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Abstract— This paper investigates the problem of estimating
parameters in a state-space helicopter dynamical model for
helicopter controller design and evaluation. Two methods,
PEM (the prediction error method) and RBPF (the Rao-
Blackwellized particle filter-based method), are presented in
the paper. Computer simulations are carried out to assess and
compare the performance of the two methods with different
assumptions on the initial conditions of the parameters to be
estimated. Based on this assessment, an estimation scheme that
combines the two methods is proposed. The proposed scheme is
then applied to real data from EH101 helicopter flight tests and
a vertical model including rotor coning dynamics is identified.

Keywords: Parameter estimation; State-space model;
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I. I NTRODUCTION

A prerequisite for helicopter controller design and eval-
uation is an appropriate mathematical model. Unlike fixed-
wing aircraft, the dynamic behaviour of a helicopter is very
complex with strong fuselage-rotor coupling and inherent
nonlinearities. To develop rational explanations for the dy-
namic behaviour of a helicopter and to facilitate flight control
system design, it is often necessary to use a simplified
model that is capable of capturing the main characteristics
of the system’s dynamic behaviour. This is achieved by
linearization with small perturbation theory [1]. It essentially
amounts to neglecting all except the linear terms in the Taylor
series expansions of the nonlinear model function about
the known trim point. The resulting linearized helicopter
dynamic model is of the following state-space form:

ẋ = Ax + Bu + w (1)

where A and B are known as the stability and control
matrices that are derived from the partial derivatives of the
nonlinear model function (see [1]);x andu are respectively
the perturbed state and input about the known trim point.
The termw represents atmospheric and other disturbances
which are assumed to be white Gaussian processes.

There are several approaches to model building. The so-
called “white-box” approach starts from first principles and
a model is derived from basic physical laws that govern the
behaviour of the system. This approach works for simple
examples, but its complexity increases rapidly for real-world
systems such as the helicopter. The “black-box” approach,
sometimes known as system identification, generates a model
based entirely on the input/output measurements of the
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system without trying to model the internal physical mech-
anisms of the system. The “grey-box” approach is some-
where between the aforementioned approaches and attempts
to combine physical modelling with parameter estimation
techniques. In the latter approach, the system’s equationsare
known up to some unknown parameters and the problem of
system modelling is transformed into a problem of parameter
estimation. In general, a model obtained from a “grey-box”
approach has better physical interpretations and explanations
when compared with those obtained from a “black-box”
approach.

The “grey-box” approach is used in this paper for building
helicopter dynamic model (1). The order and structure of the
model are first chosen from physical considerations subjectto
some unknown parameters. Parameter estimation techniques
are then used to determine the unknown parameters. The rest
of the paper is organized as follows. Section II describes the
parameter estimation strategy used and simulation studiesare
performed in Section III. The results of parameter estimation
using real flight test data are presented in Section IV, with
concluding remarks in Section V.

II. PARAMETER ESTIMATION STRATEGY

The linearized helicopter dynamic model in (1) is in state-
space form, it is continuous-time and time-invariant. The
aim of modelling is to determine the stability and control
matricesA and B using the available measurements. The
measurements needed for determination of such a model
depend on the structure and parameterization of the model.
For a helicopter, the measured control inputs will include
the main rotor collective, the longitudinal cyclic, the lateral
cyclic and tail rotor collective that are collected in vector u as
mentioned above. The measured outputs are a “standard” set
of variables that have physical significance, such as: airspeed,
linear accelerations, angular information (rates and attitudes)
etc (see e.g. [2]). They are either state variables or can be
approximated as known linear combinations of the states and
inputs, thus the measured output vector can be written as:

y = Cx + Du + v (2)

whereC is the measurement matrix, which is determined
by the measured variables and sensor locations, andv is the
measurement noise vector.

To identify model (1) using the aforementioned “grey-
box” approach, it is assumed that the matricesA and B

are parameterized byθ from physical understanding and
insight. The measurement model does not usually introduce
new unknown parameters to be estimated. To facilitate the
presentation, the original physically relevant model (1) and



(2) is rewritten as follows to show explicitly the dependency
on the parameter vectorθ:

ẋ = A(θ)x + B(θ)u + w (3)

y = C(θ)x + D(θ)u + v (4)

For most practical applications, the measurements are
sampled-data (i.e. discrete), and the parameter estimation
algorithm will then be implemented in the discrete-time
domain. Suppose that the input is constant over the sampling
interval T , then the sampled/discrete version of model (3)
and (4) is given as follows (see e.g. [5] [3]):

xk+1 = Φ(θ)xk + G(θ)uk + wk (5)

yk = C(θ)xk + D(θ)uk + vk (6)

whereΦ(θ) = eA(θ)T andG(θ) =
∫ T

0 eA(θ)τB(θ)dτ ; wk,
vk are white Gaussian sequences of appropriate strength and
are independent of the inputuk. Helicopter dynamic model
identification then amounts to the estimation of parameter
vector θ which determines matricesΦ, G (thusA, B), C

and D. This can be achieved using the iterative prediction
error method (PEM) (see e.g. [3]) or by state-augumentation-
based recursive nonlinear filtering techniques (see e.g [4],
[6]). These will be briefly outlined next.

A. Prediction error method (PEM) for state-space model
identification

PEM is a conventional model identification technique that
has been well documented (see e.g. [3]). It consists of two el-
ements: a parameterization of the model to be identified, and
then the determination of the model parameters in such a way
that the measurements are “explained” as accurately as pos-
sible by the model. This is typically achieved by formulating
the estimation problem as an optimization problem, in which
the variables are the unknown parameters of the model, the
constraints are the model equations and the objective or
criterion function is a measure of the deviation between the
observations and the predictions obtained from the model
(i.e. the prediction-error). To sum up, the parameter estimate
is obtained by minimizing the prediction-error, so explaining
the name of the method.

Following the above description, the parameter estimate
θ̂N is defined by the following minimization (see e.g. [3]):

θ̂N = θ̂N (ZN ) = arg min
θ∈Θ

VN (θ,ZN) (7)

Here the functionVN (θ,ZN) is, for a given data setZN =
{uk,yk, k = 1, 2, · · · , N}, a norm used for measuring the
“size” of the prediction-error. It is defined as follows:

VN (θ,ZN) =
1

N

N∑

k=1

l(ε(k, θ)) (8)

where l(·) is a well-defined scalar-valued positive function
and ε is the prediction-error based on the model which
is a function of the model parameterθ. In our helicopter
application, the model to be identified is of MIMO state-
space form as shown in (5) and (6). The following norm

or criterion function is used for measuring the “size” of the
prediction-error:

VN (θ,ZN) = det
N∑

k=1

ek(θ)eT

k
(θ) (9)

where the prediction-error vectorek(θ) is defined as:

ek(θ) = yk − ŷk(θ) (10)

Hereŷk(θ) represents the prediction based on the model (5)
and (6) parameterized byθ andyk is the actual measurement.
For a given data setZN , the parameter estimate is then
defined by the following minimization of (9):

θ̂N = arg min
θ∈Θ

det

N∑

k=1

ek(θ)eT

k
(θ) (11)

which is the maximum likelihood estimate for Gaussian
noise with unknown covariance matrix (see [3]). This way of
estimating contains many well known and much used proce-
dures. When the data set is given, the functionVN defined
by (9) is just an ordinary function of a finite-dimensional real
parameter vectorθ. Determination of the parameter estimate
θ̂N by (11) therefore amounts to a standard question of
nonlinear optimization. In general,VN defined by (9) cannot
be minimized by analytical methods and a numerical solution
which typically involves a nonlinear iterative search has to
be used.

For the parameter estimation problem defined by (11), it is
the global minimum that interests us. But the determination
of such a global minimum can be difficult for general
model parameterizations. The criterion, as a function of the
parameterθ given by (9), can define a complicated surface
with many local minima, narrow valleys, and so on. This
may require substantial interaction from the user in providing
reasonable initial parameter values to start the search so
as to avoid being trapped into a local minimum. To find
the global solution, there is usually no other way than to
start the iterative minimization routine at different feasible
initial values and compare the results. For this reason, it is
worthwhile to spend some effort on producing good initial
values for the iterative search routine. An important option
for finding such an initial value is to use some preliminary
estimation procedure. For a physically parameterized model
structure, as in the present application of helicopter dynamic
modelling, it is most natural to use physical insight to provide
reasonable initial values.

B. Rao-Blackwellized particle filtering (RBPF)-based
method for state-space model identification

In contrast to the PEM method discussed above, the state-
augumentation-based nonlinear filtering method described
next is a recursive (non-iterative) “grey-box” modelling
method. Again, the method requires explicit parameterization
of matricesA andB from physical grounds as in (3).

As an alternative to PEM for dealing with the state-
space parameter estimation problem, the parameters to be
estimated are viewed as additional states, or more precisely



we augment the state vectorx with the parameter vectorθ as
z = [xT

θ
T ]T and re-write the state-space model in terms

of the augmented state vectorz. We then have the following
set of equations (see e.g. [4], [5]):

zk+1=

[
xk+1

θk+1

]

= g(zk) +

[
wk

nk

]

=

[
Φ(θk)xk + G(θk)uk

θk

]

+

[
wk

nk

]

(12)

yk = h(zk) + vk = C(θk)xk + D(θk)uk + vk (13)

where nk is white Gaussian noise of appropriate strength
introduced for parameter evolution to allow the exploration
of the parameter space. Obtaining the parameter estimation
recursively consequently becomes a general nonlinear filter-
ing problem. In principle, any available nonlinear filtering
algorithm can be used to solve this problem.

Traditionally, the above nonlinear filtering problem of
estimating the augmented statez so as to determine the
parameter vectorθ is attacked by the sampled-data extended
Kalman filter (EKF) (see e.g. [7], [5], [4]). As indicated in
[8], “although this extended Kalman filter approach appears
perfectly straightforward, experience has shown that, with the
usual state-space model, it does not work well in practice”.
In fact, there are no results to guarantee the convergence
of the resulting EKF in the general case (see [7]). The
resulting EKF, while being computationally cheap, is prone
to divergence and also the parameter estimates obtained may
be sensitive to the choice of initial parameter values (see
e.g. [6]). Our early research has also shown that the EKF-
based approach is inadequate for the problem of helicopter
model identification considered in this paper. For this reason,
a newly developed Rao-Blackwellised particle filter (RBPF)
based parameter estimation method ([6], [9], see also [10],
[11]) is adopted for solving the problem.

1) Preliminaries: The particle filter (also known as the
sequential Monte Carlo filter) (see e.g. [12], [13], [14], [15])
is a simulation-based method for general nonlinear non-
Gaussian state estimation, which attempts to approximate
the complete probability density function (pdf) of the state
to be estimated. This is in contrast to just estimating the
first few central moments, as done for the EKF. The major
innovation of the particle filter is to approximate the required,
usually complicated, pdf by a swarm of interacting points
called “particles” which can be considered as realizationsor
samples from the required pdf, rather than by a function over
the state space. As such, the method is not subject to any
linearity and Gaussian constraints on the model. The particle
filter will propagate and update these particles as the mea-
surement becomes available and as the number of particles
increases, they effectively provide a good approximation to
the required pdf. See [16] and [17] for a summary of the
state-of-the-art of particle filtering algorithms.

The use of a particle filter for simultaneously estimating
the states and parameters in a general nonlinear non-Gaussian
state space model has been investigated by a number of
authors (see e.g. [18], [19]). The idea is similar to that

described above, that is to augment the state vector with
unknown parameters, and then to design a particle filter based
on the augmented state-space model to perform estimation.
A major drawback of such a direct use of a particle filter
for parameter estimation is that the large augmented state
dimension might be prohibitive for practical use. Also no
effort has been made in the above to exploit the analytically
tractable substructure in the system. However, when parame-
ter estimation is restricted to linear and Gaussian models,an
efficient algorithm can be derived using the so-called Rao-
Blackwellization/or marginalization technique (see e.g.[14],
[16]) which will briefly be explained next.

2) RBPF-based parameter estimation:To estimateθ in
(5) and (6) using the RBPF-based method, the model (12)
and (13) for nonlinear filtering is reformulated as follows:

θk+1 ∼ p(θk+1|θk) (14)

xk+1 = Φ(θk)xk + G(θk)uk + wk (15)

yk = C(θk)xk + D(θk)uk + vk (16)

wherep(·|θk) denotes the pdf givenθk.
The Bayesian approach to estimating the parameters in

the augmented system (14)∼(16) would be to construct
the posterior pdfp(zk|Zk) of the augmented statezk =
[xT

k
θ

T

k
]T , and then determine the unknown parameters by

estimating the augmented stateszk with p(zk|Z
k). This

results in a nonlinear filtering problem which can be solved
by a standard particle filter (see e.g. [12], [13]) based on the
augmented model (14)∼(16). In this case, one has to sample
the augmented state vectorz and a standard particle filter
will recursively generate a sample-based approximation to
the augmented posterior pdfp(zk|Zk). The minimum mean
squared error (MMSE) estimate ofzk is then calculated using
the augmented state sampleszk|k−1(i), (i = 1, 2, · · · , m)
from the standard particle filter as follows:

ẑk = E[zk|Z
k] =

∫

zkp(zk|Z
k)dzk =

m∑

i=1

αk(i)zk|k−1(i)

(17)
wherem is the number of particles (samples) used in the
filter andαk(i) is the probability weight associated with the
ith particle at time instantk.

However, the MMSE ofzk can be rewritten as:

ẑk =
∫

zkp(zk|Zk)dzk

=
∫

[
∫
(xk, θk)p(xk|θk,Zk)dxk]p(θk|Zk)dθk

(18)
In the present case, for each given parameter sample,
p(xk|θk,Zk) is Gaussian and the integral in the brackets
in (18) can be computed analytically (i.e. the state vector
xk can be marginalised out conditional upon a realisation
of θk). This is because, for each realization (or sample) of
θk, we have a single linear Gaussian state-space model as
shown in (15) and (16). As such, the required marginalization
or Rao-Blackwellization can be carried out exactly using
the Kalman filter algorithm. The resulting so called Rao-
Blackwellized particle filter (RBPF) is similar to the standard
particle filter, but we only need to sample the parameter space



rather than the augmented state space. Thus the size of the
space to be sampled is reduced. This will reduce the number
of particles (and thus the computation) required or increase
the accuracy of the estimates for a given filter complexity.
With the RBPF, the pdfp(xk|θk,Zk) in (18) is given by the
Kalman filter, whilep(θk|Zk) in (18) is approximated by
the particle filter. This will result in each parameter particle
being associated with one Kalman filter recursion. It can
be thought of as using a particle filter for the nonlinear
portion of the problem introduced by augmenting unknown
parameters with the state vector, and the Kalman filter for the
remainder. Thus the method makes full use of the analytically
tractable substructure in the augmented system (14)∼(16).
The details of the algorithm can be found in [6].

3) Practical implementation issues:In the application
of the aforementioned RBPF-based parameter estimation
approach, it is important to determine the conditional pdf
(14), which depends on the method for parameter evolution.
A straightforward way is to use a random walk model,
θk+1 = θk + wθ

k
, wherewθ

k
is zero mean Gaussian white

noise (see [18], also known as “roughening” noise in [12]),
for parameter evolution to introduce artificial dynamics on
the parameters to be estimated. Here, the function of the
random walk model is twofold: it allows the exploration
of the parameter space on the one hand (otherwise, the
parameter space would only be explored at the initialization
of the algorithm as indicated in [20]) and reduces sample
degeneracy in particle filtering on the other. However, the
use of independent random shocks in a random walk model
for parameter evolution will result in posteriors being far
too diffuse relative to the theoretical posteriors for the actual
fixed parameters. As such the precision of the resulting
estimates is inevitably limited and the estimates may not
converge.

The key to yielding converging parameter estimates is to
make the variance of the random walk decay with time. To
achieve this, kernel smoothing with shrinkage as suggested
by Liu & West in [19] is used for parameter evolution in
the present application. With this the evolution of parameter
particles is carried out as follows:

θk+1 = aθk + (1 − a)θ̄k + wθ

k
(19)

where a = (3δ − 1)/(2δ), δ is a discount factor in(0, 1]
which is chosen asδ = 0.99 in the present application;̄θk

is the Monte Carlo mean of the parameters at time instant
k and wθ

k
∼ N (0, h2Vk) is the “roughening” noise with

h2 = 1−a2, Vk being the variance matrix of the parameters
at time instantk. Following the above description, the pdf
in (14) is of the following form:

p(θk+1|θk) = N (aθk + (1 − a)θ̄k, h2Vk) (20)

Ideally, if the number of particles used for particle filtering
tends to infinity, the variance of the “roughening” noise in
equation (19) for parameter evolution should decay with time
and eventually become close to zero for estimation of the
fixed parameters as shown in (20). However, the number of
particles used in RBPF will be limited in practice due to the

available computing power. For this reason, a lower bound
to the variance of the “roughening” noise will need to be set
so as to enable the parameter particles to explore a small
neighbourhood and avoid pre-maturation of the algorithm
caused by the limited number of the particles used. This
lower bound may also enable the algorithm to track the slow
drifting in the parameters to be estimated as indicated in [6].

III. A PPLICABILITY STUDIES VIA SIMULATIONS

To study the applicability and to illustrate the operation of
the methods described in the last section for helicopter dy-
namic modelling, the problem of identifying a helicopter ver-
tical dynamic model with flapping (coning) dynamics is con-
sidered in this section. The data is generated using a CH-47B
research helicopter model taken from [21] where the model
is parameterized byθ =

[
θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

]T
as

follows:
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β̈0

ẇ
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0 1 0
θ1 θ2 θ3

θ4 θ5 θ6





︸ ︷︷ ︸

A(θ)





β0

β̇0

w



 +





0
θ7

θ8





︸ ︷︷ ︸

B(θ)

δ0 (21)

whereβ0 is rotor flapping angle,̇w is the vertical acceleration
of the fuselage andδ0 is the collective input. The true (nom-
inal) parameter values (denoted byθn) used for generating
data are given in the first row of Table I. The control input
(δ0) is chosen as a PRBS signal. To facilitate comparsions,
the vertical acceleratioṅw and flapping angleβ0 are assumed
to be measurable, so the measurement equation is of the
following form:

y =

[
β0

ẇ

]

=

[
1 0 0
θ4 θ5 θ6

]

︸ ︷︷ ︸

C(θ)





β0

β̇0

w



 +

[
0
θ8

]

︸ ︷︷ ︸

D(θ)

δ0 + v (22)

The results of parameter estimation from PEM and RBPF-
based methods using different measurements with different
assumptions of initial parameter values are summarized in
Table I. Two sets of initial parameter values (denoted by
θ0) have been used with PEM in the simulation studies, i.e.
θ0 = 0.8 × θn (which indicates good prior knowledge of
the parameters to be estimated) andθ0 = 0 (which implies
poor or no prior knowledge of the parameters to be estimated
and simply starts the PEM search from the pointθ0 = 0).
It can be seen that, withθ0 = 0.8 × θn, quite good system
eigenvalue estimatesλi(Â) can be obtained from PEM pa-
rameter estimation as shown in the second and third rows of
the last column in Table I. The parameter estimates obtained
with measurementṡw and β0 being available are also very
good, but the parameter estimates are degraded when only
ẇ is available (this is particularly so for the estimate of
θ6 as shown in Table I), which implies that measurements
of the rotor degrees of freedom may be required so as to
obtain good parameter estimates for the extended model
with a particular physically-meaningful parametrization. The
parameter estimates and the resulting system eigenvalues
obtained from PEM withθ0 = 0 are not acceptable as



TABLE I

PARAMETER ESTIMATES AND THE RESULTING EIGENVALUESλi(Â) OBTAINED WITH DIFFERENT METHODS AND INITIAL PARAMETER VALUES

nominal valuesθn

−607.421(θ1) −26.116(θ2) 0.387(θ3) 444.874(θ7)
−514.579(θ4) −3.924(θ5) 0.023(θ6) 83.510(θ8)

λi(A)=



−12.893 ± j20.837
−0.308

PEM with θ0 = 0.8×θn and measure-
ment ẇ only

−589.459(θ1) −25.437(θ2) 0.477(θ3) 427.363(θ7)
−519.619(θ4) −4.756(θ5) 0.117(θ6) 85.548(θ8)

λi(Â)=



−12.506 ± j20.607
−0.308

PEM with θ0 = 0.8×θn and measure-
mentsẇ andβ0

−594.697(θ1) −25.657(θ2) 0.379(θ3) 437.602(θ7)
−513.845(θ4) −4.567(θ5) 0.022(θ6) 85.865(θ8)

λi(Â)=



−12.663 ± j20.681
−0.309

PEM with θ0 = 0 and measuremenṫw
only

−0.027(θ1) 0.258(θ2) 0.372(θ3) −202.031(θ7)
0.001(θ4) −0.008(θ5) −0.222(θ6) −267.191(θ8)

λi(Â)=



0.126 ± j0.106
−0.216

PEM with θ0 = 0 and measurements
ẇ andβ0

−13987(θ1) −41326(θ2) −7.0(θ3) 1655(θ7)
−688(θ4) −1732(θ5) 0.0(θ6) 87(θ8)

λi(Â)=



−0.00 ± j0.00
−41326

RBPF with uniformly distributedθ0 and
measuremenṫw only

−704.943(θ1) −32.566(θ2) 0.356(θ3) 669.015(θ7)
−420.925(θ4) −3.145(θ5) −0.070(θ6) 69.197(θ8)

λi(Â)=



−16.176 ± j20.916
−0.285

RBPF with uniformly distributedθ0 and
measurementṡw andβ0

−654.943(θ1) −28.135(θ2) 0.400(θ3) 489.785(θ7)
−528.105(θ4) −4.184(θ5) 0.010(θ6) 79.735(θ8)

λi(Â)=



−13.904 ± j21.312
−0.316

RBPF+PEM with uniformly distributed
θ0 and measuremenṫw only

−582.289(θ1) −25.075(θ2) 0.075(θ3) 448.575(θ7)
−493.680(θ4) −4.462(θ5) −0.245(θ6) 85.549(θ8)

λi(Â)=



−12.505 ± j20.607
−0.309

RBPF+PEM with uniformly distributed
θ0 and measurementṡw andβ0

−594.874(θ1) −25.638(θ2) 0.378(θ3) 437.378(θ7)
−514.184(θ4) −4.551(θ5) 0.022(θ6) 85.813(θ8)

λi(Â)=



−12.654 ± j20.691
−0.308

shown in the fourth and fifth rows of Table I, which indicates
that the PEM method is sensitive to the choice of initial
parameter values. The parameter estimates and the resulting
system eigenvalues obtained from RBPF-based method with
the number of parameter particles used in the RBPF being
chosen asm = 40000 are shown in the sixth and seventh
rows of Table I. The results, though not as good as those
obtained from PEM withθ0 = 0.8 × θn as shown in the
second and third rows of Table I, are acceptable. It needs
to be pointed out that these results are obtained with the
assumption of very poor knowledge on the initial parameter
values. More precisely, the results are obtained with the
parameter particles initialized with uniform distributions over
the whole possible range of parameter values. As such, the
RBPF-based method is much more robust than the PEM
method with respect to the choice of the initial parameter
values. This motivates the estimation scheme that combines
these two methods, i.e. the RBPF-based method is used as
a preliminary estimation procedure to produce the initial
parameter estimates and PEM is then used to refine the
parameter estimates from this initial point. The results of
parameter estimation obtained from a combination of these
two methods are shown in the last two rows of Table I. Again
the parameter estimates are improved when measurement of
the rotor degree of freedom (β0) is used as can be seen in
the ninth row when compared with the results in the eighth
row of Table I.

IV. RESULTS FROM REAL FLIGHT TEST DATA

As part of the DARP research project “Towards Robust
and Cost Effective Approaches to Rotorcraft Design”, the
combined estimation scheme proposed in the last section
was applied to the identification of a vertical dynamic model
for the EH101 helicopter from Westland Helicopters Ltd
(WHL) using real flight test data. A segment of data from

EH101 flight tests was selected and the time histories of the
measured control input (collectiveδ0) and output (vertical
accelerationẇ) are plotted in Fig. 1.
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Fig. 1. Flight test data used for identification

The linearised EH101 helicopter vertical dynamic model
including coning dynamics is assumed to be of the state-
space form of (21). As only vertical acceleratioṅw is
measured, the measurement equation is given by:

y = ẇ = Cx + Du + v =
[
θ4 θ5 θ6

]
x + θ8δ0 + v (23)

The RBPF-based method is used as a preliminary estimation
procedure to generate the initial parameter estimates for PEM
and the results are summarized in the first column of Table II.
Note that these initial results are obtained with the parameter
particles initialized uniformly over the whole possible ranges
of the parameter values. The PEM search is then started from



this initial point and the final parameter estimates and the
resulting eigenvalues are given in the second column of Table
II.

TABLE II

PARAMETER ESTIMATES AND THE RESULTING EIGENVALUESλi(Â)

OBTAINED WITH EH101FLIGHT TEST DATA

RBPF RBPF+PEM
−665.836(θ1) −44.172(θ2)

0.210(θ3) −126.525(θ4)
−0.650(θ5) 0.014(θ6)

−214.169(θ7) 38.046(θ8)

−895.455(θ1) −30.863(θ2)
0.058(θ3) −365.428(θ4)
1.700(θ5) 0.022(θ6)

−355.872(θ7) −85.624(θ8)

λi(Â)=



−22.066 ± j13.316
−0.026

λi(Â)=



−15.420 ± j25.630
−0.001

V. CONCLUDING REMARKS

The problem of estimating parameters in a state-space
helicopter dynamic model using time-domain estimation
techniques has been studied. Two methods have been pre-
sented for solving the problem. Simulation studies have been
carried out to assess the performance of the two methods and
the main results can be summarized as follows:

• The PEM method can produce good parameter estimates
with modest computational demand but needs good
initial parameter values to start the search.

• The RBPF-based method can produce reasonable pa-
rameter estimates with little prior knowledge of the ini-
tial parameter values but is computationally expensive.

• A combination of both methods is believed to be an
appropriate solution to the problem considered in this
paper. That is, the RBPF-based method is used for
producing an initial parameter estimate and PEM search
is then started from this initial point to refine the
parameter estimate.

The methods presented in this paper require prior knowl-
edge of the particular structure of the model and good
initial values /or possible ranges of the parameters to be
estimated. If such prior knowledge is not available, “black-
box” system identification techniques (e.g. the subspace-
based method) need to be used; see [22] for a recent
study. Though reasonable system eigenvalue estimates can be
calculated from the results of parameter estimation without
using measurements from rotor degrees of freedom, the
simulation studies show that such measurements are required
to improve the parameter estimates for the extended state-
space helicopter dynamic model with a particular physically-
relevant structure.

The combined estimation scheme proposed in this paper
was also applied to real flight test data from WHL and a ver-
tical model including rotor coning dynamics was identified
for an EH101 helicopter. Further work is being carried out
to validate the identified model.
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