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Abstract— The impact of noise on cellular networks and
its interplay with their rich dynamics are increasingly being
characterized as important phenomena that must be thoroughly
investigated for a useful understanding of biological dynamics.
At the same time, the mathematical modeling and analysis of
these networks in a stochastic setting presents a number of chal-
lenges, such as the need for a large number of computationally
expensive stochastic simulations to collect statistics about the
occurrence of important events or correlate their occurrence
with the noise intensity. In this paper, we demonstrate the
use of new techniques of stochastic reachability analysis to
address these problems. Specifically, we study the problem of
computing bounds on the probability of a biological stochastic
process to reach certain parts of the state space in a finite
time. The techniques presented are based on the algorithmic
construction of barrier certificates using convex optimization,
and are illustrated through the use of a biologically important
system: the bacteriophageλ genetic switch.

I. I NTRODUCTION

The cellular networks that implement life’s programs
operate in the uncertain environment of the cell, and are
continuously exposed to environmental noise, biochemical
noise resulting from the discrete nature of the molecular
populations, and thermal fluctuations that lead to stochastic
fluctuations in their molecular species. The effects of such
discreteness and stochasticity become especially noticeable
when the molecular populations of some reactant species
are very small, or if the dynamic structure of the system
makes it susceptible to noise amplification. Physical evidence
pointing to purely stochastic phenomena in a number of
genetic networks is abundant [1], [2], [3]. Noise dependent
phenomena become particularly interesting in oscillatory
systems and multi-stable systems, where the interaction of
large noise intensities could lead to random switching from
one cellular state to the other [4]. Even in the presence of
small noise intensities, switching events can still happenon
long time scales. It has been hypothesized that such rare large
deviation events can be responsible for important failures
of cellular machinery, leading to cancer [5] and the release
of latent viruses from their quiescent state [7], [6]. The
characterization of these events and the statistics of their
occurrence is therefore of great importance, but also of great
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difficulty because of the inefficient simulation-dependent
stochastic methods that are used. The computational burden
of investigating rare stochastic events is exacerbated by the
necessity of running extensive simulations in order to capture
even one occurrence of the event of interest, and prohibitively
large numbers of simulations in order to compile statistics.
In this paper, we illustrate the use of new methods based on
sum of squares optimization, linear programming, and the
SOSTOOLS to tackle such stochastic reachability analysis
problems algorithmically. Specifically, we demonstrate the
computation of bounds on the probability of occurrence of
noise-driven biological events, in addition to the dependence
of this probability on noise intensity. As an illustration,we
present a thorough analysis of the noise-induced switching
between the two stable equilibria of an important genetic
network implemented in the bacteriophageλ .

II. STOCHASTIC MODELING OF BIOLOGICAL NETWORKS

The stochastic investigation of biological systems mainly
relies on the formulation of the Chemical Master Equation
(CME), a differential equation for the time evolution of
probabilities. Here, we only give the expression for the CME
and refer the reader to [9] or [10] for a more detailed account.

In a chemically reacting system involvingN molecu-
lar speciesS1, ....SN reacting throughM reaction chan-
nels R1....RM, we define the state vector asZ(t) =
[Z1(t)....ZN(t)]T , whereZi(t), i = 1,2..,N is a random num-
ber that defines the number of molecules of speciesSi at
time t. We assume that the system is well stirred and in
thermal equilibrium. Under these circumstances, each reac-
tion channelRk is characterized by apropensity function ak
and anN-dimensionalstate change vector sk = [s1k....sNk]

T .
The vectorsk represents the stoichiometric change of the
molecular species by anRk reaction, whileak(z)dt is the
probability that oneRk reaction will occur in stateZ(t) = z
during the next infinitesimal time intervaldt. We let a(·) =
[a1(·), ...,aM(·)]T be the vector of propensity functions and
S = {sk}k=1,...,M be the stoichiometry matrix. The CME
for the system is then given by∂P(z,t|z0,t0)

∂ t = ∑M
k=1[ak(z−

sk)P(z−sk,t|z0,t0)−ak(z)P(z,t|z0,t0)], whereP(z,t|z0,t0) is
the probability that at timet, Z(t) = z given thatZ(t0) = z0

(z and z0 are integers). The CME also assumes a Markov
Chain interpretation. Essentially, givenN possible molecular
species of interest, the set of all possible states isN

N. One
cana priori fix a sequencex1,x2, . . . of elements inNN and
define X := [x1,x2, . . . ]T . The particular sequence may
be chosen to visit every element ofN

N. In this case, the
choice ofX corresponds to a particular enumeration of the
spaceN

N. OnceX is selected, the CME can be written as



a single linear (but generally infinite) expressionṖ(X ; t) =
B ·P(X ; t), where P(X ; t) := [P(x1,t),P(x2,t), . . . ]T , is
the complete probability density state vector at timet, and
B is the state reaction matrix. The columns and rows of
B are uniquely defined by the system’s stoichiometry and
the choice ofX . Beginning at any state,xi , there can be a
maximum ofM possible reactions; each reaction leads to a
different state:x j = xi +sj . We will refer to this formulation
as the “Discretized CME”.

Despite the fairly straight-forward form and interpreta-
tion of the CME, it is not solvable exactly for any but
systems that are “closed”, in the sense that reactants are
modeled to exist in a fixed volume and are not permitted
to interact beyond the confines of that volume. However,
models of cellular networks tend not to be closed, due to the
prevalence of reactions that re-introduce into the reaction
volume new copies of reactants through events such as
new protein synthesis. An alternative to solving the CME
is to generate stochastic sample realizations of the process
whose probability density function is described by the CME.
This can be done using Monte Carlo techniques such as
the Gillespie stochastic simulation algorithm (SSA) [11].
However, the SSA becomes prohibitively inefficient in many
situations, such as when the problem is stiff. To circumvent
this stiffness, it is common to aggregate many elementary
reactions into elementary-complex reactions. One common
method to do that is to reduce the deterministic descriptionof
the system using Michaelis-Menten approximations (singular
perturbation), then use the resulting expressions to define
the complex reactions and their propensities [12]. With
this elementary-complex propensity-based reduced stochastic
description, one can carry out a diffusion approximation
that transforms the continuous-time discrete-state Markov
process into a stochastic differential equation (SDE) called
the Chemical Langevin Equation (CLE) [13]. Here, we only
state the final result. Ifai(Z), a andS are as defined before,
then the deterministic description of the system (also know
as the reaction-rate equations) is given bydZ

dt = Sa(Z) and
the SDE generated by the diffusion approximation is

dZ = Sa(Z)dt+S
√

diag(a(Z))dw(t) (1)

III. A LGORITHMS FORSTOCHASTIC ANALYSIS

A. Stochastic Reachability Analysis for the Discretized CME
Using Linear Programming

To formulate the stochastic reachability analysis problem
in a general setting, we consider a discrete Markov chain
with L states, represented as the setX = {1, ...,L}, and
transition probabilityP, where the(i, j)-th entry pi, j rep-
resents the transition probability from statei to state j. We
denote a realization of the stochastic process byx[n], where
n= 0,1,2, . . .. In addition, we letX0 ⊆ X be the initial set,
andXu ⊆X be some “decisive/unsafe” set. For this system,
we would like to estimate, or upper-bound the probability
that a sample pathx[n] starting fromX0 reachesXu at some
future time. In other words, we would like to findγ ∈ [0,1]
such thatP{x[n]∈Xu for somen≥ 0 | x[0]∈X0}≤ γ. It is

clear that when the graph corresponding to the Markov chain
is connected and there is no absorbing state (i.e., a statei such
that pi,i = 1) then such a probability will be equal to one.
Thus, to get a meaningful probabilistic interpretation, some
states should be made absorbing. In this case, this probability
can be interpreted as the probability of reachingXu before
reaching the absorbing states.

To solve the above problem, we propose to find an
appropriate barrier certificateB(x) wherex∈X , from which
we can deduce an upper boundγ. The idea is to find
B(x) such that for allx[0] ∈ X0 the processB(x[n]) is a
nonnegative supermartingale, i.e., its expected value does
not increase along time. The justification for this choice
comes from a general result for discrete time nonnegative
supermartingales [14] that we state without proof, and a
theorem that provides the desired upper bound.

Lemma 1: [14] Let B(x[n]) be a nonnegative supermartin-
gale. Then, for any initial conditionx[0] ∈ X ,

P

{

sup
0≤n<∞

B(x[n]) ≥ λ
∣

∣

∣

∣

x[0] = x0

}

≤ B(x0)

λ
. (2)

Theorem 2:Let the discrete Markov chainP and the sets
X0, Xu be given. Suppose there exist real scalarsB(1), B(2),
..., B(N), such that

B(x) ≥ 0 ∀x∈ X , (3)

B(x) ≥ 1 ∀x∈ Xu, (4)

B(x) ≤ γ ∀x∈ X0, (5)

B(x) ≥
N

∑
j=1

px, jB( j), ∀x∈ X (6)

thenP{x[n] ∈ Xu for somen≥ 0 | x[0] ∈ X0} ≤ γ.
The proof of the theorem follows in the same manner as

the proof of Theorem 7 in [17]. Note thatγ can be chosen at
most equal to one, since whenγ = 1, the functionB(x) = 1
will satisfy (3)–(6). The intuitive idea behind the theorem
is as follows. The functionB(x) is a supermartingale of the
process, and therefore its value is likely to stay constant or
decrease as time increases. When we start from a lower initial
value ofB(x) (i.e., asγ gets smaller) it becomes less likely
for the trajectory to reach the unsafe set, on which the value
of B(x) is greater than or equal to one. This is quantified by
Lemma 1, which provides a Chebyshev-like inequality for
bounding the probability of the distribution tail.

With regard to computation, notice that the conditions
(3)–(6) are nothing but a linear programming (LP) problem,
where the decision variables are the scalarsB(.). Further-
more,γ can be chosen as the objective function whose value
is to be minimized, to get an upper bound that is as tight as
possible. Indeed, letb = [ B(1) . . . B(L2) ]T ∈ R

L2
denote

the barrier certificate, whereL is the number of molecules of
each species, and letP be the probability transition matrix.
The reachability problem can then be written as

minimize γ
subject to binit ≤ γ, bunsafe≥ 1

b≥ 0, Pb≤ b,

(7)



wherebinit is the vector of values of the barrier in the initial
set, bunsafe are the values in the unsafe set, andγ is the
probability bound.

B. Stochastic Reachability Analysis of SDEs

For our exposition in the SDE case, we consider a com-
plete probability space(Ω,F ,P) and a standardRm-valued
Wiener processw defined on this space [15]. We mostly
focus on stochastic differential equations of the form

dx(t) = f (x(t))dt +g(x(t))dw(t) (8)

where x(t) ∈ R
n for all t ≥ 0. We again denote the state

space, the initial set, and the decisive/unsafe set respectively
by X ,X0, and Xu, all of which are subsets ofRn and
assumed compact. To guarantee the existence and uniqueness
of solution, we will also assume that bothf and g satisfy
the local Lipschitz condition and the linear growth condition
on X . For boundedX , the last condition can be replaced
by the boundedness off andg on X .

Since in general the processx(t) is not guaranteed to
always lie inside the setX , we define the stopped process
corresponding tox(t) andX as follows.

Definition 3: Suppose thatτ is the first time of exit of
x(t) from the open set Int(X ). The stopped process ˜x(t) is
defined by ˜x(t) , x(t) for t < τ, and x̃(t) , x(τ) for t ≥ τ.

The stopped process ˜x(t) satisfies various properties. For
example, it inherits the right continuity and strong Markovian
property ofx(t). Furthermore, in most cases the infinitesi-
mal generator corresponding to ˜x(t) is identical to the one
corresponding tox(t) on the set Int(X ), and is equal to
zero outside of the set [16]. This will be implicitly assumed
throughout the analysis.

Having defined the system and the stopped process ˜x(t),
we state the continuous stochastic verification problem as
follows: given the system (8) and the setsX , X0 andXu,
find γ ∈ [0,1] such thatP{x̃(t) ∈ Xu for somet ≥ 0|x̃(0)} ≤
γ for all x̃(0) ∈ X0. Again, our approach will be based on
finding an appropriate barrier certificateB(x) from which an
upper boundγ is deduced.

Theorem 4 ([17]): Let the SDE (8) and the sets
X ,X0,Xu be given, and consider the stopped process ˜x(t)
starting at some ˜x(0) ∈ X0. Suppose there exists a twice
continuously differentiable functionB : X → R, such that

B(x) ≥ 0 ∀ x∈ X (9)

B(x) ≥ 1 ∀ x∈ Xu (10)

B(x) ≤ γ ∀ x∈ X0 (11)

∂B
∂x

f (x)+
1
2

Trace

(

gT(x)
∂ 2B
∂x2 g(x)

)

≤ 0 ∀ x∈ X (12)

thenP{x̃(t) ∈ Xu for somet ≥ 0|x̃(0)} ≤ γ.
The proof of Theorem 4 can be found in [17]. An

upper boundγ and a barrier certificateB(x) which certifies
the upper bound can be computed by formulating condi-
tions (9)–(12) as a sum of squares optimization problem
(see [17]). This problem can be solved using the software
SOSTOOLS [18]. The minimum value ofγ obtained from

the optimization will be the tightest upper bound for a given
set of barrier certificates. Obviously, as we include more
candidate barrier certificates in this set, we may get a better
bound, although there is a trade-off between using a larger
set and the computational complexity of finding a barrier
certificate within the set.

IV. T HE BACTERIOPHAGEλ GENETIC SWITCH

One of the best studied examples of multistability in
genetic systems is the bacteriophageλ system [3]. Phages
are viral organisms that can either be in the lysogenic (latent)
or lytic (active) state. If following its infection ofE. coli the
λ -phage virus enters the lysogenic pathway, it represses its
own developmental functions and integrates its DNA into
the host chromosome. Otherwise, it enters the lytic pathway
and is active. The dynamics of the transcriptional network
underlying the formation of these states are very complex,
and have been thoroughly studied. Instead of describing it in
full complexity, we limit ourselves here to a simplified model
that still captures the essence of its bistability, in addition to
the interplay between noise and dynamics in its operation.

A. The Bacteriophageλ Model

The simple model we adopt was first discussed in [8], and
is intended to be a minimal model that captures the bistable
nature of theλ system. The model describes the dynamics
of the CI protein, the product of thecI gene. Acting as a
dimer, CI can regulate its own synthesis by binding to the
cI gene promoter regionOR2 and increasing transcription,
or to gene promoterOR3 and repressing transcription. It can
also bind to a third gene promoterOR1, which is ignored
in this model for simplicity. The fast binding reactions (e.g.,
binding and dissociation) are assumed to be in equilibrium
with respect to the slow reactions (e.g., protein synthesisand
degradation). Under this assumption, and following [8], we
let X, X2, andD denote the repressor, repressor dimer, and
DNA promoter site respectively. The equilibrium reactions
can then be written as

2X
K1
⇋ X2, D+X2

K2
⇋ DX2,

D+X2
K3
⇋ DX∗

2 , DX2 +X2
K4
⇋ DX2X2 (13)

where theDX2 and DX∗
2 complexes denote binding to the

OR2 or OR3 sites, respectively,DX2X2 denotes binding to
both sites, and theKi are forward equilibrium constants. We
further setK3 ≃ K2 andK4 ≃ 5K2.

1) The One-Dimensional Model:In addition to the fast
reactions given above, the slow reactions are production and
degradation of proteins given by the reactions

DX2 +P
kt−→ DX2 +P+nX, X

kd−→ A (14)

where P denotes the concentration of RNA polymerase,
and n is the number of proteins per mRNA transcript. To
model the system, we state variables asx= [X],y= [X2],d =
[D],u= [DX2],v= [DX∗

2 ], andz= [DX2X2], where[.] denotes
concentration. The evolution of the concentration of the
repressorx can then be described by ˙x = −2k1x2 +2k−1y+
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Fig. 1. Switching between equilibria in theλ system caused by noise.

nkt p0u− kdx+ q, where q is a basal rate of production.
Because the reactions in (13) are fast,y, u, and d have
algebraic expressions in terms ofx. After eliminating their
dynamics through singular perturbation and rescaling the
repressor concentrationx and time through a change of
variables [8], the resulting one-dimensional model forx (with
some abuse of notation) is then given by

ẋ =
αx2

1+2x2+5x4 − γx+1 (15)

We will be concerned with the case where the system
has three equilibria: two stable and one unstable. In this
bistable case, the deterministic system trajectories willsettle
in one of the stable equilibria at steady-state depending
on initial condition. However, the presence of biochemical
noise can cause accidental switching between the two steady-
states. One possible behavior obtained using the SSA is
depicted in Figure 1. Later we will be concerned with the
characterization of the statistics of such switching events.

2) The Two-Dimensional Model:The model for the slow
reactions presented above is particularly simple. Next, we
present a 2-D description of theλ system while giving a
more plausible description of the biochemical noise affecting
the system. We start by introducing a crucial step that was
eliminated from the previous model: translation. Recall that
in the previous model,X is produced in a single step process,
then degraded. More realistically, it should be produced
through a two step process of transcription first, then trans-
lation. The resulting 2-D model is ˙m= kt p0u−kdm+q and
ẋ = nkTm−kmx+2k−1y−2k1x2, wherem is mRNA, andx
is protein. Following [8], a change of variables is carried out
and the values of the parameters are fixed to obtain:

˙̂m =
50x̂2

1+2x̃2+ 5̂x4 −150m̂+1 (16)

˙̂x = 10m̂− x̂ (17)

This higher order system, with the chosen parameter values,
also exhibits bistability.

B. Numerical Results for the Discretized CME 2-D Model

Here we consider theλ -phage example described in
the CME formulation. Rather than accounting for all of
the elementary reactions occurring in the system (i.e. (13)
and(14)), we use elementary complex reactions, leading to

D
1+b(x)−→ m+D, m

γ1−→ φ , m
k−→ m+X, andx

γ2−→ φ , where

r
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Fig. 2. Transition probabilities between adjacent latticepoints.

the transition probabilitiesb(x) = αx2

1+2x2+5x4 , γ1m, km, and
γ2x are calculated from (16)–(17). Our state space is a 2-
dimensional lattice, part of which is shown in Figure 2.

Computing probability of reaching some states on this
lattice from others can be expressed as the LP (7). Thus
we can address questions such as: what is the probability of
reaching the unsafe state before reaching given intermediate
states? This is done by making the given intermediate states
“absorbing”, which is the same as removing the constraint
corresponding to that node fromPb≤ b. We solve the LP
for a 3×3 lattice, and obtain the boundγ = 0.0063, which
corresponds to the probability of going fromX0 to Xu

before first going to states inXi . The problem setup and
resulting barrier values are shown in Figure 3.

The complexity of this method scales exponentially with
the number of species, therefore it is only useful for small
problems. Moreover, certain instances of this LP are fragile
(ill-conditioned), which motivates us to look at stochastic
descriptions of the system at lower levels of resolution.

C. Numerical Results for the SDE Model

1) SDE Analysis of the 1-D Model:We start by incor-
porating additive noise in the deterministic rate equationof
(15). Taking the variablex to represent the repressor number
within a colony of cells, we can regard an additive white
noise term as an external field accounting for the impact of
the the environmental noise. The resulting SDE is

dx(t) = f (x)dt + σdξ (t) (18)

where f (x) is the right-hand side of (15),ξ (t) is a Wiener
process, andσ is a scalar. While in the deterministic de-
scription, trajectories that reach either steady state come to
rest there, in the presence of noise they never do so. One can
then ask whether there is a large probability of noise-induced
switching between equilibria within a given time frame, then
describe its correlation with the noise intensity. We use the
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Fig. 4. Setup for computing the bound of the probability of false switching
because of noise, for system (18).

sum of squares machinery as an efficient algorithmic method
for such investigations. We specifically illustrate this point
by investigating the situation where the system given by (15)
is started close to one of the two stable equilibria, and an
estimate of the the probability of transition to a region around
the other stable equilibrium is computed. We will refer to this
as the bound on the probability of false switching caused
by noise. The setup for this problem is shown in Figure 4,
where we are interested in whether an initial trajectory from
a point inside a set of variable sizer centered at the high
equilibrium X0 = {x ∈ R|(x− 0.56)2 − r2 ≤ 0} can ever
reach a region around the other equilibrium,Xu = {x ∈
R|(x− 0.098)2− 0.022 ≤ 0}, when the total state-space of
interest isX = {x∈ R|x(x−1)≤ 0}.

This question, however, is ill-posed if the time horizon
over which this probability is to be computed is not bounded.
A more meaningful biological question is the following.
Starting from a region around one equilibrium, estimate the
probability of reaching the other equilibriumin a finite time
horizon, say from t = 0 to 2 non-dimensional time units.
Time is now another variable in the system, and we con-
struct a time-dependentB(x,t) to estimate this probability.
We also increase the state-space adequately, so that the
“escape” probability is reduced significantly. Asσ is varied
in this modified problem, results from our methodology
are compared with probability estimates obtained by direct
simulations of the SDE in (18). Whenσ = 1, 98% of the
simulations enter the region around the other equilibrium,
whereas our methodology gives an upper bound ofβ =
0.99. Whenσ = 0.5, direct simulations gives 0.57, and our
methodology returnsβ = 0.6. We see the expected result
that asσ is decreased, the probability of false switching is
decreased, and the upper bounds are close to the probability
estimates obtained by direct simulations.

Using the same methodology, we can also address the
dependence of the switching probability from one steady-
state to the other on time and for a given noise intensity.
The upper bound on this probability is plotted in Figure 5 as
a function of time, along with probability estimates obtained
from simulations. It can be seen that the two plots are
satisfactorily close to each other. However, while a large
number of simulations is needed to compute the probability
estimates, with an increasing computational cost as the
simulation time interval was increased, the barrier certificate
method generated good upper bounds in a fraction of time
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Fig. 5. Probability of false switching from the high steady state to the
low steady state under the influence of noise as a function of time. The
blue line depicts probability bounds computed through the use of barrier
certificates while the green line depicts the probabilitiescomputed from
2000 realizations obtained from direct simulations of the SDE.

and each run had the same computational burden. In general,
probabilities computed using barrier certificates are con-
servative bounds on the true probabilities. Nevertheless,as
illustrated here, these bounds can provide useful information.

The same techniques can again be used to compute
probability lower bounds. For example, Figure 6 shows the
upper and lower bounds for the probability of escaping a
neighborhood of the high equilibrium in a finite time horizon
as the noise intensity increases. It is interesting to note that
the probability goes sharply from 0 to 1 (indicating a phase
transition) as the noise is increased, and that this technique
can be used to estimate the critical noise intensity necessary
for escaping the given region around the equilibrium.

2) SDE Analysis of the 2-D Model:In the phase
plane, the deterministic part of the 2-Dλ -model is shown in
Figure 7. Rather than introducing additive noise, we consider
here more biologically plausible biochemical fluctuations.
As described previously, we replace the elementary
reactions by complex birth and death reactions for ˜m and
x̃ whose propensities are taken from (16)–(17). With these
elementary-complex propensities generating a reduced order
stochastic description of theλ -phage system, we carry out
a diffusion approximation that transforms the description
of the system into a stochastic differential equation (i.e.
a CLE). Following (1), the final CLE describing the 2-D
λ system becomesdm̂ =

(

50x̂2

1+2x̂2+5x̂4 −150m̂+1
)

dt +
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Fig. 6. Upper and lower bounds on probability of escaping a neighborhood
of the high equilibrium within some finite time interval, computed using
barrier certificates.
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√

50x̂2

q(1+2x̂2+5x̂4)
dξ1 +

√

150m̂
q dξ2 + dξ3√

q , and dx̂ =

(10m̂− x̂)dt+
√

10m̂
q dξ4 +

√

x̂
qdξ5.

Here again, we consider whether from an initial region
around the low equilibrium defined byX0 = {x ∈ R|(x−
0.098)2 + (10m− 0.098)2 − 0.022 ≤ 0} one can reach a
region around the high equilibrium defined byXu = {x ∈
R|(x− 0.560)2 + (10m−0.560)2− 0.052 ≤ 0}, in a certain
time span, sayt ∈ [0,10] for different noise intensities. In
this case, and for a fixed structure of the system, different
noise intensities can be achieved by changing the number
of molecules in the system. We therefore define ˆx = Nx
for equation (1).N is commonly called the system size.
This change of variables scales the number of molecules
without modifying the dynamics of the deterministic system.
However, the associated noise intensity grows as the square
root of N. With N as our varying noise intensity, we attempt
to answer the false switching question. We construct cer-
tificatesB(x,t) algorithmically, again using the methodology
described earlier. Note that the non-polynomial nature of the
vector field (the way noise affects the system is through the
square root of some polynomial) does not cause any prob-
lems, as these terms appearsquaredin the expressions to be
tested — see condition (12) in Theorem 4. The upper bound
on this probability as function ofN is given in Figure 8.
Notice the expected fact that asN increase, therefore yielding
lower noise affecting the system, the probability of false
switching decreases. As in the previous case, this result was
obtained without time consuming computations and was not
based on numerous simulations of the corresponding SDE.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have illustrated how the sum of squares
technique can be used to tackle algorithmically a number
of issues related to the stochastic reachability analysis of
nonlinear systems. In particular, we used barrier certificates
to compute certified upper bounds on the probability of
reaching a region around one stable steady-state from a
region around the other in a specified time interval, and as
a function of the noise intensity.

While the presented example illustrates a successful use
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Fig. 8. Upper bound on switching probability from the higherequilibrium
as a function of the number of molecules in the system

of promising new methods to study the problem, it also
uncovered research challenges that must be overcome to
broaden the applicability of the methods and investigate their
limitations. A major challenge that must addressed is the
issue of scalability. For example, in the discretized CME
description, the complexity scales exponentially with the
number of species in the system. Furthermore, the resulting
LPs can be ill-conditioned. These issues are currently the
subject of an active research effort.

REFERENCES

[1] M. A. Dingemanseet al, The expression of liver specific genes within
rat embryonic hepatocytes is a discontinuous process,Differentiation,
vol. 56, 1994, 153-162.

[2] D. C. Bennett, Differentiation in Mouse Melanoma Cells:Initial
Reversibility and an On-Off Stochastic Model,Cell, Vol. 34, 1983,
445-453.

[3] A. Arkin, J. Ross, and H. H. McAdams, Stochastic Kinetic Analysis
of the Developmental Pathway Bifurcation in Phaseλ -Infected Es-
cehrichia coli Cells, Genetics, vol. 149, 1998, 1633-1648.

[4] H. El-Samad, M. Khammash, L. Petzold, and D. Gillespie, Stochastic
Modeling of Gene Regulatory Networks,Int. Journal of Nonlinear
and Robust Control, 2005, To Appear.

[5] F. Benz, Cell Death and Cancer Therapy,Current Opinion in Phar-
macology, vol. 1, 2001, pp. 337-341.

[6] O. Kobiler et al, Quantitative Analysis of bacteriphageλ Genetic
Network, Proc. Nat. Academy of Sci., vol. 102, 2005, pp. 4470-4475.

[7] M. PtashneA Genetic Switch: Phageλ and Higher Organisms. Cell
Press and Blackwell Scientific Publications, Cambridge, MA, 1992.

[8] J. Hastyet al, Noise-Based Switches and Amplifiers for Gene Expres-
sion. Proc. Nat. Academy of Sci., vol. 97 , 2000, 2075-2080.

[9] N.G. van Kampen,Stochastic Processes in Physics and Chemistry,
Elsevier Science Publishing Company, Berlin, 1992.

[10] D. Gillespie, A Rigorous Derivation of the Chemical Master Equation,
Physica A, vol. 188, 1992, 404-425.

[11] D. T. Gillespie, Exact Stochastic Simulation of Coupled Chemical
Reactions,J. Phys. Chem., vol. 81, 1977, pp. 2340-2361.

[12] C. Rao and A.P. Arkin, Stochastic Chemical Kinetics andthe Quasi-
Steady-State Assumption: Application to the Gillespie Algorithm, J.
Chem. Phys., vol. 118, 2003, pp. 4999-5010.

[13] D.T. Gillespie, The chemical Langevin Equation,J. Chem. Phys, vol.
13, 2000, pp.297–306.

[14] G. A. Edgar and L. Sucheston,Stopping Times and Directed Processes,
Cambridge University Press, 1992.

[15] B. Øksendal,Stochastic Differential Equations: An Introduction with
Applications, Springer-Verlag, Berlin, 2000.

[16] H.J. Kushner,Stochastic Stability and Control, Academic Press, New
York, 1967.

[17] S. Prajna, A. Jadbabaie, and G. J. Pappas, Stochastic Safety Verifi-
cation Using Barrier Certificates,Proc. IEEE Conf. on Decision and
Control, 2004.

[18] S. Prajna, A. Papachristodoulou, P. J. Seiler, and P. A.Par-
rilo, SOSTOOLS: Sum of squares optimization toolbox for
MATLAB, Available at http://www.cds.caltech.edu/sostools and
http://www.mit.edu/˜parrilo/sostools, 2004.


