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Abstract— This paper investigates the problem of estimating system without trying to model the internal physical mech-
parameters in a state-space helicopter dynamical model for gnisms of the system. The “grey-box” approach is some-
helicopter controller design and evaluation. Two methods, where between the aforementioned approaches and attempts

PEM (the prediction error method) and RBPF (the Rao- ¢ bi hvsical delli ith t timati
Blackwellized particle filter-based method), are presenté in 0 combine physical modelling with parameter esimation

the paper. Computer simulations are carried out to assess ah technigues. In the latter approach, the system’s equadiens
compare the performance of the two methods with different known up to some unknown parameters and the problem of
assumptions on the initial conditions of the parameters to B system modelling is transformed into a problem of parameter
estlmated. Based on this assessment, an estimation schernatt _estimation. In general, a model obtained from a “grey-box”
combines the two methods is proposed. The proposed scheme is h has bett hvsical int tati d exii t
then applied to real data from EH101 helicopter flight tests ad approach has be er physicalin erPre ations an “exp)dmm .,
a vertical model including rotor coning dynamics is identified. =~ When compared with those obtained from a “black-box
Keywords: Parameter estimation;  State-space modefPproach.

Rao-Blackwellized particle filter;  Prediction error metho ~ The “grey-box” approach is used in this paper for building

Helicopter dynamic modelling. helicopter dynamic model (1). The order and structure of the
model are first chosen from physical considerations subject
. INTRODUCTION some unknown parameters. Parameter estimation techniques

A prerequisite for helicopter controller design and eval'® then used to determine the unknown parameters. The rest

uation is an appropriate mathematical model. Unlike fixeo‘?'c the paper is_, org_anized as follows. Sect_ion I (_jescribgs th
wing aircraft, the dynamic behaviour of a helicopter is Ver}parameter _est|mat_|on strategy used and simulation St?“m?
complex with strong fuselage-rotor coupling and inhererﬂe_rformed in Section Ill. The results of pa_ramete_r est|mat|_
nonlinearities. To develop rational explanations for the d using re_al flight test _data are presented in Section IV, with
namic behaviour of a helicopter and to facilitate flight goht cOncluding remarks in Section V.

system design, it is often necessary to use a simplified Il. PARAMETER ESTIMATION STRATEGY

model that is capable of capturing the main characteristics
of the system’s dynamic behaviour. This is achieved bg

linearization with small perturbation theory [1]. It essafly aim of modelling is to determine the stability and control

amounts to neglecting all except the linear terms in thedray! . . ;
. X . . matricesA and B using the available measurements. The
series expansions of the nonlinear model function about L
. . : . . . measurements needed for determination of such a model
the known trim point. The resulting linearized hehcopterOI -
) : ; . epend on the structure and parameterization of the model.
dynamic model is of the following state-space form: : . .
For a helicopter, the measured control inputs will include
x=Ax+Bu+w (1) the main rotor collective, the longitudinal cyclic, thedel
5 cyclic and tail rotor collective that are collected in veatoas
where A and B are known as the stability and controlmentioned above. The measured outputs are a “standard” set
matrices that are derived from the partial derivatives & thof variables that have physical significance, such as: e@dp
nonlinear model function (see [1}¥ andu are respectively linear accelerations, angular information (rates anduaiitis)
the perturbed state and input about the known trim poingtc (see e.g. [2]). They are either state variables or can be
The termw represents atmospheric and other disturbancegproximated as known linear combinations of the states and

The linearized helicopter dynamic model in (1) is in state-
pace form, it is continuous-time and time-invariant. The

which are assumed to be white Gaussian processes.  inputs, thus the measured output vector can be written as:
There are several approaches to model building. The so-
called “white-box” approach starts from first principlesdan y=Cx+Du+v (@)

a model is derived from basic physical laws that govern thgnhere C is the measurement matrix, which is determined

behaviour of the system. This approach works for simplgy the measured variables and sensor locationsyaisdhe
examples, but its complexity increases rapidly for reatldo measurement noise vector.

systems such as the helicopter. The “black-box” approach, 1o jdentify model (1) using the aforementioned “grey-
sometimes known as system identification, generates a mo@gly” approach, it is assumed that the matricksand B
based entirely on the input/output measurements of th§e parameterized by from physical understanding and
. . _ insight. The measurement model does not usually introduce
P. Li, I. Postlethwaite and M. Turner are with the DepartmehtEn- K b . d facili h
gineering, University of Leicester, Ul 62@ ei cest er. ac. uk, new un npwn param?ters to _e estimated. To facilitate the
i xp@eicester.ac.uk, ncte6@eicester. ac. uk presentation, the original physically relevant model (@l a



(2) is rewritten as follows to show explicitly the dependgnc or criterion function is used for measuring the “size” of the

on the parameter vectdr. prediction-error:
x = A@)x+B(O)u+w (3) v N .
y = C(0)x+D@u+v 4) Viv(0, 2%) = det ) ex(0)ef (6) ©)

k=1
For most practical applications, the measurements avghere the prediction-error vectey,(8) is defined as:
sampled-data (i.e. discrete), and the parameter estimatio .

algorithm will then be implemented in the discrete-time er(0) = yr — yx(0) (10)
domain. Suppose that the input is constant over the samplipgrey, (9) represents the prediction based on the model (5)

and (4) is given as follows (see e.g. [5] [3]): For a given data seg”, the parameter estimate is then
Xpr1 = ®(0)x; + G(O)uy + wy (5) defined by the following minimization of (9):
= C(0)x +D(O)uy + 6 ) al
Yk (6)x (B)us +vi ©) Oy = argmindetZek(H)e;‘g(H) (11)
where®(0) = ¢AOT andG(6) = [ AOTB(9)dr; wy, oc® 4

v, are white Gaussian sequences of appropriate strength 0fich is the maximum likelihood estimate for Gaussian
are independent of the input;. Helicopter dynamic model ngjse with unknown covariance matrix (see [3]). This way of
identification then amounts to the estimation of paramet@'stimating contains many well known and much used proce-
vector which determines matrice®, G (thus A, B), C  dyres. When the data set is given, the funcfion defined
and D. This can be achieved using the iterative predictiogy (9) is just an ordinary function of a finite-dimensionaire
error method (PEM) (see e.g. [3]) or by state-augumentatioBarameter vecto. Determination of the parameter estimate
based recursive nonlinear filtering techniques (see e.g [4, by (11) therefore amounts to a standard question of
[6]). These will be briefly outlined next. nonlinear optimization. In generdly defined by (9) cannot
A. Prediction error method (PEM) for state-space modePe _m|n|m|;ed by analytical methods a_nd a.numerlcal solution
: e which typically involves a nonlinear iterative search has t
identification be Used

PEM is a conventional model identification technique that g, thé parameter estimation problem defined by (11), it is

has been well documented (see e.g. [3]). It consists of WO &he global minimum that interests us. But the determination
ements: a parameterization of the model to be identified, apg g,ch a global minimum can be difficult for general

then the determination of the model parameters in such a Wy, e parameterizations. The criterion, as a function ef th
that the measurements are “explained” as accurately as pRSiamete given by (9), can define a complicated surface
sible by the model. This is typically achieved by formulatin i many local minima, narrow valleys, and so on. This
the esti_mation problem as an optimization problem, in whicpnay require substantial interaction from the user in pringd
the variables are the unknown parameters of the model, the;sonable initial parameter values to start the search so
constraints are the model equations and the objective Q& {5 4void being trapped into a local minimum. To find
criterion function is a measure of the deviation between thg o global solution, there is usually no other way than to
observations and the predictions obtained from the modglyt the jterative minimization routine at different fitds
(i-e. the prediction-error). To sum up, the parameter €8Mm ,itia| values and compare the results. For this reasors it |
is obtained by minimizing the prediction-error, so expiai o rthwhile to spend some effort on producing good initial
the name of the method. . . values for the iterative search routine. An important aptio

_ Following the above description, the parameter estimaig; finging such an initial value is to use some preliminary
O is defined by the following minimization (see €.9. [3]): estimation procedure. For a physically parameterized inode

Oy = éN(ZN) = argmin Vi (8, 2V) @) structure, as in the present application of helicopter dyina
0c® modelling, it is most natural to use physical insight to pdev
Here the functiorV/y (0, ZV) is, for a given data seE" = reasonable initial values.

j‘_"“%”“k =1,2,---, N}, a norm used for measurir.19 theg  Rao-Blackwellized particle filtering (RBPF)-based
size” of the prediction-error. It is defined as follows: method for state-space model identification

N 1 X In contrast to the PEM method discussed above, the state-
Vn(60,27) = Nzl(g(k’e)) (8) augumentation-based nonlinear filtering method described
k=1 next is a recursive (non-iterative) “grey-box” modelling
wherel(-) is a well-defined scalar-valued positive functionmethod. Again, the method requires explicit parametedmat
and ¢ is the prediction-error based on the model whictof matricesA andB from physical grounds as in (3).
is a function of the model parametér In our helicopter As an alternative to PEM for dealing with the state-
application, the model to be identified is of MIMO state-space parameter estimation problem, the parameters to be
space form as shown in (5) and (6). The following normestimated are viewed as additional states, or more prgcisel



we augment the state vectomwith the parameter vecté as described above, that is to augment the state vector with
z = [xT 71T and re-write the state-space model in termsinknown parameters, and then to design a particle filterbase
of the augmented state vectarWe then have the following on the augmented state-space model to perform estimation.

set of equations (see e.g. [4], [5]): A major drawback of such a direct use of a particle filter
for parameter estimation is that the large augmented state

zk“:[z’”l] = g(z) + {‘;’k] dimension might be prohibitive for practicgl use. Alsq no

k+1 effort has been made in the above to exploit the analytically

_ [‘i(@k)xk + G(Ok)uk]+|:wk](12) tractable substructure in the system. However, when parame
0 ny ter estimation is restricted to linear and Gaussian models,
v = h(zg) + vi = C(0r)xx + D(0r)uy + vi (13) efficient algorithm can be derived using the so-called Rao-
Blackwellization/or marginalization technique (see ¢ldl],
whereny, is white Gaussian noise of appropriate strengtine]) which will briefly be explained next.
introduced for parameter evolution to allow the explomtio 2) RBPF-based parameter estimatiofio estimated in
of the parameter space. Obtaining the parameter estimatigg) and (6) using the RBPF-based method, the model (12)

recursively consequently becomes a general nonlinearfilteand (13) for nonlinear filtering is reformulated as follows:
ing problem. In principle, any available nonlinear filtagin

algorithm can be used to solve this problem. Ort1 ~ p(Ok+1]6k) (14)
Traditionally, the above nonlinear filtering problem of X1 = POp)xk + G(Or)ug + wy, (15)
estimating the augmented stateso as to determine the yi = C(01)xs +D(0p)uy + vy (16)

parameter vectof is attacked by the sampled-data extended
Kalman filter (EKF) (see e.qg. [7], [5], [4]). As indicated in wherep(-|8;) denotes the pdf givef.
[8], “although this extended Kalman filter approach appears The Bayesian approach to estimating the parameters in
perfectly straightforward, experience has shown thah thie the augmented system (}4(16) would be to construct
usual state-space model, it does not work well in practicethe posterior pdfp(z;|Z¥) of the augmented state, =
In fact, there are no results to guarantee the convergenieg 67]7, and then determine the unknown parameters by
of the resulting EKF in the general case (see [7]). Thestimating the augmented states with p(z;|Z"). This
resulting EKF, while being computationally cheap, is prongesults in a nonlinear filtering problem which can be solved
to divergence and also the parameter estimates obtained niyya standard particle filter (see e.g. [12], [13]) based en th
be sensitive to the choice of initial parameter values (sesigmented model (14)(16). In this case, one has to sample
e.g. [6]). Our early research has also shown that the EKFhe augmented state vecterand a standard particle filter
based approach is inadequate for the problem of helicopteill recursively generate a sample-based approximation to
model identification considered in this paper. For thisoeas the augmented posterior pgfz;|Z*). The minimum mean
a newly developed Rao-Blackwellised particle filter (RBPFpquared error (MMSE) estimate ®f is then calculated using
based parameter estimation method ([6], [9], see also [1LGhe augmented state sampleg;_1 (i), (i = 1,2,---,m)
[11]) is adopted for solving the problem. from the standard particle filter as follows:

1) Preliminaries: The particle filter (also known as the m
sequential Monte Carlo filter) (see e.g. [12], [13], [145]L  z;, = E[z|2¥] = /zkp(zk|Zk)dzk = Zak(i)zkwfl(i)
is a simulation-based method for general nonlinear non- i=1
Gaussian state estimation, which attempts to approximate , ) (17)
the complete probability density function (pdf) of the etat Wherem is the number of particles (samples) used in the
to be estimated. This is in contrast to just estimating thiiter anda (i) is the probability weight associated with the
first few central moments, as done for the EKF. The majdfh particle at time instant.

innovation of the particle filter is to approximate the reqdi However, the MMSE ofz;, can be rewritten as:
usually complicated, pdf by a swarm of interacting points 5, — [ 2. (21| 2% dzy,

called “particles” which can be considered as realizations — f[f(Xk, 01)p(x1|0k, Z¥)dx1]p(01| Z*)dO),
samples from the required pdf, rather than by a function over (18)

the state space. As such, the method is not subject to amy the present case, for each given parameter sample,
linearity and Gaussian constraints on the model. The particp(x; |6y, Z¥) is Gaussian and the integral in the brackets
filter will propagate and update these particles as the mei (18) can be computed analytically (i.e. the state vector
surement becomes available and as the number of partickes can be marginalised out conditional upon a realisation
increases, they effectively provide a good approximatmn tof 8,). This is because, for each realization (or sample) of
the required pdf. See [16] and [17] for a summary of th@,, we have a single linear Gaussian state-space model as
state-of-the-art of particle filtering algorithms. shown in (15) and (16). As such, the required marginaliratio
The use of a particle filter for simultaneously estimatingpr Rao-Blackwellization can be carried out exactly using
the states and parameters in a general nonlinear non-@ausshe Kalman filter algorithm. The resulting so called Rao-
state space model has been investigated by a numberBiackwellized particle filter (RBPF) is similar to the stand
authors (see e.g. [18], [19]). The idea is similar to thaparticle filter, but we only need to sample the parameterespac



rather than the augmented state space. Thus the size of #vailable computing power. For this reason, a lower bound
space to be sampled is reduced. This will reduce the numbterthe variance of the “roughening” noise will need to be set
of particles (and thus the computation) required or in@easo as to enable the parameter particles to explore a small
the accuracy of the estimates for a given filter complexityneighbourhood and avoid pre-maturation of the algorithm
With the RBPF, the pdb(xy|0x, Z¥) in (18) is given by the caused by the limited number of the particles used. This
Kalman filter, while p(6;|2*) in (18) is approximated by lower bound may also enable the algorithm to track the slow
the particle filter. This will result in each parameter paeti drifting in the parameters to be estimated as indicated]in [6
being associated with one Kalman filter recursion. It can
be thought of as using a particle filter for the nonlinear
portion of the problem introduced by augmenting unknown To study the applicability and to illustrate the operatidn o
parameters with the state vector, and the Kalman filter fer tHhe methods described in the last section for helicopter dy-
remainder. Thus the method makes full use of the analyyicalnamic modelling, the problem of identifying a helicopter-ve

tractable substructure in the augmented system~((1g). tical dynamic model with flapping (coning) dynamics is con-
The details of the algorithm can be found in [6]. sidered in this section. The data is generated using a CH-47B

3) Practical implementation issuestn the application research helicopter model taken from [21] where the model
of the aforementioned RBPF-based parameter estimatiéh parameterized by = [91 0y 03 04 05 g 07 HS}T as
approach, it is important to determine the conditional pdfollows:

(14), which depends on the method for parameter evolution. Bo 0 1 0 Bo 0

A stralghtforwaard way is 9tc_> use a random wa_Ik moc_iel, G l=16 62 6 G | +1 60 |60 (1)

011 = 0, + w, wherew] is zero mean Gaussian white . 0, 05 0 w O

noise (see [18], also known as “roughening” noise in [12]), _—

for parameter evolution to introduce artificial dynamics on A(6) B(6)

the parameters to be estimated. Here, the function of thgheres, is rotor flapping angle; is the vertical acceleration
random walk model is twofold: it allows the explorationof the fuse|age anﬂo is the collective input_ The true (nom_

of the parameter space on the one hand (otherwise, thfil) parameter values (denoted By) used for generating
parameter space would only be explored at the initialiratiogata are given in the first row of Table I. The control input
of the algorithm as indicated in [20]) and reduces samplg) is chosen as a PRBS signal. To facilitate comparsions,
degeneracy in particle filtering on the other. However, thehe vertical acceleration and flapping anglg, are assumed
use of independent random shocks in a random walk modg he measurable, so the measurement equation is of the
for parameter evolution will result in posteriors being farollowing form:

too diffuse relative to the theoretical posteriors for ticeual

fixed parameters. As such the precision of the resulting [ Bo } { 10 0] Fo

IIl. APPLICABILITY STUDIES VIA SIMULATIONS

0
estimates is inevitably limited and the estimates may notY = | 4 | = | 4, 65 6 Bo |+ [98} do+v (22)
converge. — W ——
C(9) D(6)

The key to yielding converging parameter estimates is to
make the variance of the random walk decay with time. To The results of parameter estimation from PEM and RBPF-
achieve this, kernel smoothing with shrinkage as suggestedsed methods using different measurements with different
by Liu & West in [19] is used for parameter evolution inassumptions of initial parameter values are summarized in
the present application. With this the evolution of paraamet Table |. Two sets of initial parameter values (denoted by
particles is carried out as follows: 60) have been used with PEM in the simulation studies, i.e.

= P 6y = 0.8 x 8,, (which indicates good prior knowledge of
Ori1 = aby + (1 — a)8k + W (19) the parameters to be estimated) ahyo= 0 (which implies
wherea = (36 — 1)/(26), d is a discount factor in0,1]  poor or no prior knowledge of the parameters to be estimated
which is chosen ag = 0.99 in the present applicatior,  and simply starts the PEM search from the pdgt= 0).
is the Monte Carlo mean of the parameters at time instafttcan be seen that, witBy = 0.8 x 6,,, quite good system
k andw{ ~ N(0,h*Vy) is the “roughening” noise with eigenvalue estimatek;(A) can be obtained from PEM pa-
h? =1—a?, V}, being the variance matrix of the parametersameter estimation as shown in the second and third rows of
at time instantt. Following the above description, the pdfthe last column in Table I. The parameter estimates obtained
in (14) is of the following form: with measurements) and 3, being available are also very
= 9 good, but the parameter estimates are degraded when only
P(Or11|0) = N(aby + (1 —a)0, Vi) (20) 25" ilable (this is particularly so for the estimate of

Ideally, if the number of particles used for particle filtegi 65 as shown in Table 1), which implies that measurements
tends to infinity, the variance of the “roughening” noise inof the rotor degrees of freedom may be required so as to
equation (19) for parameter evolution should decay witletimobtain good parameter estimates for the extended model
and eventually become close to zero for estimation of theith a particular physically-meaningful parametrizatidine
fixed parameters as shown in (20). However, the number parameter estimates and the resulting system eigenvalues
particles used in RBPF will be limited in practice due to thebtained from PEM with@, = 0 are not acceptable as



TABLE |

PARAMETER ESTIMATES AND THE RESULTING EIGENVALUES)\Z'(A) OBTAINED WITH DIFFERENT METHODS AND INITIAL PARAMETER VALUES

. —607.421(01) —26.116(F2) 0.387(03) 444.874(67) oy | —12.893 £ 520.837
nominal valuesdy, —514.579(04) —3.924(65) 0.023(6) 83.510(6s) Ai(A)=1 _0.308
. _ || —589.459(61) —25.437(62) 0.477(05) 427.363(07) —+._ [ —12.506 % j20.607
PEM with ) = 0.8 x &, and measure|  _519'619(0,) _4.756(65) 0.117(05) 85.548(6) || ~(A)=1 —0.308
mentw only
. _ | —594.697(61) —25.657(h2) 0.379(03) 437.602(67) oy [ —12.663 £ 520.681
PEM with o = 0.8 x 6, and measure  _\3'g1500.) 4 567(65) 0.022(05) 85.865(6s) || (A= —0.300
mentsw and By
. _ —0.027(61) 0.258(62) 0.372(63) —202.031(07) &y J0.126 & j0.106
Eﬁ)’:" with 8 = 0 and measurement || 4 91 (9,)" _0.008(05) —0.222(f5) —267.191(9s) Ai(A)=1 0216
. _ I —13987(01) —41326(F2) —7.0(f3) 1655(67) +._ | —0.00 £ ;0.00
ZE;\f]dvggh 6o = 0 and measurements —688(61) —1732(65) 0.0(05) 87(0s) Ai(A)=19 _ 1396
o - —704.943(01) —32.566(F2) 0.356(f3) 669.015(67) oy [ —16.176 £ j20.916
RBPFWlthun!formlydlstrlbute(ﬂo and —420.025(601) —3.145(85) —0.070(0g) 69.197(6s ) Ai(A)= —0.285
measurements only
o - —654.943(01) —28.135(F2) 0.400(03) 489.785(67) o [ —13.904 £ j21.312
RBPFW|thunlf_ormlyd|str|butec90and _528.105(01) —4.184(A5) 0.010(6) 79.735(s) Ai(A)= —0.316
measurements) and 3o
. . o —582.289(01) —25.075(F2) 0.075(03) 448.575(67) oy [ —12.505 + 520.607
RBPF+PEM with uniformly distributed| _493.680(04) —4.462(05) —0.245(0g) 85.549(0s) Ai(A)= —0.309
6p and measurement only
. . - —594.874(01) —25.638(F2) 0.378(03) 437.378(67) R —12.654 & 520.691
RBPF+PEM with uniformly distributed|| - Ai(A)=9
85 and measurements and 514.184(04) —4.551(f5) 0.022(6s) 85.813(fs) 0.308

shown in the fourth and fifth rows of Table I, which indicatesEH101 flight tests was selected and the time histories of the
that the PEM method is sensitive to the choice of initiameasured control input (collectiv&) and output (vertical
parameter values. The parameter estimates and the rgsultatcelerations) are plotted in Fig. 1.

system eigenvalues obtained from RBPF-based method with

the number of parameter particles used in the RBPF beil <10 data: F568-2901 main rotor collective

chosen asn = 40000 are shown in the sixth and seventh ‘ ‘ ‘ ‘ ‘ ‘

rows of Table I. The results, though not as good as thos 101
obtained from PEM withg, = 0.8 x 0,, as shown in the ol
second and third rows of Table |, are acceptable. It nee:
to be pointed out that these results are obtained with tt ONM/WW
assumption of very poor knowledge on the initial paramete

values. More precisely, the results are obtained with th
parameter particles initialized with uniform distributeover data: 5686301 vertical acceleration
the whole possible range of parameter values. As such, t 15h
RBPF-based method is much more robust than the PE
method with respect to the choice of the initial paramete
values. This motivates the estimation scheme that combin
these two methods, i.e. the RBPF-based method is used ‘
a preliminary estimation procedure to produce the initia 920 930
parameter estimates and PEM is then used to refine t
parameter estimates from this initial point. The results of
parameter estimation obtained from a combination of these

two methods are shown in the last two rows of Table I. Again he i ised 01 heli ical d . del
the parameter estimates are improved when measurement oT e linearised EH101 helicopter vertical dynamic mode

the rotor degree of freedonf) is used as can be seen inmcluding coning dynamics is assumed to be of the state-

the ninth row when compared with the results in the eightfPa¢® form of (21). As only vert_lcal_ acpeleratlom IS
row of Table . measured, the measurement equation is given by:

V. RESULTS FROM REAL FLIGHT TEST DATA y=w=Cx+Dutv= [94 05 96] X+ 000 +v (23)

As part of the DARP research project “Towards RobustThe RBPF-based method is used as a preliminary estimation
and Cost Effective Approaches to Rotorcraft Design”, th@rocedure to generate the initial parameter estimatesgit P
combined estimation scheme proposed in the last sectiand the results are summarized in the first column of Table II.
was applied to the identification of a vertical dynamic modeNote that these initial results are obtained with the patame
for the EH101 helicopter from Westland Helicopters Ltdparticles initialized uniformly over the whole possibleges
(WHL) using real flight test data. A segment of data fronof the parameter values. The PEM search is then started from

60 (rad)

. . . . .
920 930 940 950 960 970 980 990 1000

z
o
3l

a (m/sz)

I I I I
960 970 980 990 1000
sec

I I
940 950

Fig. 1. Flight test data used for identification



this initial point and the final parameter estimates and thilinistry of Defence (MoD) under the Rotorcraft Aerome-
resulting eigenvalues are given in the second column ofeTabthanics DARP Programme is also gratefully acknowledged.

TABLE I
PARAMETER ESTIMATES AND THE RESULTING ElGENVALUEsAi(A)
OBTAINED WITH EH101FLIGHT TEST DATA

(1]
(2]
(3]

RBPF RBPF+PEM
—665.836(01) —44.172(02) || —895.455(61) —30.863(02) 4]
0.210(03) —126.525(04) 0.058(63) —365.428(6)
—0.650(5)  0.014(65) 1.700(65)  0.022(66) [5]
—214.169(67)  38.046(fs) || —355.872(67) —85.624(6s)
Ay_ J —22.066 & j13.316 Ay _ J —15.420 & j25.630
’\i(A)_{—o.O% ’\i(A)_{—o.om 2

V. CONCLUDING REMARKS [7]

The problem of estimating parameters in a state-space
helicopter dynamic model using time-domain estimationl8]
techniques has been studied. Two methods have been pr[g—

- . . . ]
sented for solving the problem. Simulation studies havebee
carried out to assess the performance of the two methods and
the main results can be summarized as follows: [10]

« The PEM method can produce good parameter estimates
with modest computational demand but needs good
initial parameter values to start the search. [11]

o The RBPF-based method can produce reasonable pa-
rameter estimates with little prior knowledge of the ini- 12]
tial parameter values but is computationally expensivé.

« A combination of both methods is believed to be an
appropriate solution to the problem considered in thig3!
paper. That is, the RBPF-based method is used for
producing an initial parameter estimate and PEM seargiv]
is then started from this initial point to refine the
parameter estimate. [15]

The methods presented in this paper require prior knowl-
edge of the particular structure of the model and gooﬂ6]
initial values /or possible ranges of the parameters to be
estimated. If such prior knowledge is not available, “black
box” system identification techniques (e.g. the subspacgﬁ
based method) need to be used; see [22] for a recent
study. Though reasonable system eigenvalue estimatescaril§]
calculated from the results of parameter estimation withouy, 4
using measurements from rotor degrees of freedom, the
simulation studies show that such measurements are require
to improve the parameter estimates for the extended sta 80]
space helicopter dynamic model with a particular physyeall
relevant structure.

The combined estimation scheme proposed in this pap@%]
was also applied to real flight test data from WHL and a ver-
tical model including rotor coning dynamics was identified22]
for an EH101 helicopter. Further work is being carried out
to validate the identified model.
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