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Stable Receding Horizon Control for Max-Plus-Linear Systems

I. Necoara, B. De Schutter, T.J.J. van den Boom and J. Hellendoorn

Abstract— We develop a stabilizing receding horizon control
(RHC) scheme for the class of discrete-event systems called
max-pus-linear (MPL) systems. MPL systems can be described
by models that are “linear” in the max-plus algebra, which has
maximization and addition as basic operations. In this paper
we extend the concept of positively invariant set from classical
system theory to discrete-event MPL systems. We define stabil-
ity for the class of MPL systems in the sense of Lyapunov. For
a particular convex piecewise affine cost function and linear
input-state constraints the RHC optimization problem can be
recast as a linear program. Using a dual-mode approach we
are able to prove exponential stability of the RHC scheme. We
derive also a constrained time-optimal controller by solving a
sequence of parametric linear programs.

I. INTRODUCTION

In the last decades Receding Horizon Control (RHC) or

Model Predictive Control (MPC) [1], [2] has gained wide

acceptance in the process industry. An important advantage

of RHC is that the use of a finite horizon allows the inclusion

of constraints on the inputs and states. Recently, the RHC

approach was extended to a class of discrete-event systems

(DES) called max-plus-linear (MPL) systems [3]. MPL sys-

tems are linear in the max-plus algebra [4] and they usually

arise in the context of manufacturing systems, telecommu-

nication networks, railway networks, parallel computing etc.

Several authors have already developed methods to compute

optimal controllers for MPL systems [3], [5]–[8]. The main

advantage of the RHC scheme presented in this paper is that

it allows to include linear constraints on inputs and states

and the RHC controller guarantees a priori stability of the

closed-loop system.

We start the paper with an introduction of the main

concepts from max-plus algebra. We introduce stability in

the sense of Lyapunov for the class of MPL systems, using

similar concepts as in [9]. In Section II we take into account

constraints on input and states. We define the concept of

positively invariant (PI) set for the class of MPL systems.

We prove that, under some mild conditions, the PI set is

a polyhedron. For a particular convex piecewise affine cost

function, we prove that the MPL-RHC optimization problem

can be recast as a linear program (LP). Using a dual-mode

approach [1] we prove that the RHC controller stabilizes

in the sense of Lyapunov the MPL system. In Section III

we derive a time-optimal controller using parametric linear

programming. We conclude with an example.
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A. Max-Plus Algebra

Define ε := −∞ and Rε := R ∪ {ε}. The max-plus-

algebraic (MPA) addition (⊕) and multiplication (⊗) are

defined as [4]: x⊕ y := max{x,y}, x⊗ y := x+ y, for x,y ∈
Rε . For matrices A,B ∈R

m×n
ε and C ∈R

n×p
ε one can extend

the definition as follows: (A⊕B)i j := Ai j ⊕Bi j,(A⊗C)i j :=
n

⊕

k=1

Aik ⊗Ck j, ∀ i, j. The matrix ε denotes the MPA zero

matrix of appropriate dimension: ε i j := ε , ∀ i, j and En is

the n×n MPA identity matrix: (En)ii := 0, ∀ i and (En)i j := ε ,

∀ i, j with i 6= j. For any matrix A ∈ R
n×n
ε , let A⊗k

:=
A⊗A⊗·· ·⊗A (i.e. the kth MPA power of A) and define A∗,

whenever it exists, by A∗ := En⊕A⊕·· ·⊕A⊗k
⊕·· · Given a

vector x ∈ R
n
ε we denote with ‖x‖⊕ := max{x1 · · ·xn}. For a

positive integer n, we denote with n := {1,2, · · · ,n}. A matrix

Γ ∈ R
n×m
ε is row-finite if for any row i ∈ n, max j∈m Γi j > ε;

column-finite is similarly defined.

We denote with x⊕′ y := min{x,y} and x⊗′ y := x+y (the

operations ⊗ and ⊗′ differ only in that (−∞)⊗(+∞) :=−∞,

while (−∞)⊗′ (+∞) :=+∞). The matrix multiplication and

addition for (⊕′,⊗′) are defined similarly as for (⊕,⊗). It

can be shown that for any matrices A,B and any vectors x,y
of appropriate dimensions over Rε we have [10]:

A⊗′ (B⊗ x)≥ (A⊗′ B)⊗ x, ((−AT )⊗′ A)⊗ x ≥ x, (1a)

x ≤ y ⇒ A⊗ x ≤ A⊗ y and A⊗′ x ≤ A⊗′ y. (1b)

Lemma 1.1: [4] (i) The inequality A ⊗ x ≤ b has the

largest solution given by xopt = (−AT )⊗′ b =−(AT ⊗ (−b))
(by the largest solution we mean that for all x satisfying

A⊗ x ≤ b we have x ≤ xopt).

(ii) The equation x = A⊗ x⊕b has a solution x = A∗⊗b.

If Ai j < 0 for all i, j, then the solution is unique.

B. Max-Plus-Linear Systems

DES with only synchronization and no concurrency can

be modeled by an MPA model of the following form [4]:

{

xsys(k) = Asys ⊗ xsys(k−1)⊕Bsys ⊗usys(k),

ysys(k) =Csys ⊗ xsys(k)
(2)

where xsys(k) ∈ R
n
ε represents the state, usys(k) ∈ R

m
ε is the

input, ysys(k) ∈ R
p
ε is the output and where Asys ∈ R

n×n
ε ,

Bsys ∈ R
n×m
ε , Csys ∈ R

p×n
ε are the system matrices1. Since

the states and the inputs represent times, typical constraints

1We may assume without loss of generality that Bsys is column-finite and
Csys is row-finite.



for MPL systems are (see [8] for more details):
{

usys(k+1)−usys(k)≥ 0,

Hsysxsys(k)+Gsysusys(k)≤ hsys(k)
(3)

Let λ ∗ be the largest MPA eigenvalue of Asys (see [4] for

an appropriate definition). We consider a reference signal

that the output should track of the form:

rsys(k) = ysys,t + kρ . (4)

Since through the term Bsys⊗usys it is only possible to create

delays in the starting times of activities, we should choose

the growth rate of the due dates such that is larger than

the growth rate of the system, i.e. ρ ≥ λ ∗. If λ ∗ > ε (in

practical applications we even have λ ∗ ≥ 0) then there exists

an MPA invertible matrix P ∈ R
n×n
ε such that the matrix

Ā = P⊗−1
⊗Asys ⊗P satisfies Āi j ≤ λ ∗, for all i, j ∈ n [11]

(P⊗−1
denotes the MPA inverse of P). We make the following

change of coordinates: x̄(k)=P⊗−1
⊗xsys(k). We denote with

B̄ = P⊗−1
⊗ Bsys, C̄ = Csys ⊗ P and ȳ(k) = ysys(k), ū(k) =

usys(k). In the new coordinates the system (2) becomes:

x̄(k) = Ā⊗ x̄(k−1)⊕ B̄⊗ ū(k), ȳ(k) = C̄⊗ x̄(k)

We now consider the normalized system: x(k) = x̄(k)−
ρk, u(k) = ū(k)− ρk, y(k) = ȳ(k)− ρk, A = Ā− ρ (i.e. by

subtracting in the conventional algebra all entries of x̄, ū, ȳ
and of Ā by ρk and ρ , respectively) and B = B̄, C = C̄. The

normalized system can be written as:

x(k) = A⊗ x(k−1)⊕B⊗u(k) (5a)

y(k) =C⊗ x(k). (5b)

We assume that in the new coordinates, the constraint (3)

becomes:

u(k+1)−u(k)≥−ρ , Hx(k)+Gu(k)≤ h. (6)

The following assumption will be used throughout the paper:

Assumption A: We consider that ρ > λ ∗ ≥ 0, the system

is controllable and observable2 and H ≥ 0 in (6).

The conditions from Assumption A are quite weak and

are usually met in applications. Note that ρ can be chosen

arbitrarily close to λ ∗. From Assumption A it follows that

Ai j < 0, for all i, j ∈ n. In the new coordinates the output

should be regulated to the desired target yt := ysys,t.

Since Ai j < 0 for all i, j ∈ n, A∗ = En ⊕A⊕ ·· · ⊕A⊗n−1

(see [4]). Note that for any finite vector u there exists a state

equilibrium x (i.e. x=A⊗x⊕B⊗u), given by x=A∗⊗B⊗u.

Note that x is unique (according to Lemma 1.1 (ii)) and

finite (due to controllability assumption). We associate to yt

the largest3 equilibrium pair (xe,ue) satisfying C⊗ xe ≤ yt.

From the previous discussion and taking into account that

the system is observable it follows that (xe,ue) is unique,

finite and given by (see also [8]):

ue = (−(C⊗A∗⊗B))T ⊗′ yt, xe = A∗⊗B⊗ue (7)

2See [4] for appropriate definitions for observability and controllability.
3By the largest we mean that any other feasible equilibrium pair (x,u)

satisfies x ≤ xe,u ≤ ue.

Throughout the paper ‖ · ‖∞ denotes the ∞-norm (‖x‖∞ :=
maxi∈n |xi|).

C. Lyapunov stability for MPL systems

In this section we adopt the formulation developed in [9]

to the study of stability of MPL systems. Let d∞ denote the

metric on R
n induced by ∞-norm. Given a set O ⊂ R

n then

d∞(x0,O) = minx∈O ‖x0 − x‖∞ denotes the distance from a

point x0 to the set O . An r-neighborhood of a set O is defined

as the set N (O,r) = {x : 0 < d∞(x,O) < r}, where r > 0.

Given an MPL system (2) in closed-loop with a feedback

law µ(x), we study the stability properties of the closed-loop

system:

x(k) = A⊗ x(k−1)⊕B⊗µ(x(k−1)) (8)

The set O is called positive invariant for the system (8) if

for all x ∈ O it follows that A⊗ x⊕B⊗µ(x) ∈ O .

Definition 1.2: A closed invariant set O is called stable

in the sense of Lyapunov for the system (8) if for any

θ > 0, there exists a δ > 0 such that for all x(0) satisfying

d∞(x(0),O) < δ we have d∞(x(k),O) < θ , for all k ≥ 0.

If, furthermore, d∞(x(k),O) → 0 as k → ∞, then O is

asymptotically stable for (8). In the case when d∞(x(k),O)≤
cγ−αkd∞(x(0),O) for some c,α > 0 and 0 < γ < 1, then the

set O is exponentially stable. ♦
The following theorem gives sufficient conditions for

exponential stability.

Theorem 1.3: [9] The closed invariant set O is exponen-

tially stable, if in a sufficient small neighborhood N (O,r)
of the set O there exists a functional V with the following

properties:

(i) c1d∞(x,O)≤V (x)≤ c2d∞(x,O), for all x ∈ N (O,r)
(ii) V (x(k + 1))−V (x(k)) ≤ −c3d∞(x(k),O) for x(0) ∈

N (O,r), for all k ≥ 0 provided that x(k) ∈N (O,r), where

c1,c2 and c3 are positive constants and 0 < c3
c2

< 1. ♦

II. STABILIZING RHC: CONSTRAINED CASE

The main advantage of RHC is that it can accommodate

constraints on states and inputs. In this section we derive a

stabilizing RHC scheme for MPL systems (5a)–(5b) where

we consider constraints of the type (6), using a dual-mode

approach as in [1].

A. Maximal invariant set O∞

We consider the normalized MPL system (5a)–(5b) to-

gether with the constraints (6). We may assume that the

equilibrium pair (xe,ue) defined in (7) satisfies the con-

straints (6) (otherwise (xe,ue) is determined as the opti-

mal solution of the following linear programming problem:

maxu ∑i ui, s.t. x = A∗⊗B⊗u,C⊗ x ≤ yt,Hx+Gu ≤ h).

We consider the following closed-loop system:

x(k) = A⊗ x(k−1)⊕B⊗ue. (9)

In [8] it is proved that O = {xe} is asymptotically stable for

the closed-loop system (9). We define the state constraint set

associated to the closed-loop system (9)

O0 = {x ∈ R
n : Hx+Gue ≤ h} (10)



We define recursively for all k ≥ 1 the sets

Ok = {x ∈ O0 : A⊗ x⊕B⊗ue ∈ Ok−1} (11)

It is trivial to see that Ok ⊆ Ok−1 ⊆ ·· · ⊆ O1 ⊆ O0.

Therefore, the limit of Ok exists and we have

O∞ =
⋂

k≥0

Ok = lim
k→∞

Ok (12)

By induction we can prove that xe ∈ Ok, for all k ≥ 0 and

therefore xe ∈ O∞ i.e. O∞ is non-empty.

Lemma 2.1: If Assumption A is satisfied then Ok is a

polyhedral set having the form

Ok = {x ∈ R
n : Hkx ≤ hk} (13)

with the matrix Hk ≥ 0.

Proof: For k = 0 the statement is obvious (see As-

sumption A). Let us assume that Ok−1 = {x ∈ R
n : Hk−1x ≤

hk−1}, with Hk−1 ≥ 0 and we prove that Ok has a similar

form. Since A ⊗ x ⊕ B ⊗ ue is a “max” expression of the

form [max j{ai j + x j,ci}]i for some ai j ∈ Rε and a constant

vector c, it is straightforward to show that the inequality

Hk−1(A⊗ x⊕B⊗ ue) ≤ hk−1 can be rewritten in the form

H̄kx ≤ h̄k, with H̄k ≥ 0. Then, Hk = [HT
k−1 H̄T

k ]
T ≥ 0 and

hk = [hT
k−1 h̄T

k ]
T .

From the previous lemma it is clear that the set O∞ is convex

(it is a countable intersection of polyhedral sets). We derive

now conditions when O∞ is a polyhedron.

Theorem 2.2: (i) If there exists a t∗ such that Ot∗ =Ot∗+1

then O∞ = Ot∗ (i.e. O∞ is finitely determined and it is a

polyhedral set).

(ii) The set O∞ is the maximal positively invariant set for

(9) contained in O0.

Proof: (i) Let us assume that there exists a t∗ such that

Ot∗ = Ot∗+1. It is obvious that Ot∗+2 ⊆ Ot∗+1. Moreover,

for any x ∈ Ot∗+1 it follows that A ⊗ x ⊕ B ⊗ ue ∈ Ot∗ =
Ot∗+1, i.e. x ∈ Ot∗+2. In conclusion, Ot∗+1 ⊆ Ot∗+2 and thus

Ot∗+2 =Ot∗+1 =Ot∗ . Iterating this procedure and using (12)

we conclude that O∞ = Ot∗ .

(ii) Let T ⊆O0 = {x : H0x ≤ h0} be a positive invariant set

for (9) and let x ∈ T . Then from the definition of a positively

invariant set we have H0(A⊗ x⊕B⊗ue)≤ h0. This implies

that x ∈O1 (according to the recursion (11)). Therefore, T ⊆
O1. By iterating this procedure we obtain that T ⊆ Ok for

all k ≥ 0. In conclusion, for any positive invariant set T it

follows that T ⊆ O∞ and thus O∞ is maximal.

From Theorem 2.2 we have obtained that if O∞ is finitely

determined then O∞ is a polyhedron of the form O∞={x∈
R

n : H∞x≤h∞}, where H∞ ≥ 0. Now, we give sufficient con-

ditions under which the set O∞ is finitely determined. Note

that the recursive relation (11) can be written equivalently as

Ok = {x ∈ Ok−1 : H(A⊗k
⊗ x⊕A⊗k−1

⊗B⊗ue ⊕·· ·⊕

B⊗ue)+Gue ≤ h}. (14)

Theorem 2.3: Suppose that there exists a positive integer

t0 and a ∈ R
n such that Ot0 ⊆ {x ∈ R

n : x ≤ a}. Then, O∞ is

finitely determined (i.e. ∃ t∗ such that O∞ = Ot∗).

Proof: Since Ai j < 0, ∀i, j it follows that for all x ∈R
n:

A⊗k
⊗ x → ε as k → ∞. Moreover, for any b ∈ R

n we have:

b⊕ A ⊗ b⊕ ·· · ⊕ A⊗k+n
⊗ b = A∗ ⊗ b, for all k ≥ 0. Since

xe = A∗⊗B⊗ ue is finite, there exists t∗ ≥ max{n, t0} such

that A⊗k
⊗a ≤ xe, for all k ≥ t∗. We show that Ot∗ = Ot∗+1.

Since Ot∗+1 ⊆ Ot∗ , to complete the proof we now show that

the other inclusion is also valid, i.e. Ot∗ ⊆ Ot∗+1.

Let x ∈ Ot∗ ⊆ Ot0 ⊆ {x ∈ R
n : x ≤ a}. Then, A⊗t∗+1

⊗ x ≤

A⊗t∗+1
⊗ a ≤ xe. It follows that: H(A⊗t∗+1

⊗ x⊕A⊗t∗

⊗B⊗

ue ⊕ ·· · ⊕ B ⊗ ue) = H(A⊗t∗+1
⊗ x ⊕ A∗ ⊗ B ⊗ ue) = Hxe ≤

h−Gue, i.e. x ∈ Ot∗+1.

It is often the case that the set O0 can be written as O0 =
{x ∈R

n
ε : xi ≤ a0

i , for i = 1, · · · ,n}, where a0
i is either a finite

number or +∞ (when there are no restrictions on xi). Then,

we can prove that all the sets Ok can be written in a similar

form Ok = {x ∈ R
n
ε : xi ≤ ak

i , for i = 1, · · · ,n}, where ak
i is

either a finite number or +∞ (i.e. every Ok is described by

at most n inequalities). We prove this by induction. For k = 0

this statement is true. Let us assume that Ok = {x ∈R
n
ε : xi ≤

ak
i , for i = 1, · · · ,n} and we prove that Ok+1 has a similar

form. We denote with ak = [ak
1 · · ·a

k
n]

T . From the recursive

relation (11) we have:

Ok+1 = {x ∈ R
n
ε : x ≤ ak,A⊗ x ≤ ak}=

{x ∈ R
n
ε : x ≤ ak,x ≤ (−AT )⊗′ ak}= {x ∈ R

n
ε : x ≤ ak+1}

where ak+1 = min{ak,(−AT )⊗′ ak}. We conclude that O∞ is

described by at most n inequalities and in fact O∞ = {x ∈
R

n
ε : x ≤ a∞} where a∞

i is either in R or equal to +∞ for any

i = 1, · · · ,n.

Note that the results obtained in this section concerning

the maximal positively invariant set O∞ for the MPL system

(9) are similar to the one obtained in [12] for the linear case.

B. Stable constrained RHC

In this section it is assumed that the maximal positively

invariant set O∞ = {x ∈ R
n : H∞x ≤ h∞} is available , where

H∞ ≥ 0. We give now a lemma that will be used in the sequel:

Lemma 2.4: (i) Let Xf = {x ∈ R
n : Px ≤ q}, where P ≥ 0.

Then,

d∞(x0,Xf) = min
x∈Xf

max{‖x0 − x‖⊕, 0}

(ii) In particular if Xf(α) := {x ∈ R
n : x ≤ α} then

d∞(x0,Xf(α)) = max{‖x0 − α‖⊕,0}
Proof: (i) It is straightforward to see that the state-

ment is true when x0 ∈ Xf. Therefore, we consider the

case when x0 /∈ Xf, i.e. d∞(x0,Xf) > 0. We prove this case

by contradiction. Let x∗ ∈ Xf be the optimal solution, i.e.

0 < d∞(x0,Xf) = ‖x0 − x∗‖∞. We define the set I ⊆ n as

follows: if i ∈ I then ‖x0 − x∗‖∞ = x∗i − (x0)i > 0 and for

any j ∈ n\I : ‖x0−x∗‖∞ > (x0) j −x∗j ; otherwise, if such I

does not exists, then define I = /0.

Assume that I 6= /0. Then, we define xfeas as: (xfeas)i =
(x0)i, if i ∈ I and (xfeas)i = x∗i , if i /∈ I . Since P ≥ 0

and xfeas ≤ x∗,xfeas 6= x∗ it follows that xfeas ∈ Xf. More-

over, 0< d∞(x0,Xf) = ‖x0−x∗‖∞ =maxi∈n{x∗i −(x0)i,(x0)i−



x∗i } ≤ ‖xfeas − x0‖∞ = maxi/∈I {x∗i − (x0)i,(x0)i − x∗i ,0} <
maxi∈n{x∗i − (x0)i,(x0)i − x∗i } = ‖x0 − x∗‖∞ i.e. a contradic-

tion. Therefore, I = /0 and then ‖x0 − x∗‖∞ = ‖x0 − x∗‖⊕.

(ii) If x0 /∈ Xf(α) and x ≤ α , the following inequality

is valid: maxi∈n{(x0)i − xi} ≥ maxi∈n{(x0)i −αi}. We con-

clude that minx∈Xf(α) maxi∈n{(x0)i − xi} ≥ maxi∈n{(x0)i −
αi}. From (i) it follows that d∞(x0,Xf(α))≥ maxi∈n{(x0)i −
αi}= ‖x0 −α‖⊕ (according to the first part of this lemma).

But d∞(x0,Xf(α)) ≤ ‖x0 −α‖⊕ since α ∈ Xf(α). It follows

that d∞(x0,Xf(α)) = ‖x0 −α‖⊕.

For initial conditions x(0),u(0) and a future input sequence

ũ= (u(1) · · ·u(N)), the following cost function is introduced:

J(x(0), ũ) =
N

∑
j=0

d∞(x( j),O∞)+β‖u( j)−ue‖∞,

where β > 0 and N is the prediction horizon. Usually, it

is the case that O∞ = {x : x ≤ a∞}. Then, from Lemma

2.4 we have that J(x(0), ũ) = ∑N
j=0 max{‖x( j)− a∞‖⊕,0}+

β‖u( j)−ue‖∞. In the context of manufacturing systems the

first term expresses the tardiness with respect to a∞, while

the second term penalizes the delay with respect to ue.

Since we want to feed raw material as late as possible, we

impose the constraint u(k)≥ ue for all k ≥ 1. For simplicity,

we assume that B⊗ue is a finite vector. We have that x(k)≥
B⊗ ue for all k ≥ 1. In conclusion, O∞ ∩{x : x ≥ B⊗ ue},

which is bounded, is in fact an invariant set for (9). Given

x(k−1) and u(k−1), the RHC optimization problem at stage

k−1 is defined as follows:

J∗(x(k−1)) = min
ũ(k)

J(x(k−1), ũ(k)) (15)

s.t.































u(k+ j|k−1)−u(k+ j−1|k−1)≥−ρ

u(k+ j|k−1)≥ ue

Hx(k+ j|k−1)+Gu(k+ j|k−1)≤ h,∀ j∈{0, · · · ,N−1}

ue −u(k+N −1|k−1)≥−ρ

x(k+N −1|k−1) ∈ O∞

where x(k + j|k − 1) is the system state at k + j as pre-

dicted at k− 1, based on (5a)–(5b), x(k− 1|k− 1) = x(k−
1),u(k− 1|k− 1) = u(k− 1) and the future input sequence

ũ(k) := (u(k|k−1) · · ·u(k+N−1|k−1)). By including extra

variables and using Lemma 2.4, the entire optimization

problem can be written as a linear program. We apply the

optimal controller in a receding horizon fashion: at event

k we apply uRHC(k) := u∗(k|k−1) to the system (5a)–(5b),

where ũ∗(k) is the optimal solution of (15). Recall that the set

O∞∩{x : x≥B⊗ue} is bounded. We can derive the following

lemma:

Lemma 2.5: There exist r > 0 and c2 > 1 such that for all

x ∈ N (O∞,r) we have

d∞(x,O∞)≤ J∗(x)≤ c2d∞(x,O∞)
Proof: Let us take r > 0. The following facts are easy

to prove.

Fact 1: For any finite vectors x,u,y,v and matrices A,B
satisfying Assumption 1 we have:

‖A⊗ x⊕B⊗u−A⊗ y⊕B⊗ v‖∞ ≤ ‖x− y‖∞ ⊕‖u− v‖∞

Fact 2: It is well-known (see [13], [14]) that the optimal

RHC solution of (15) is a piecewise affine function of the

current state x(k− 1): u∗(k+ j|k− 1) = µ(x(k− 1)), for all

j ∈ {0, · · · ,N−1}, where µ(·) is a piecewise affine function.

Fact 3: Given a polytope P ⊆N (O∞,r)∩{x : x≥B⊗ue}
then, exists a c > 0 such that ‖Fx+g‖∞ ≤ cd∞(x,O∞), ∀x ∈
P for any matrix F and vector g. (Indeed, the functions

x 7−→ ‖Fx + g‖∞ and x 7−→ d∞(x,O∞) are continuous on

the compact set P . Moreover, d∞(x,O∞) > 0 for all x ∈

P . Then, the function x 7−→ ‖Fx+g‖∞

d∞(x,O∞)
is continuous on

the compact set P . From the Weierstrass theorem, this

function is bounded. Therefore, there exists a c > 0 such

that
‖Fx+g‖∞

d∞(x,O∞)
≤ c for all x ∈ P .)

Using Fact 2 and Fact 3 we conclude that ‖u∗(k+ j|k−
1)−ue‖∞ ≤ c̄ jd∞(x(k−1),O∞) for all x(k−1) ∈ N (O∞,r),
where c̄ j > 0.

From Fact 1 and Fact 3 we have

d∞(x(k+ j|k−1),O∞) = min
x∈O∞

‖A⊗ j+1
⊗ x(k−1)⊕

A⊗ j
⊗B⊗u∗(k|k−1)⊕·· ·⊕B⊗u∗(k+ j|k−1)− x‖∞ ≤

min
x∈O∞

‖A⊗ j+1
⊗ x(k−1)⊕A⊗ j

⊗B⊗u∗(k|k−1)⊕·· ·⊕

B⊗u∗(k+ j|k−1)−A⊗ j+1
⊗ x⊕A⊗ j

⊗B⊗ue ⊕·· ·⊕

B⊗ue‖∞ ≤ d∞(x(k−1),O∞)⊕ c̄ jd∞(x(k−1),O∞)⊕·· ·⊕

c̄1d∞(x(k−1),O∞)≤ c̃ jd∞(x(k−1),O∞),∀ j∈{0, · · ·,N−1}

where c̃ j > 0. In conclusion, there exists a c2 > 1 such

that J∗(x(k − 1)) ≤ c2d∞(x(k − 1),O∞) for all x(k − 1) ∈
N (O∞,r). It is obvious that J∗(x(k−1))≥ d∞(x(k−1),O∞)
for all x(k−1) ∈ N(O∞,r).

We define the feasible set:

XRHC
N = {x ∈ R

n
ε : (15) is feasible for x(k−1) = x}

Theorem 2.6: If x(0)∈XRHC
N then all subsequent stages of

the optimization problem (15) will be feasible. Moreover, the

bounded set O∞ ∩{x : x ≥ B⊗ue} is exponentially stable for

the system (5a)–(5b) in closed-loop with the RHC controller

uRHC(k) = u∗(k|k−1).
Proof: The proof is done by induction. If (15) has an

optimal solution at step k−1 : ũ∗(k) = (u∗(k|k−1) · · ·u∗(k+
N − 1|k − 1)), then at step k a feasible solution is ufeas =
(u∗(k + 1|k − 1) · · ·u∗(k + N − 1|k − 1) ue) since O∞ is a

positively invariant set, x(k+N −1|k−1) ∈ O∞ and then ue

keeps the state in O∞. Using the receding horizon principle

the state at k becomes x(k) = A⊗ x(k−1)⊕B⊗uRHC(k) =
x(k|k−1).

Since x(k+N −1|k−1) ∈ O∞,we have

J∗(x(k))− J∗(x(k−1))≤J(x(k),ufeas)− J∗(x(k−1))≤

−d∞(x(k−1),O∞)

Therefore, {J∗(x(k))}k≥0 is a non-increasing sequence and

from Lemma 2.5 we have

d∞(x(k−1),O∞)≤ J∗(x(k−1))≤ c2d∞(x(k−1),O∞)

Using Theorem 1.3 and x(k) ≥ B ⊗ ue for all k ≥ 1, we

conclude that the compact set O∞ ∩ {x : x ≥ B ⊗ ue} is



exponentially stable for the system (5a) in closed-loop with

the RHC controller provided by (15).

Assuming x(k) ∈ O∞ we switch then to the feasible

controller ue for all the subsequent motion and we need finite

number of steps to attain xe. Indeed, x(k+ j) = A⊗ j
⊗x(k)⊕

(
⊕ j

i=1 A⊗ j−i
⊗B⊗ ue) ∈ O∞ for any j ≥ 1. Since A⊗ j

→ ε
the first term A⊗ j

⊗ x(k)→ ε while the second is equal to

xe for j ≥ n.

Interpretation of Lyapunov stability: In the context of

discrete-event systems, the Lyapunov stability of the compact

set O∞ ∩{x : x ≥ B⊗ue} implies boundedness of the buffer

levels.

III. TIME-OPTIMAL CONTROL

Given a maximum horizon length Nmax we now consider

the problem of ensuring that the completion times after N

events, where N ∈ {1,2, · · · ,Nmax} are less than or equal

to a specified target time α (x(N) ≤ α with the initial

conditions x(0) and u(0)), using the largest controller that

satisfies the state-input constraints (6). Note that such a

problem, but without considering input and state constraints,

was considered also in [4] in terms of lattice theory.

We define an equivalent system for (5a)– (5b) such that we

do not need to impose the constraint u(k+1)−u(k)≥−ρ ,

this constraint being satisfied automatically. We introduce

a new state vector xnew(k) = [xT (k) uT
new(k)]

T with the

dynamics:











xnew(k)=

[

A B−ρ

ε Em−ρ

]

⊗xnew(k−1)⊕

[

B

Em

]

⊗u(k)

ynew(k) = [C ε ]⊗ xnew(k)
(16)

and the extra constraint:

unew(k)≤ u(k) (17)

We denote with Anew =

[

A B−ρ
ε Em−ρ

]

, Bnew =

[

B

Em

]

and

Cnew = [C ε ]. Given the initial conditions x(0) and u(0)
for the system (5a)–(5b) with constraints (6) and the initial

conditions xnew(0) = [x(0)T u(0)T ]T and u(0) for the new

system (16) with the extra constraint (17) then by applying

the same input u(k) for both systems we obtain that the

first n components of xnew(k) coincide with x(k) and the last

m components of xnew(k) coincide with u(k). Note that the

constraints (6) for the normalized system (5a)– (5b) can be

written for the new system (16) as [H 0]xnew(k)+Gu(k) ≤
h, [0 Im]xnew(k)− Imu(k)≤ 0, i.e.

Hnewxnew(k)+Gnewu(k)≤ hnew (18)

where4 Hnew ≥ 0. Moreover, for the new system (16) the

target time is αnew = [αT ((−BT )⊗′α)T ]T . The time-optimal

control problem can be posed in terms of an optimization

4Here Hnew =

[

H 0
0 Im

]

,Gnew =

[

G

−Im

]

and hnew =

[

h

0

]

.

problem: given xnew := xnew(0), find



















N0(xnew) = max(N,u(1),··· ,u(N)) N

s.t. xnew( j) = Anew ⊗ xnew( j−1)⊕Bnew ⊗u( j)

Hnewxnew( j)+Gnewu( j)≤ hnew, ∀ j ∈ N

xnew(N)≤ αnew

making u(1), · · · ,u(N) as big as possible. We denote with X̃N

the set of initial states such that after N steps the trajectory

is below α applying the largest controller:

X̃N = {xnew : xnew(N)≤ αnew} (19)

We give first a lemma that will be useful in the sequel:

Lemma 3.1: [15] Suppose Z = {(x,u) : H̄x + Ḡu ≤ h̄},

with H̄ ≥ 0. Let X be defined as X = {x ∈R
n : ∃ u s.t. (x,u)∈

Z}. Then, X = {x : H̃x ≤ h̃}, where H̃ ≥ 0.

We determine the expression of X̃N using dynamic pro-

gramming. We initialize with X̃0 = {xnew : xnew ≤ αnew}. The

set X̃1 is defined as follows:

X̃1 = {xnew : ∃ u s.t. Anew ⊗ xnew ⊕Bnew ⊗u ∈ X̃0,

Hnew(Anew ⊗ xnew ⊕Bnew ⊗u)+Gnewu ≤ hnew}

= {xnew : ∃ u s.t. H̄1xnew + Ḡ1u ≤ h̄1}

for some matrices H̄1, Ḡ1 and h̄1, with H̄1 ≥ 0. Using Lemma

3.1 we conclude: X̃1 = {xnew : H̃1xnew ≤ h̃1}, with H̃1 ≥ 0.

Moreover, we search for the largest controller u. In order to

find a Pareto optimal u we use the following criterion:

max
u

m

∑
i=1

ui s.t. H̄1xnew + Ḡ1u ≤ h̄1

Solving this optimization problem as a parametric linear

program with the parameter xnew we find the time-optimal

controller ut
1(·) : X̃1 → R

m which is a continuous piecewise

affine function of the state xnew.

Iterating this procedure backwards, we can compute

X̃N = {xnew : ∃ u s.t. Anew ⊗ xnew ⊕Bnew ⊗u ∈ X̃N−1,

Hnew(Anew ⊗ xnew ⊕Bnew ⊗u)+Gnewu ≤ hnew}

= {xnew : ∃ u s.t. H̄Nxnew + ḠNu ≤ h̄N}

with matrix H̄N having all entries non-negative. Using

Lemma (3.1) we obtain that X̃N = {xnew : H̃Nxnew ≤ h̃N}, with

H̃N ≥ 0.

Similarly, we obtain the piecewise affine time-optimal

controller ut
N(·) : X̃N → R

m by solving a parametric linear

program in xnew:

max
u

m

∑
j=1

u j s.t. H̄Nxnew + ḠNu ≤ h̄N .

It follows that

N0(xnew) = max{N ∈ Nmax : xnew ∈ X̃N}.

The time-optimal controller is implemented as follows:

1) For each N ∈ Nmax, find X̃N . Define N := N0(xnew(0)).
2) Apply the control policy u(k) = ut

N−k+1(xnew(k − 1))
for k = 1,2, · · · ,N0(xnew(0)).
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Fig. 1. The RHC controller and the time-optimal controller.

IV. EXAMPLE

We consider the following system:

xsys(k) =









ε 1 ε ε
ε ε 2 ε
ε ε ε 3

4 ε ε ε









⊗ xsys(k−1)⊕









2

ε
ε
ε









⊗usys(k)

For this example the MPA eigenvalue is λ = 2.5. We

consider the reference signal rsys(k) = [17 15 1 10]T +4.5k.

We take the following constraints:










usys(k)−usys(k+1)≤ 0

xsys,1(k)−usys(k)≤ 4

xsys,2(k)− xsys,1(k)≤ 9

(20)

Note that the constraint xsys,2(k)−xsys,1(k)≤ 9 is implied by

the more conservative constraint xsys,2(k)−usys(k)≤ 11.

We obtain for the normalized system the invariant set

O∞ = O3 = {x ∈ R
n
ε :









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









x ≤









5

7

9

11









} (21)

The initial conditions are x(0) = [20 30 40 50]T ,u(0) =
20. The plots correspond to the normalized system. Fig.

1 displays both: the RHC controller and the time optimal

controller while the constraints for the RHC controller are

depicted in Fig. 2. Note that the RHC controller keeps the

system behavior as close as possible to the constraints.

V. CONCLUSIONS

In this paper we have discussed the problem of stabi-

lization of an MPL system using an RHC approach. We

have considered state-input constraints and using a dual-

mode RHC scheme we have proved that the system is

exponentially stable in the sense of Lyapunov in the closed-

loop with the RHC controller. Moreover the optimization

problem that is solved at each step is a linear program

for which efficient algorithms exist. We have also derived

a time-optimal controller that satisfies the constraints using

parametric linear programming.
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