companion matricesMj,ui

andMj,µ̃i
for all decision variablesui

12: end if
13: end if
14: end for
15:

16: return: Mj,ui
andMj,µ̃i

, resp.u∗
j,i and µ̃j,i

C. On-line Part

In order to evaluate the point coordinates of the KKT
sub-varieties, we need to compute eigenvectors and eigen-
values for the companion matrices. Generally, eigenvalue
computation cannot be done parametrically. The parameter
x has to be fixed to a numerical value and this computation
is done on-line.

Given the precomputed generalized companion matrices
Mj,ui

andMj,µ̃i
(resp. an explicit expression for all sub-

varieties with linear Gröbner basis) for all possible feasible
combinations of active and inactive constraints, the on-line
algorithm takes the value of the parametersx to compute
the optimumJ∗ and the optimizeru∗. The three main steps
of the algorithm are:

1) calculate all critical points
2) remove infeasible solutions
3) find the feasible solutionu∗ with the smallest objec-

tive function valueJ∗ = J(u∗).



Since all companion matrices have been computed para-
metrically, the remaining part that has to be done is linear
algebra. For every non-empty sub-varietyVj,KKT , a set
of right eigenvectors{v} is computed for the companion
matricesMj,ui

of the j-th sub-variety, see Theorem 2.
Because all companion matrices for a sub-varietyVj,KKT

commute pairwise, they form a commutative sub-algebra
within the non-commutative algebra ofl× l matrices, where
l is the companion matrix dimension (11), see also [7].
Therefore, it suffices to calculate the eigenvectors for a
single arbitrary matrix in this sub-algebra, because they
all share the same eigenvectors. To avoid computational
problems, we choose a matrixMj,rand in this sub-algebra
as a random linear combination of the companion matrices
associated with the decision variablesMj,ui

, i.e.

Mj,rand = c1Mj,u1
+ · · ·+ cmMj,um

+
+ cm+1Mj,µ̃1

+ · · · + cm+pMj,µ̃p
,

(23)

whereci ∈ R are randomly chosen. This ensures, with a low
probability of failure, that the corresponding eigenvalues
will all have algebraic multiplicity of one ([7], Chapter 2,
§4).

The sets of eigenvectors{v}j can now be used to
compute all candidate critical points and their Lagrange
multipliers µ̃j,k for the sub-varietyVj,KKT . To avoid un-
necessary computations, we first calculate the candidate
Lagrange multipliersµ̃j,i for each sub-varietyVj,KKT .
In this way, complex or infeasible candidate points with
µj,i < 0 for somei can be immediately discarded before
the candidate optimizersu∗

j,i are computed. For all sub-
varieties with cardinality one, the problem of computing the
critical points reduces to an evaluation of the precomputed
functions.

For all non-discarded candidate solutions, it remains to
be checked whether they are feasible, i.e.g(u∗

j,i, xi) ≤ 0.
To achieve that, a set of feasible local candidate optimizers
S = {u∗

j,i} is initially calculated by collecting all fea-
sible candidate optimizers. After computing the objective
function valueJ(u∗

j,i, x) for all candidate optimizers, the
optimal solution

J∗ = min
u∗

j,i
∈S

J(u∗
j,i, x)

and the optimizer

u∗
i = argmin

u∗

j,i
∈S

J(u∗
j,i, x)

for the optimization problem (1) can be easily obtained via
discrete optimization over the finite setS.

A summary of the on-line algorithm can be seen in
algorithm 2.

V. OPTIMAL CONTROL APPLICATION

In this section we fist give a description of the model pre-
dictive control optimization problem to show the connection
of parametric optimization and optimal control.

Algorithm 2 On-line Part: Companion matricesMui
and

Mµ̃i
for all non-empty sub-varietiesVj,KKT , resp. explicit

expression for cardinality one sub-varieties has to be pro-
vided.
Input: Value of the parameterx (state measurement taken

in real time).
Output: Optimal costJ∗ and optimizeru∗

i .
1: for all feasible sub-varietiesVj,KKT with ♯Vj,KKT > 1

do
2: specialize parameterx in Mui

andMµ̃i

3: calc. a set of common eigenvectors{v} for the
companion matrixMj,rand

4: solveMj,µ̃i
v = µ̃j,iv to obtain the joint-eigenvalues,

i.e. candidates for̃µj,i

5: discard all eigenvectors with corresp.µ̃j,i < 0
6: use the remaining eigenvectors to calc. joint-

eigenvalues ofMj,ui
to obtain candidates foru∗

j,i

7: end for
8: for all feasible sub-varietiesVj,KKT with ♯Vj,KKT = 1

do
9: evaluateµ̃j,i(x) for all i

10: if ∃i : µ̃j,i(x) < 0 then
11: discard sub-varietyVj,KKT

12: else
13: evaluateu∗

j,i(x)
14: end if
15: end for
16: for all evaluated candidate points{u∗

j,i}j do
17: if gk(u

∗
j,i, x) > 0 then

18: discard candidate pointu∗
j,i

19: else
20: evaluateJ(u∗

j,i, x)
21: end if
22: end for
23: compareJ(u∗

j,i, x) for the calculated candidatesu∗
j,i

and choose optimalJ∗ and correspondingu∗
i

24: return: optimal costJ∗ and optimizeru∗
i

A. Nonlinear model predictive control

Consider the nonlinear discrete-time system with state
vectorx ∈ Rn and input vectoru ∈ Rm

x(k + 1) = f(x(k), u(k)) (24)

subject to the inequality constraints

g(u(k), x(k)) ≤ 0, k = 0, . . . , N , (25)

where N is the prediction horizon andg ∈
R[x1, . . . , xn, u1, . . . , um]q is a vector polynomial function
representing the constraints of the problem. We consider
the problem of regulating system (24) to the origin. For
that purpose, we define the following cost function

J(UN−1
0 , x0)=

N−1
∑

k=0

Lk(x(k), u(k)) + LN (x(N), u(N)) ,



where UN−1
0 := [u(0), . . . , u(N − 1)] is the optimiza-

tion vector consisting of all the control inputs fork =
0, . . . , N − 1 and x(0) = x0 is the initial state of the
system. Therefore, computing the control input is equivalent
to solving the following nonlinear constrained optimization
program

min
u

J(UN−1
0 , x0)

x(k + 1) = f(x(k), u(k))
s.t. g(u(k), x(k)) ≤ 0, k = 0, . . . , N.

(26)

Forming a vectoru of decision variables withuk = u(k)
and renamingx(0), problem (26) is written in the more
compact form

min
u

J(u, x) s.t. g(u, x) ≤ 0, (27)

whereJ(u, x) is a polynomial function inu andx, u ∈ Rm

is the decision variable vector and the initial statex =
x(0) ∈ Rn is the parameter vector. This is exactly problem
(1), a nonlinear parametric optimization problem. Our goal
is to obtain the vector of control movesu.

B. Illustrative example

In this section we illustrate the application of the pro-
posed method by means of a simple example. The off-
line algorithm including the algebraic methods and the
case enumeration (22) have been implemented in Maple.
A Maple-generated input file is used to initialize Matlab, in
order to compute the optimizer on-line.

Consider the Duffing oscillator [17], a nonlinear oscillator
of second order. An equation describing it in continuous
time is

ÿ(t) + 2ζẏ(t) + y(t) + y(t)3 = u(t), (28)

wherey ∈ R is the continuous state variable andu ∈ R the
control input. The parameterζ is the damping coefficient
and is known (hereζ = 0.3). The control objective is to
regulate the state to the origin. To derive the discrete time
model, forward difference approximation is used (with a
sampling period ofh = 0.05 time units). The resulting state
space model with a discrete state vectorx ∈ R2 and input
u ∈ R is

[

x1(k + 1)
x2(k + 1)

]

=

[

1 h
−h (1− 2ζh)

] [

x1(k)
x2(k)

]

+

[

0
h

]

u(k) +

[

0
−hx3

1(k)

]

.

An optimal control problem with prediction horizonN = 3,
weight matrices

Q =

[

1 0
0 1

]

,

R =
1

10

and state-constraints

‖x(k + j)‖∞ ≤ 5 ∀j = 1 . . .N

leads to the following optimization problem:

J∗ =

min
u(k),u(k+1),u(k+2)

∑3
i=1 [ x1(k+i)x2(k+i) ]Q

[

x1(k+i)
x2(k+i)

]

+
∑2

i=0 u(k + i)Ru(k + i)

s.t. ‖x(k + j)‖∞ ≤ 5 ∀j = 1 . . .N .

Of these twelve constraints there are ten constraints in-
volving u(k + i), which have to be considered during the
optimization. As described in section IV the KKT-variety
will be split in 2♯{gi} = 210 = 1024 sub-varieties. For all
of them a Gröbner basis needs to be computed. It turns out
that only 29 of these are feasible, i.e. having a Gröbner
basis different from unity. Only these cases have to be
further considered in the online algorithm. Among them
there are 24 sub-varietiesVj,KKT with a linear Gröbner
basis. For these, a closed form expression for the candidate
optimizersu∗

j,i can be computed. For the remaining five
cases companion matrices have to be computed, requiring
eigenvalue computation in the on-line algorithm. These sub-
varietiesVj,KKT have five solutions counting multiplicities,
i.e. the companion matrices are5× 5 matrices.

The trajectory of the controlled system starting from an
initial state of x1(0) = 2.5 and x2(0) = 1 is shown in
Figure 1. Figure 2 shows the state-space evolution of the
controlled Duffing oscillator and its free response without
the controller. In the uncontrolled case, a weak dynamic
behavior and a violation of the constraintx2(t) > −5 can
be observed.
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Fig. 1. State-space diagram of the Duffing oscillator

The precomputation of companion matrices and the so-
lutions u∗

j,i took less than one minute on a Intel Pentium
3 GHz with 1 GB RAM. The online algorithm needed less
than 3.5 s to obtain the global optimum even with a naive
brute-force on-line search algorithm for the minimization
over the finite set of candidate points. It has to be noted
that most of the time of these 3.5 s is consumed by the
evaluation of expressions with the Matlab Symbolic Math
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Fig. 2. State and input evolution of the controlled Duffing oscillator

Toolbox. An efficient implementation, in C for instance,
would be orders of magnitude faster.

VI. CONCLUSIONS AND OUTLOOK

The main contribution of this paper is a new algorithm
for nonlinear parametric optimization of polynomial func-
tions subject to polynomial constraints. The algorithm uses
Gröbner bases and the eigenvalue method for solving sys-
tems of polynomial equations, to evaluate the map from the
space of parameters to the corresponding optimal value and
optimizer. The algorithm is very general, computationally
robust and can be applied to a wide range of problems.

The punchline of the proposed approach is the precompu-
tation of the generalized companion matrices, thus partially
presolving the optimization problem and moving the com-
putational burden off-line. The method has been developed
with model predictive control in mind. The connection to
optimal control problems has been illustrated by applying
the method to the Duffing oscillator.

Finally, there is ongoing research on exploiting the
structure of specific control problems, including sparseness
and genericity assumption relaxation. More specifically,
sparse resultant techniques are investigated to compute the
companion matrices. Combining this method with recently
proposed ”Sum of Squares Programming” methods, based
on semi-definite representations of finite varieties [18],
seems to be a promising direction for further research.
Moreover, the integration of the proposed scheme with
dynamic programming is also explored.
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