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A Rank Constrained LMI Algorithm for Decentralized State Feedback
Guaranteed Cost Control of Uncertain Systems with Uncertainty Described

by Integral Quadratic Constraints

Li Li, Ian R. Petersen

Abstract— The paper presents a numerical algorithm for
constructing a decentralized state feedback guaranteed cost
controller for an uncertain system. The uncertain systems
under consideration contain structured uncertainty described
by integral quadratic constraints. The decentralized controller
is designed to achieve a closed loop system which is absolutely
stable and such that a cost function satisfies a given bound for
all admissible uncertainties. The main result gives an algorithm
for constructing the desired controller in terms of LMIs subject
to rank constraints.

I. INTRODUCTION

This paper considers the problem of decentralized state
feedback control for a class of uncertain systems. The
problem of robust decentralized control has attracted a great
deal of interest in the control theory literature; e.g., see [1]–
[5]. The results of this paper build on the results in a recent
paper [6] which considers a new approach to the problem
of decentralized state feedback guaranteed cost control of
uncertain systems. A feature of this approach is that it can
enable the controller to exploit the interconnections between
subsystems. This is achieved by choosing a controller gain
matrix which is the diagonal part of a non-decentralized
controller gain matrix and the off diagonal terms in the
controller gain matrix are treated as uncertainties.

As in [6], we consider a class of uncertain systems
with uncertainty described by Integral Quadratic Constraints
(IQCs); e.g., see [4]. The specific problem considered in [6]
is a guaranteed cost control problem with a given quadratic
performance index. A decentralized state feedback controller
is constructed such that the corresponding closed loop system
is absolutely stable and the cost function satisfies a given
bound for all admissible uncertainties.

The design method proposed in [6] involves solving an
algebraic Riccati equation of the H∞ control type which is
dependent on a number of scaling parameters. Furthermore,
some of these scaling parameters are required to satisfy
some constraints relating to the norm of the off-diagonal
blocks of the controller gain matrix obtained from the
solution of the Riccati equation. However, no indication is
given in [6] as to how these unknown scaling parameters
might be constructed. In this paper, we propose a numerical
algorithm which will enable these scaling parameters to be
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constructed. This numerical algorithm involves the solution
to a rank constrained LMI problem, see [7] and the references
therein. Although such rank constrained LMI problems may
in general be difficult to solve, some of the currently available
algorithms, such as LMIRank [8], have been found to lead
to solutions to this problem in many practical situations.
The paper concludes with an example which illustrates the
proposed algorithm.

II. PROBLEM STATEMENT

We consider a class of uncertain linear systems of the
type considered in the paper [9]. These uncertain systems
are described by state equations of the form

ẋ(t) = Ax(t)+B2u(t)+
k

∑
s=1

B1,sξs(t);

z1(t) = C1,1x(t);
z2(t) = C1,2x(t);

...
zk(t) = C1,kx(t) (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
z1(t) ∈ Rh1 , z2(t) ∈ Rh2 , . . . ,zk(t) ∈ Rhk are the uncertainty
outputs and ξ1(t) ∈ Rr1 , ξ2(t) ∈ Rr2 , . . ., ξk(t) ∈ Rrk are
the uncertainty inputs. Also, it is assumed that the initial
condition x(0) = x0 is a Gaussian random vector with mean
zero and variance I; i.e., x0 ∼ N(0, I).

It is assumed that the state vector x(t) ∈ Rn and the
control input vector u(t) ∈ Rm have been decomposed into
p components as follows

x =




x1
x2
...
xp


 , u =




u1
u2
...
up


 , (2)

where xi ∈ Rni , ui ∈ Rmi for i = 1,2, . . . , p and n = ∑p
i=1 ni,

m = ∑p
i=1 mi. Each of the components xi is the state vector

of a subsystem of the overall uncertain system under con-
sideration, and each of the components ui is regarded as the
control input vector for the subsystem with state vector xi.
Note that no assumptions are made concerning the structure
of the system matrices A and B2.

Associated with the system (1), is the cost function

J0 = E
{∫ ∞

0
[x′(t)Qx(t)+u′(t)Ru(t)]dt

}
, (3)



where Q = Q′ > 0, R = R′ > 0 are given weighting matrices.
System Uncertainty. The uncertainty in the above system

is described by equations of the form:

ξ1(t) = φ1(t,x(·)|t0,u(·)|t0)
ξ2(t) = φ2(t,x(·)|t0,u(·)|t0)

...
ξk(t) = φk(t,x(·)|t0,u(·)|t0) (4)

where the following Integral Quadratic Constraint is satisfied.
Definition 1: (Integral Quadratic Constraint; see [4], [9].)

Let S1 > 0,S2 > 0, . . . ,Sk > 0, be given positive-definite
matrices. Then an uncertainty of the form (4) is an admissible
uncertainty for the system (1) if the following conditions
hold: Given any locally square integrable control input u(·)
and any corresponding solution to equations (1), (4) with an
interval of existence (0, t?) (that is, t? is the upper time limit
for which the solution exists), then there exists a sequence
{ti}∞

i=1 such that ti → t?, ti ≥ 0 and
∫ ti

0
(‖zs(t)‖2−‖ξs(t)‖2)dt ≥−x′(0)Ssx(0) (5)

for all i and for s = 1,2, . . . ,k. Here ‖·‖ denotes the standard
Euclidean norm. Also, note that t? and ti may be equal to
infinity.

In the above definition, the signal ξi(·) accounts for the
presence of uncertain dynamics which are driven by the
uncertainty output zi(·). This uncertainty description captures
a broad class of uncertainties including nonlinear and time-
varying dynamic uncertainties. It also allows to account for
effects of non-zero initial conditions of uncertain dynamics
as well as noises and delays. The terms on the right hand
sides of the IQCs (5) correspond to bounds on these effects.
We use the time-domain IQCs to describe the relation
between ξi(·) and zi(·), which is originally from the work of
Yakubovich [10]–[12]. This is different from the frequency-
domain IQCs introduced in [13], in which the signals under
consideration must be square integrable. The time-domain
IQC uncertainty description is able to overcome this and
allows us to deal with unstable nominal systems; see [4] for
more detailed discussions.

We will consider a problem of constructing a decentralized
linear state feedback controller of the form

ui(t) = Kixi(t) ∀ i = 1,2, . . . , p (6)

such that the resulting closed loop system is absolutely stable
and the cost function (3) satisfies a guaranteed cost bound.

Definition 2: The controller (6) is said to be a guaranteed
cost controller for the uncertain system (1), (5) with the cost
function (3) if the following conditions hold:

(i) The closed loop uncertain system defined by (1), (6)
and (5) is internally stable; that is, all of the eigenvalues
of A+B2K̃ lie in the open left half plane, where K̃ =
diag(K1, · · · ,Kp).

(ii) There exists a constant c0 > 0 such that the following
conditions hold: For any x0 ∈ Rn, the closed loop

uncertain system defined by (1), (6) and (5) with initial
condition x(0) = x0 is such that for all admissible
uncertainties, the corresponding solution to the closed
loop system satisfies

[x(·),u(·),ξ1(·), . . . ,ξk(·)] ∈ L2[0,∞)

(hence, t? = ∞). Also, the closed loop system is such
that the cost (3) satisfies the bound J0 ≤ c0.

Definition 3: (See also [4], [9].) The closed loop uncertain
system defined by (1), (6) and (5) is said to be absolutely
stable if there exists a constant c > 0 such that the following
conditions hold:

(i) For any initial condition x(0) = x0 and any uncertainty
inputs ξs(·) ∈ L2[0,∞), the closed loop uncertain sys-
tem defined by (1), (6) and (5) has a solution which is
defined on [0,∞).

(ii) Given any admissible uncertainty for the closed loop
uncertain system defined by (1), (6) and (5), then
all corresponding solutions to the closed loop system
satisfy [x(·),ξ1(·), . . . ,ξk(·)] ∈ L2[0,∞) (hence, t? = ∞)
and

‖x(·)‖2
2 +

k

∑
s=1
‖ξs(·)‖2

2 ≤ c‖x0‖2. (7)

Here, ‖q(·)‖2 denotes the L2[0,∞) norm of the function
q(·). That is, ‖q(·)‖2

2 =
∫ ∞

0 ‖q(t)‖2dt.

III. CONTROLLER DESIGN

A new approach to construct decentralized state feedback
guaranteed cost controllers for uncertain systems (1), (5) is
presented in [6]. The main idea of [6] is to design a full state
feedback controller u = Kx using the methodology described
in [9]. Then, a decentralized state feedback controller is
obtained by taking only the block-diagonal part of the
feedback matrix K. The ignored blocks of the matrix K are
treated as additional uncertainties which are added to the
uncertainties in the original uncertain system (1), (5). The
readers are referred to [9] for more details. We briefly review
this approach in this section.

Let m̄i = ∑i
k=1 mi, m̃i = m− m̄i for i = 1,2, . . . , p, k̃ = k +

2(p−1) and let τ1 > 0, . . . ,τk̃ > 0,βu
1 > 0, . . . ,βu

p−1 > 0,βl
1 >

0, . . . ,βl
p−1 > 0 be given constants. We consider the following

algebraic Riccati equation

A′X +XA+X(B̃1B̃′1−B2E−1B′2)X +C̃′1C̃1 = 0, (8)



where

C̃1 =




Q1/2

0m×n√
τ1C1,1

...√
τkC1,k√

βu
1
√τk+1Cu

1,1
...√

βu
p−1
√τk+p−1Cu

1,p−1√
βl

1
√τk+pCl

1,1
...√

βl
p−1
√τk+2p−2Cl

1,p−1




; D̃12 =




0n×m

R1/2

0h1×m
...

0h1×m
0ñ1×m
0ñ2×m

...
0ñp−1×m

0n1×m
0n2×m

...
0np−1×m




;

E = D̃′
12D̃12;

B̃1 =
[

B̃0
1 B̃u

1 B̃l
1

]
;

B̃0
1 =

[
1√
τ1

B1,1 . . . 1√τk
B1,k

]
;

B̃u
1 =

[
1√τk+1

B2Gu
1 . . . 1√τk+p−1

B2Gu
p−1

]
;

B̃l
1 =

[
1√τk+p

B2Gl
1 . . . 1√τk+2p−2

B2Gl
p−1

]
;

Cu
1,i =

[
0ñi×n̄i Iñi×ñi

]
, i = 1, · · · , p−1;

Cl
1,1 =

[
In1×n1 0n1×ñ1

]
;

Cl
1,i =

[
0ni×n̄i−1 Ini×ni 0ni×ñi

]
, i = 2, · · · , p−1;

Gu
1 =

[
Im1×m1

0m̃1×m1

]
;

Gu
i =




0m̄i−1×mi

Imi×mi

0m̃i×mi


 , i = 2, · · · , p−1;

Gl
i =

[
0m̄i×m̃i

Im̃i×m̃i

]
, i = 1, · · · , p−1. (9)

Notice here D̃′
12C̃1 = 0.

The parameters τ1 > 0, . . . ,τk̃ > 0,βu
1 > 0, . . . ,βu

p−1 >

0,βl
1 > 0, . . . ,βl

p−1 > 0 are to be chosen so that this Riccati
equation has a minimal positive-definite solution X > 0. Let

K =−E−1B′2X (10)

and partition K to be compatible with x,u in (2) as follows:

K =




K11 K12 . . . K1p
K21 K22 . . . K2p
...

. . .
...

Kp1 Kp2 . . . Kpp


 . (11)

We then construct the corresponding decentralized state
feedback controller

u(t) = K̃x(t),

where
K̃ = diag(K11,K22, . . . ,Kpp). (12)

Define

∆u
i =

[
Ki,i+1 Ki,i+2 . . . Kip

]
= Gu′

i KCu′
1,i,

∆l
i =

[
K′

i+1,i K′
i+2,i . . . K′

pi
]′ = Gl′

i KCl′
1,i,

i = 1, · · · , p−1, (13)

where Gu
i ,C

u
1,i,G

l
i ,C

l
1,i, i = 1, · · · , p−1 are given in (9).

Theorem 1: Consider the uncertain system (1), (5) with
cost function (3). Suppose there exist constants τ1 >
0, . . . ,τk̃ > 0,βu

1 > 0, . . . ,βu
p−1 > 0,βl

1 > 0, . . . ,βl
p−1 > 0 such

that the Riccati equation (8) has a solution X > 0 and the
corresponding full state feedback gain matrix K defined in
(10) is such that the sub-matrices defined by (13) satisfy the
bounds

βu
i ≥ ‖∆u

i ‖2;
βl

i ≥ ‖∆l
i‖2, i = 1, · · · , p−1. (14)

Then the corresponding decentralized controller u(t) = K̃x(t)
defined by (11), (12) is a guaranteed cost controller for this
uncertain system. Furthermore, the corresponding value of
the cost function (3) satisfies the bound

J0 ≤ tr[X +
k

∑
s=1

τsSs]. (15)

for all admissible uncertainties and moreover, the closed loop
uncertain system is absolutely stable.

Note that the bound in (15) is slightly different from the
one derived in [6]. Indeed, in [6] this bound is

tr

[
X +

k

∑
s=1

τsSs +
p−1

∑
s=1

τk+sSu
s +

p−1

∑
s=1

τk+p−1+sSl
s

]
,

where Su
s ,S

l
s,s = 1, · · · , p−1 are any positive-definite matri-

ces, thus can be chosen arbitrarily small; therefore the bound
in (15) also holds.

Now the problem remaining is that how to solve the
optimization problem minimizing the performance bound
on the right-hand side of (15) subject to the parameterized
Riccati equation (8) and the norm constraints in (14). In
the next section, we try to tackle this problem numerically
and transform it into an equivalent rank constrained LMI
problem, which can be solved by some available software
such as LMIRank [8].

IV. A RANK CONSTRAINED LMI APPROACH

As shown in Theorem 1, the proposed decentralized state
feedback controller design involves solving a parameter-
ized game-type Riccati equation. Generally, it is difficult
to provide a systematic way to solve such a problem. In
this section, we discuss one possible approach to address
this difficulty numerically. Similar to the technique used in
[14], the idea is to replace Riccati equation (8) and norm
constraints (14) with a suboptimal problem involving rank
constrained LMIs.

Instead of the Riccati equation (8), consider the following
Riccati inequality,

A′X +XA+X(B̃1B̃′1−B2E−1B′2)X +C̃′1C̃1 < 0. (16)



It can be easily proved that Theorem 1 also holds for the
controller K̃ in (11), (12) corresponding to the case in which
X in (10) is a solution to this Riccati inequality (16) instead
of the Riccati equation (8); see [6], [15] for details.

By left and right multiplying (16) with X̄ = X−1, we obtain

X̄A′+AX̄ +(B̃1B̃′1−B2E−1B′2)+ X̄C̃′1C̃1X̄ < 0. (17)

Let

Γ = diag(In, Im,τ1Ih1 , · · · ,τkIhk ,β
u
1τk+1Iñ1 , · · · ,

βu
p−1τk+p−1Iñp−1 ,β

l
1τk+pIn1 , · · · ,βl

p−1τk+2p−2Inp−1).

Then, by Schur complement and noting that E = R, (17) is
equivalent to

[
X̄A′+AX̄ + B̃1B̃′1−B2R−1B′2 X̃C̃′1Γ−

1
2

? −Γ−1

]
< 0. (18)

Define

τ̄i = τ−1
i , i = 1, · · · , k̃;

τ̄u
i = (βu

i τk+i)−1, i = 1, · · · , p−1;

τ̄l
i = (βl

iτk+p−1+i)−1, i = 1, · · · , p−1. (19)

Substituting (9) into (18), we have
[

Ms Qs
? Ss

]
< 0, (20)

where

Ms = X̄A′+AX̄ −B2R−1B′2 +
k

∑
i=1

τ̄iB1,iB′1,i

+
p−1

∑
i=1

τ̄k+iB2Gu
i Gu

i
′B′2 +

p−1

∑
i=1

τ̄k+p−1+iB2Gl
iG

l
i
′
B′2,

Qs = [X̄Q
1
2 ,0n×m, X̄C′1,1 · · · X̄C′1,k,

X̄Cu′
1,1 · · · X̄Cu′

1,p−1, X̄Cl′
1,1 · · · X̄Cl′

1,p−1],

Ss =−diag(In, Im, τ̄1Ih1 , · · · , τ̄kIhk , τ̄
u
1Iñ1 , · · · , τ̄u

p−1Iñp−1 ,

τ̄l
1In1 , · · · , τ̄l

p−1Inp−1).

Next, consider the norm constraints (14). Define τu
i =

(τ̄u
i )
−1,τl

i = (τ̄l
i)
−1, i = 1, · · · , p−1. From (14) and (19), we

have

‖∆u
i ‖2 = ‖Gu′

i KCu′
1,i‖2 ≤ βu

i = τ̄k+iτu
i , i = 1, · · · , p−1,

‖∆l
i‖2 = ‖Gl′

i KCl′
1,i‖2 ≤ βl

i = τ̄k+p−1+iτl
i , i = 1, · · · , p−1,

which are equivalent to
[

τ̄k+iIñi Cu
1,iXB2R−1Gu

i
? τu

i Imi

]
≥ 0, i = 1, · · · , p−1; (21)

[
τ̄k+p−1+iIni Cl

1,iXB2R−1Gl
i

? τl
iIm̃i

]
≥ 0, i = 1, · · · , p−1. (22)

Furthermore, X̄ = X−1,X > 0,τu
i = (τ̄u

i )
−1,τu

i > 0,τl
i =

(τ̄l
i)
−1,τl

i > 0, i = 1, · · · , p−1 are equivalent to

[
X In
In X̄

]
≥ 0, rank

[
X In
In X̄

]
≤ n; (23)

[
τu

i 1
1 τ̄u

i

]
≥ 0, rank

[
τu

i 1
1 τ̄u

i

]
≤ 1, i = 1, · · · , p−1;

(24)[
τl

i 1
1 τ̄l

i

]
≥ 0, rank

[
τl

i 1
1 τ̄l

i

]
≤ 1, i = 1, · · · , p−1.

(25)

Now consider the performance upper bound on the right-
hand side of (15). Note that minimizing tr[X +∑k

s=1 τsSs] is
equivalent to minimizing tr(W ) where W ∈ Rn×n and




W −X
[
S1/2

1 · · · S1/2
k

]

?




τ̄1In
. . .

τ̄kIn






≥ 0. (26)

Consider the following optimization problem in the vari-
ables X , X̄ , W ∈ Rn×n, τ̄i, i = 1, · · · , k̃, τu

j , τ̄u
j ,τl

j, τ̄l
j, j =

1, · · · , p−1:

min tr(W ) subject to (20)-(26). (27)

Note that this problem is a problem of minimizing a linear
cost subject to rank constrained LMIs. As mentioned in the
introduction, to solve this problem in our numerical experi-
ments, we use the rank constrained LMI solver LMIRank [8].

We summarize the proposed control design algorithm as
follows.

• Solve the rank constrained LMI optimization problem
in (27) to obtain X > 0.

• Calculate K in (10).
• Construct the decentralized state feedback controller K̃

(12).

V. ILLUSTRATIVE EXAMPLE

In this section, we consider a problem of decentralized
robust guaranteed cost control in order to illustrate the
algorithm developed above. We consider an uncertain system
described by the following state equations

ẋ = Ax+B1∆C1x+B2u, (28)



where ∆ = diag(∆1,∆2,∆3), ‖∆i‖ ≤ 1 and

A =




2 2 0.5 0.5 0.4 0.2
1 1 0.5 0.5 0.4 0.2
0 0.5 2 2 0 0

0.5 0 2 1 0.5 0
0.1 0.1 0 1 3 0
0.1 0 1 0 1 1




,

B2 =




1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0




,

B1 = [B1,1|B1,2|B1,3] =




0 1 0.3 0.1 0.1 0.3
0 1 0.3 0.1 0.1 0.3
1 0 0 0.1 0.5 0.5
0 1 0 0 0 0
1 0 0 0.1 0 0.2
0 0 0.1 0.1 0.2 0




,

C1 =




C1,1
C1,2
C1,3


 =




I2 02 02
02 I2 02
02 02 I2


 .

This example is a modification of the example given in
[16]. Indeed, the example is modified by the addition of the
structured norm bounded uncertainty ∆ and regarding time-
delayed states as input uncertainties. In this example, x,u
is partitioned such that [n1,n2,n3] = [2, 2, 2], [m1,m2,m3] =
[1, 2, 2]. It is desired to construct a decentralized guaranteed
cost controller which leads to a guaranteed upper bound on
the cost functional

J = E
∫ ∞

0
[x′(t)Qx(t)+u′(t)Ru(t)]dt,

where
Q = I6; R = I5.

In order to fit this uncertain system into the framework of
the theory developed above, we define the uncertainty output
variables zi(t) = C1,ix(t) and the uncertainty input variables
ξi(t) = ∆zi(t), i = 1,2,3. From the norm bound on ∆i, it
follows that the signals ξi(t) and zi(t) satisfy the IQC (5)
for any positive-definite matrices Si, i = 1,2,3.

We now have an uncertain system of the form (1), (5) and
we apply the algorithm presented in Section IV to obtain
the optimal values of the parameters τ = [τ1, · · · ,τ6], βu =
[βu

1,β
u
2], βl = [βl

1,β
l
2]. These optimal parameter values were

found to be

τ = [8.6826, 3.8585, 8.3302, 73.6211, 515.6089,

113.8170, 489.6103];
βu = [0.0059, 0.0008];
βl = [0.0029, 0.0008]

and the resulting minimum upper bound (15) on the cost was

trX = 59.3536.
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Fig. 1. x1(t) versus t for different values of ∆.

Furthermore, the decentralized guaranteed cost controller
was obtained from the block-diagonal components of the full
state feedback controller defined in (10) as in (11), (12). The
full state feedback controller gain matrix was

K =




−10.0118 −4.4127 −0.0314 −0.0417 −0.0543 0.0077
−0.0020 −0.0295 −10.4071 −5.1275 −0.0091 −0.0230
−0.0230 −0.0187 −5.1275 −8.5556 −0.0230 0.0091

0.0390 −0.0313 −0.0230 0.0091 −1.3207 −4.7265
−0.0284 −0.0259 −0.0091 −0.0230 −11.7011 −1.3207




and the corresponding decentralized state feedback con-
troller gain matrix was

K̃ =




−10.0118 −4.4127 0 0 0 0
0 0 −10.4071 −5.1275 0 0
0 0 −5.1275 −8.5556 0 0
0 0 0 0 −1.3207 −4.7265
0 0 0 0 −11.7011 −1.3207


 .

This controller was found to yield a stable closed loop
nominal system. Furthermore, the initial condition response
of the closed loop uncertain system was obtained for different
values of ∆ of the form ∆ = µI where µ =−1,−0.5,0,0.5,1
respectively. The initial condition was chosen to be x(0) =
[1 0 0 0 0 0]′. The corresponding time response of the state
x1 for different values of ∆ is shown in Figure 1. Also, the
corresponding trajectory of the control input u1 is shown in
Figures 2.

These results show that the decentralized controller main-
tains good performance in the face of significant model
uncertainty.

VI. CONCLUSIONS

In this paper, we have presented a numerical algorithm for
robust decentralized state feedback guaranteed cost control
building on the approach presented in [6]. The key idea of
our algorithm is to reformulate the parameterized algebraic
Riccati equation in terms of rank constrained LMIs which
would be solved to obtain both the matrix X and the scaling
parameters.
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