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_ Abstract—The impact of noise on cellular networks and difficulty because of the inefficient simulation-dependent
its interplay with their rich dynamics are increasingly being  stochastic methods that are used. The computational burden
characterized as important phenomena that must be thorougly ot inyestigating rare stochastic events is exacerbatedhby t

investigated for a useful understanding of biological dynanics. . - . . . .
At the same time, the mathematical modeling and analysis of necessity of running extensive simulations in order to uwapt

these networks in a stochastic setting presents a number ohal- ~ €ve€n one occurrence of th_e event of interest, anq DFOWiY
lenges, such as the need for a large number of computationgll large numbers of simulations in order to compile statistics
expensive stochastic simulations to collect statistics abt the |n this paper, we illustrate the use of new methods based on
occurrence of important events or correlate their occurrerce g m of squares optimization, linear programming, and the

with the noise intensity. In this paper, we demonstrate the h . .
use of new techniques of stochastic reachability analysisot SOSTOOLS to tackle such stochastic reachability analysis

address these problems. Specifically, we study the problenf o Problems algorithmically. Specifically, we demonstrate th
computing bounds on the probability of a biological stochasic computation of bounds on the probability of occurrence of
process to reach certain parts of the state space in a finite nojse-driven biological events, in addition to the deperde
time. The techniques presented are based on the algorithmic f {ig probability on noise intensity. As an illustrationge
construction of barrier certificates using convex Optlleleﬂ, t th h lvsi f th . ind d itchi
and are illustrated through the use of a biologically important present a thorough analysis ,0, . € n0|se-.|n uced switc Ing
system: the bacteriophaged genetic switch. between the two stable equilibria of an important genetic
network implemented in the bacteriophate

|I. INTRODUCTION
Il. STOCHASTIC MODELING OF BIOLOGICAL NETWORKS

The C?”ufr networks thaF |mplemer}t tl]|fes lpl)rogrglms The stochastic investigation of biological systems mainly
operate in the uncertain environment of the cell, and atRyies o the formulation of the Chemical Master Equation
continuously exposed to environmental noise, biochemic ME), a differential equation for the time evolution of
noise resulting from the discrete nature of the molecul robabilities. Here, we only give the expression for the CME

ﬁopulat_lons,_an(rj] t_hermia\l fll:ctuat|or!s th?rthlea(iclfto sto:(xhas nd refer the reader to [9] or [10] for a more detailed account
uctuations in their molecular species. The effects of such |~ chemically reacting system involving molecu-

discreteness and stochasticity become especially nbteea, speciesSy,...Sy reacting throughM reaction chan-

when the molecular populations of some reactant speciﬁgls R;...Ry ’”\}\}e define the state vector aZ(t) —

are very small, or if the dynamic structure of the systeanl(t) i;\',(t)]'T whereZi(t), i = 1,2..,N is a random num-
; . . o . 4 , i(t),i=12.,

makes it susceptible to noise amplification. Physical ewige ber that defines the number of molecules of speGeat

p°‘”tif‘9 to purely stochastic phenomena in_ a number Yme t. We assume that the system is well stirred and in
genetic networks is abundgnt [11, [.2]’ [3]. _N0|§e dep?nde%ermal equilibrium. Under these circumstances, each-reac
phenomena become particularly interesting in oscnlator}{ n channeR, is characterized by propensity function @
systems and multi-stable systems, where the interaction hd anN-dimensionaktate change vectoks- [Sik....su]T
large noise intensities could lead to random switching fronf, e vectors, represents the stoichiometric change of the

one cellular state to the other [4]. Even in the presence olecular species by aRy reaction, whileag(z)dt is the
small noise intensities, switching events can still happen robability that oneRy reaction will occur in stat&(t) = z
long time scales. It has been hypothesized that such rage laduring the next infinitesimal time intervalt. We leta(-) =
deviation events can be responsible for important failur $1(),...au(-)]T be the vector of propensity functions and

of cellular machinery, leading to cancer [5] and the releasg {Sdker w be the stoichiometry matrix. The CME
of latent viruses from their quiescent state [7], [6]. Thef th B t is th . bgp(z,t‘zo,to) M B
characterization of these events and the statistics of thep: . © >Y>cm 1S then given ot . ZK:l[ak(Z.
occurrence is therefore of great importance, but also cﬁtgre&)P(z_s"t.Lzo’tO) _ak(z.)P(Z’t|Z°’t°)]’ vyhereP(z,t|zo,to) IS

' the probability that at time, Z(t) = z given thatZ(ty) = 2
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a single linear (but generally infinite) expressih%”;t) = clear that when the graph corresponding to the Markov chain
B-P(2°;t), where P(27;t) := [P(x1,t),P(xa,1),... |7, is is connected and there is no absorbing state (i.e., aistath
the complete probability density state vector at timend that p;; = 1) then such a probability will be equal to one.
B is the state reaction matrix The columns and rows of Thus, to get a meaningful probabilistic interpretatiormso
B are uniquely defined by the system’s stoichiometry anstates should be made absorbing. In this case, this prdjabil
the choice ofZ". Beginning at any state;, there can be a can be interpreted as the probability of reachi#g before
maximum ofM possible reactions; each reaction leads to eeaching the absorbing states.
different statex; = x; +sj. We will refer to this formulation To solve the above problem, we propose to find an
as the “Discretized CME". appropriate barrier certificaix) wherex € 2", from which

Despite the fairly straight-forward form and interpretawe can deduce an upper bound The idea is to find
tion of the CME, it is not solvable exactly for any butB(x) such that for allx[0] € 2 the processB(x[n]) is a
systems that are “closed”, in the sense that reactants arennegative supermartingale, i.e., its expected values doe
modeled to exist in a fixed volume and are not permittedot increase along time. The justification for this choice
to interact beyond the confines of that volume. Howevegomes from a general result for discrete time nonnegative
models of cellular networks tend not to be closed, due to treipermartingales [14] that we state without proof, and a
prevalence of reactions that re-introduce into the reactidheorem that provides the desired upper bound.
volume new copies of reactants through events such asLemma 1:[14] Let B(x[n]) be a nonnegative supermartin-
new protein synthesis. An alternative to solving the CMBale. Then, for any initial conditior[0] € 2",
is to generate stochastic sample realizations of the psoces B(xo)
whose probability density function is described by the CME. P{ X[0] = Xo} < I 2
This can be done using Monte Carlo techniques such as
the Gillespie stochastic simulation algorithm (SSA) [11].
I-!owe_ver, the SSA becomes prohibitivgly in.efficiem in many%’ 2, be given. Suppose there exist real scaBift), B(2),
situations, such as when the problem is stiff. To circumvent B

o o ..., B(N), such that
this stiffness, it is common to aggregate many elementary
reactions into elementary-complex reactions. One common B(x)>0 Vvxe Z, 3)
nt:ethod to do that is t?] re(ljuce the deterministic desczimfonI B(X)>1 Vxe 2y, (4)
the system using Michaelis-Menten approximations (siagu
perturbation), then use the resulting expressions to define B() < VN vx e Zo, )
the complex reactions and their propensities [12]. With B(x) > pr,jB(j), vxe 2 6)

=

sup B(x[n]) = A

0<n<co

Theorem 2:Let the discrete Markov chaiR and the sets

this elementary-complex propensity-based reduced ssticha
description, one can carry out a diffusion approximationh
that transforms the continuous-time discrete-state Markd
process into a stochastic differential equation (SDE)echll
the Chemical Langevin Equation (CLE) [13]. Here, we onl
state the final result. I1&(Z), a andS are as defined before,
then the deterministic description of the system (also kno
as the reaction-rate equations) is given %j: SgZ) and
the SDE generated by the diffusion approximation is

enP{x[n] € 2y for somen>0 | x[0] € 2o} <Y.

The proof of the theorem follows in the same manner as
);he proof of Theorem 7 in [17]. Note thgtcan be chosen at
most equal to one, since when= 1, the functionB(x) = 1

Will satisfy (3)—(6). The intuitive idea behind the theorem
Is as follows. The functioB(x) is a supermartingale of the
process, and therefore its value is likely to stay constant o
decrease as time increases. When we start from a lowet initia

dZ =SgaZ)dt+ Sy/diaga(Z))dw(t) (1) value of B(x) (i.e., asy gets smaller) it becomes less likely
for the trajectory to reach the unsafe set, on which the value
. ALGORITHMS FORSTOCHASTIC ANALYSIS of B(x) is greater than or equal to one. This is quantified by
A. Stochastic Reachability Analysis for the DiscretizedECM Lemma 1, which provides a Chebyshev-like inequality for
Using Linear Programming bounding the probability of the distribution tail.

With regard to computation, notice that the conditions

)—(6) are nothing but a linear programming (LP) problem,
where the decision variables are the scaBfs. Further-
more,y can be chosen as the objective function whose value

resents the transition probability from statéo statej. We is to be minimized, to get an upper bound that is as tight as

i — 2y T L2
denote a realization of the stochastic proces(bj where POssible. Indeed, léb=[B(1) ... B(L") ]" € R™ denote
n=0,1,2,.... In addition, we let2; C 2 be the initial set, the barrier certificate, whelleis the number of molecules of

" set. For this Systemeach species, and |t be the probability transition matrix.
Jhe reachability problem can then be written as

To formulate the stochastic reachability analysis proble
in a general setting, we consider a discrete Markov cha
with L states, represented as the s&t= {1,...,L}, and
transition probabilityP, where the(i, j)-th entry p;; rep-

and.Z, C 2 be some “decisive/unsafe
we would like to estimate, or upper-bound the probabilit
that a sample patkn] starting from.2; reaches?, at some minimize vy

future time. In other words, we would like to fingde [0, 1] subject to binit <y, bunsafe>1 @)
such thaP{x[n] € 2, for somen>0 | x[0] € Zo} <Yy. Itis b>0, Pb<hb,



whereby,;; is the vector of values of the barrier in the initial the optimization will be the tightest upper bound for a given

set, bunsafe are the values in the unsafe set, apds the set of barrier certificates. Obviously, as we include more

probability bound. candidate barrier certificates in this set, we may get a bette

. . . bound, although there is a trade-off between using a larger

B. Stochastic Reachability Analysis of SDEs set and the computational complexity of finding a barrier
For our exposition in the SDE case, we consider a congertificate within the set.

plete probability spac€Q,.#,P) and a standar®™-valued

Wiener processv defined on this space [15]. We mostly IV. THE BACTERIOPHAGEA GENETIC SWITCH
focus on stochastic differential equations of the form One of the best studied examples of multistability in
B genetic systems is the bacteriophagesystem [3]. Phages
dx(t) = f(x(t))dt +g(x(t))dw(t) (8) are viral organisms that can either be in the lysogenicrftate

where x(t) € R" for all t > 0. We again denote the stateOr Iytic (active) state. If following its infection of. coli the
space, the initial set, and the decisive/unsafe set rasplyct A-phage virus enters the lysogenic pathway, it represses its
by 2,25, and 2, all of which are subsets dR" and OWn developmental functions and integrates its DNA into
assumed compact. To guarantee the existence and uniqueriBgshost chromosome. Otherwise, it enters the lytic pathway
of solution, we will also assume that bothand g satisfy ~and is active. The dynamics of the transcriptional network
the local Lipschitz condition and the linear growth cormfiti  underlying the formation of these states are very complex,
on 2 . For boundedZ’, the last condition can be rep|acedand have been thOfOUgh'y studied. Instead of describirlg iti
by the boundedness dfandg on 2. full complexity, we limit ourselves here to a simplified mbde

Since in genera| the procesgét) is not guaranteed to that still captures the essence of its bistability, in addito
always lie inside the se’, we define the stopped processthe interplay between noise and dynamics in its operation.
corresponding tx(t) and 2" as follows. A. The Bacteriophaaa Model

Definition 3: Suppose that is the first time of exit of =~ . 'ophag . . )
x(t) from the open set 142°). The stopped processtT is The simple model we adopt was first discussed in [8], and
defined byx(t) 2 x(t) for t < 1, andx{t) £ x(t) for t > T. is intended to be a minimal model that captures the bistable

The stopped processt] satisfies various properties. Fornature of theA system. The model describes the dynamics

example, it inherits the right continuity and strong Markoy  ©f the CI protein, the product of thel gene. Acting as a
property ofx(t). Furthermore, in most cases the infinitesidimer, Cl can regulate its own synthesis by binding to the
mal generator corresponding gt ) is identical to the one C! 9éne promoter regio®R, and increasing transcription,
corresponding tox(t) on the set It2’), and is equal to ©OF 0 gene promotedRs and repressing transcription. It can
zero outside of the set [16]. This will be implicitly assumed?!SO bind to a third gene promot@#y, which is ignored
throughout the analysis. in this model for simplicity. The fast binding reactionsge.

Having defined the system and the stopped progéss ~ binding and dissociation) are assumed to be in equilibrium
we state the continuous stochastic verification problem 44th respect to the slow reactions (e.g., protein synthesis

follows: given the system (8) and the se#s, 25 and 24, degradation). Under this assumption, and following [8], we
find y € [0,1] such thaP{X(t) € 2; for somet > 0|X(0)} < let X, Xz, andD (jenote the_repressor, repressor dlmer! and
y for all X(0) € 25. Again, our approach will be based onPNA promoter .S|te respectively. The equilibrium reactions
finding an appropriate barrier certificaéx) from which an ¢an then be written as

upper boundy is deduced.

Theorem 4 ([17]):Let the SDE (8) and the sets Ks Ky
', Zo, Zy be given, and consider the stopped procgss ~ D+ X, =DX;, DXp+ Xy = DXpXo (13)
starting at somex(0) € Zp. Suppose there exists a twice
continuously differentiable functioB: 2~ — R, such that

K1 Kz
2X =Xy, D4+ Xo = DXy,

where theDX, and DX; complexes denote binding to the
OR, or OR; sites, respectivelyDX,X, denotes binding to
B(x) >0V xeZ (9) both sites, and thi; are forward equilibrium constants. We
B(X) > 1V x€ 2 (10) further setKz ~ K_z and K4 ~ 5Ko. N
1) The One-Dimensional Modeln addition to the fast
B(X) <y V xe& Zo (11) reactions given above, the slow reactions are productidn an
JB 1 0°B degradation of proteins given by the reactions
o5 f0+ éTrace<gT(x)Wg(x)) <0VxeZ (12 9 P 9 y
k kg
then P{X(t) € 2, for somet > 0|X(0)} <. DXe+P—= DX+ PrnX, X—A (14)
The proof of Theorem 4 can be found in [17]. Anwhere P denotes the concentration of RNA polymerase,
upper boundy and a barrier certificat®(x) which certifies and n is the number of proteins per mRNA transcript. To
the upper bound can be computed by formulating condimodel the system, we state variablexas[X],y = [X;],d =
tions (9)-(12) as a sum of squares optimization probledD],u= [DX;],v=[DX;], andz= [DX;X>], where[.] denotes
(see [17]). This problem can be solved using the softwam@ncentration. The evolution of the concentration of the
SOSTOOLS [18]. The minimum value of obtained from repressox can then be described by= —2kix?+ 2k 1y +
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Fig. 1. Switching between equilibria in the system caused by noise. the transition probabilitieb(x) = %, yim, km and
yox are calculated from (16)—(17). Our state space is a 2-
nkpou — kyX + g, where g is a basal rate of production. dimensional lattice, part of which is shown in Figure 2.
Because the reactions in (13) are fagt,u, andd have ~ Computing probability of reaching some states on this
algebraic expressions in terms xf After eliminating their |attice from others can be expressed as the LP (7). Thus
dynamics through singular perturbation and rescaling thge can address questions such as: what is the probability of
repressor concentratior and time through a change of reaching the unsafe state before reaching given interireedia
variables [8], the resulting one-dimensional modeX@with  states? This is done by making the given intermediate states
some abuse of notation) is then given by “absorbing”, which is the same as removing the constraint
_ ax2 corresponding to that node froRb < b. We solve the LP
X= 1520158 yx+1 (15) for a 3x 3 lattice, and obtain the boungd= 0.0063, which
i . corresponds to the probability of going fromy to 2y
We will be concerned with the case where the systefefore first going to states i?j. The problem setup and
has three equilibria: two stable and one unstable. In thl%sulting barrier values are shown in Figure 3.
bistable case, the determir!i_sti(_: system trajectoriesseiille  The complexity of this method scales exponentially with
in one of the stable equilibria at steady-state dependinge number of species, therefore it is only useful for small

on initial condition. However, the presence of biochemicgh ohlems. Moreover, certain instances of this LP are feagil
noise can cause accidental switching between the two S{ea‘éM-conditioned), which motivates us to look at stochesti

states. One possible behavior obtained using the SSA dgscriptions of the system at lower levels of resolution.
depicted in Figure 1. Later we will be concerned with the

characterization of the statistics of such switching esent C. Numerical Results for the SDE Model

2) The Two-Dimensional ModelThe model for the slow 1) SDE Analysis of the 1-D ModeNVe start by incor-
reactions presented above is particularly simple. Next, wgorating additive noise in the deterministic rate equatibn
present a 2-D description of the system while giving a (15). Taking the variable to represent the repressor number
more plausible description of the biochemical noise aiff¢ct within a colony of cells, we can regard an additive white
the system. We start by introducing a crucial step that wasoise term as an external field accounting for the impact of
eliminated from the previous model: translation. Recaditth the the environmental noise. The resulting SDE is
in the previous model is produced in a single step process,
then degraded. More realistically, it should be produced dx(t) = f(x)dt+od(t) (18)
through a two step process of transcription first, then trangyhere f(x) is the right-hand side of (15§ (t) is a Wiener
lation. The resulting 2-D model is1= ki pou—kym+0q and  process, ands is a scalar. While in the deterministic de-
% = nkrm— kmX+ 2k_1y — 2kix?, wherem is mRNA, andx  scription, trajectories that reach either steady stateectim
is protein. Following [8], a change of variables is carried 0 rest there, in the presence of noise they never do so. One can

and the values of the parameters are fixed to obtain: then ask whether there is a large probability of noise-ieduc
) 5052 switching between equilibria within a given time frame,rihe
m = ——————150M+1 16 ibe i i i ise i i
. 1122 1 50 + (16)  describe its correlation with the noise intensity. We use th
X = 10M-X a7

This higher order system, with the chosen parameter values, 002 002 @%u

also exhibits bistability. (L,3) *(23) :3)

B. Numerical Results for the Discretized CME 2-D Model 9('?12) .%882'555

Here we consider thel-phage example described in 06 129.39

the CME formulation. Rather than accounting for all of 1) *(3.1)

the elementary reactions occurring in the system (i.e. (13) 2o

and(14)), we use elementary complex reactions, leading to

D b0 m+D, m- @ m Ko m+X, andx 2 ®, where Fig. 3. Values of the barrier certificate.



Equilibria: Probability of false switching for o = 0.5

50x°

= |2 . X, = 0.560 (stable)
dx [1+2X2+5X4 15% +1jdt+d{(t) 3

X, = 0.098 (stable)
X, = 0.255 (unstable)
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0.04 2r
X, ={x OR | (x-0.098) -0.02* < 0}
X, ={xOR|(x-0.56)* -r* <0}
X ={xOR | x(x -1) <0}

Fig. 4. Setup for computing the bound of the probability dédaswitching

b f noise, f t 18). . - o .
ecause of noise, for system (18) Fig. 5. Probability of false switching from the high steadwts to the

low steady state under the influence of noise as a functionntd.tThe

sum of squares machinery as an efficient algorithmic methdthe line depicts probability bounds computed through tke af barrier
for such investigations. We specifically illustrate thisirio gggg“’rzge“sz a‘(’tvlg'r']es Lhtﬁa?nrgg’}r(')'”me d?ri%lt(:tssinfﬂ;ﬁ%r?s%?ltlrnggpmed from
by investigating the situation where the system given by (15
is started close to one of the two stable equilibria, and an .

. . . ) and each run had the same computational burden. In general,
estimate of the the probability of transition to a regionuard babiliti d using barri ifi
the other stable equilibrium is computed. We will refer tisth pro a_||t|e5 computed using arrier _gertl lcates are con-
as the bound on the probability of falsé switching cause ervative bounds on the true probabilities. Neverthelass,
by noise The setup for this problem is shown in Figure 4| lustrated here, these bounds can provide useful infaonat
where we are interested in whether an initial trajectoryrfro The same techniques can again be_ used to compute
a point inside a set of variable sizecentered at the high probability lower bounds. For example, F_lgure 6 shows the
equilibrium 2% — {x € R|(x— 0.56)>— 12 < O} can ever upper and lower bounds for the probability of escaping a

reach a region around the other equilibriudy — {x neighborhood of the high equilibrium in a finite time horizon

N 2 < ) as the noise intensity increases. It is interesting to rudé t
ﬂéﬁesgggﬁ&: {22%;&(3}_ ]\-/)vh<eg}the total state-space c)fthe probability goes sharply from 0 to 1 (indicating a phase

transition) as the noise is increased, and that this teakniq

This question, however, is ill-posed if the time horizon an be used to estimate the critical noise intensity nepgssa
over which this probability is to be computed is not bounde(f y neog

A more meaningful biological question is the following. or escaping the given region around the equilibrium.

Starting from a region around one equilibrium, estimate theI 2) S?]E dAnaIy§is_ .Of the f2-hD 2I\7/’I[())deli;nl .theh phage
probability of reaching the other equilibrium a finite time plane, the eterm|n|st|_c part ol the ->Mode! IS snown In
horizon say fromt — 0 to 2 non-dimensional time units. Figure 7. Rather than introducing additive noise, we casrsid

Time is now another variable in the system, and we Corp_ere more biologically plausible biochemical fluctuations

struct a time-dependeri(x,t) to estimate this probability. As described previously, we replace the elementary

We also increase the state-space adequately, so that Eﬁg%tions by com_p_lex birth ind ;jeath {gactilo?ns\rjvo_erl]n”dh
“escape” probability is reduced significantly. Asis varied x whose propensities are taken from (16)—(17). With these

in this modified problem, results from our methodolog)plementgry-comple_x propensities generating a reduceet ord
are compared with probability estimates obtained by diret?(toc_h"’lsFIC descrlptl_on qf the-phage system, we carry_Ol_Jt
simulations of the SDE in (18). Whea = 1, 98% of the a diffusion app_rOX|mat|on that_tran_sforms_ the des_cr|pt|_0n
simulations enter the region around the other equilibriun?,f the system _mto a StOCh‘F?‘St'C d|fferent|al_ gquaﬂon (ie.
whereas our methodology gives an upper boundBof: a CLE). Following (1), the final (;ZLE describing the 2-D
0.99. Wheno = 0.5, direct simulations gives 0.57, and our? System becomesdrh = (% — 150M+ 1) dt +
methodology returng8 = 0.6. We see the expected result
that aso is decreased, the probability of false switching is
decreased, and the upper bounds are close to the probability
estimates obtained by direct simulations.

Using the same methodology, we can also address the
dependence of the switching probability from one steady-
state to the other on time and for a given noise intensity.
The upper bound on this probability is plotted in Figure 5 as
a function of time, along with probability estimates obtadn
from simulations. It can be seen that the two plots are
satisfactorily close to each other. However, while a large
number of simulations is needed to compute the probability
:ﬁgm::g?; tm;hinat‘ngglcc\?aaéS:22recsszg?:ggog]ailrigl?ite;ﬁs' tr?ileg. 6. Upper and lower bounds on probability of escapingightmsrhood

) . _of the high equilibrium within some finite time interval, cputed using
method generated good upper bounds in a fraction of timrrier certificates.




. 2D bistable system Upper bound on probability of false switching for t 1 [0,10]
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Fig. 7. Phase plane for system (16)—(17). Equilibria arenshby ‘+
(stable) and[™’ (unstable). Solid lines are trajectories from initial ctitions
denoted by **'. The solid thick line is a separatix dividinget phase plane
in two, so that if the deterministic system is initialized ane region then
its trajectory flows towards one equilibrium, whereas in dftger region the
trajectory flows to the other equilibrium.

Fig. 8. Upper bound on switching probability from the higleguilibrium
as a function of the number of molecules in the system

of promising new methods to study the problem, it also
uncovered research challenges that must be overcome to
broaden the applicability of the methods and investigaté th

2024 4+ /1500, 4 limitations. A major challenge that must addressed is the
q(1+2%2+5%%) q . . . . .
issue of scalability. For example, in the discretized CME

5o /10m %
(10m—x)dt4_- Td‘r“'_ \/;d'&" o . description, the complexity scales exponentially with the
Here again, we consider whether from an initial regiomymper of species in the system. Furthermore, the resulting
around the low equilibrium defined byo = {x € R|(X— | ps can be ill-conditioned. These issues are currently the

dés o
Nk and dX

0.098)2 + (10m — 0.098)2 — 0.022 < 0} one can reach a
region around the high equilibrium defined b¥;, = {x €
R|(x — 0.560)2 + (10m— 0.560)° — 0.05% < 0}, in a certain
time span, say € [0,10] for different noise intensities. In [1]
this case, and for a fixed structure of the system, different
noise intensities can be achieved by changing the numb%
of molecules in the system. We therefore define- Nx

for equation (1).N is commonly called the system size.
This change of variables scales the number of moleculeg]
without modifying the dynamics of the deterministic system
However, the associated noise intensity grows as the squal
root of N. With N as our varying noise intensity, we attempt
to answer the false switching question. We construct cers]
tificatesB(x,t) algorithmically, again using the methodology ]
described earlier. Note that the non-polynomial naturenef t
vector field (the way noise affects the system is through thg7]
square root of some polynomial) does not cause any prob[é]
lems, as these terms appeaguaredin the expressions to be
tested — see condition (12) in Theorem 4. The upper boungb]
on this probability as function oN is given in Figure 8. 0]
Notice the expected fact that Blsincrease, therefore yielding
lower noise affecting the system, the probability of falsg11]
switching decreases. As in the previous case, this result Wg\z]
obtained without time consuming computations and was n ]t

based on numerous simulations of the corresponding SDE.
[13]

V. CONCLUSIONS ANDFUTURE WORK [14]

In this paper, we have illustrated how the sum of squares
. o &15]
technique can be used to tackle algorithmically a number
of issues related to the stochastic reachability analykis e
nonlinear systems. In particular, we used barrier certdiga
o ity o7l
to compute certified upper bounds on the probability o
reaching a region around one stable steady-state from a
region around the other in a specified time interval, and d&8l
a function of the noise intensity.
While the presented example illustrates a successful use

subject of an active research effort.
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