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Abstract— Several recent techniques from hybrid and opti-
mal control are evaluated on a power electronics benchmark
problem. The benchmark involves a number of practically in-
teresting operating scenarios for a fixed-frequency synchronous
step-down dc-dc converter. The specifications are defined such
that good performance only can be obtained if the switched
and nonlinear nature of the problem is respected during the
design phase.

I. INTRODUCTION

In this paper we investigate the capability of hybrid

systems techniques for high performance design of power

electronic devices. The system under consideration is a fixed-

frequency step-down (buck) dc-dc converter. The absence

of the discontinuous current mode makes the synchronous

converter topology one of the simplest to tackle.

Despite its simplicity this circuit offers a number of

challenges of hybrid nature that standard control techniques

cannot handle in a systematic fashion. These challenges

include the discontinuous dynamics due to switching as

well as state constraints and control constraints that must

be respected. The benchmark example investigated in this

paper was first defined in [1] to which we also refer for

a comprehensive survey of related works in the power

electronics area.

Four research groups identified according to the affiliations

(CNRS-CRAN, ETH, KTH, LTH) have applied recent ideas

from the hybrid control area to the benchmark. CNRS-CRAN

considers a new approach for predictive control where a one-

step Newton algorithm is used to track a reference trajectory.

The reference trajectory is updated by an adaptive loop.

ETH utilizes the ν-resolution model that allow state and

control constraints to be considered explicitly and the inter-

sampling behavior to be approximated. Explicit model pre-

dictive control is applied to derive a feedback controller

and load variations are taken into account by adjusting the

reference voltage using a Kalman filter.

The KTH team uses an extension of sampled data H∞-

control theory to pulse width modulated systems. One of

the main innovations is to use averaged sampling in order

to achieve robust tracking. An outer feedback loop takes

care of state and control constraints. Finally, LTH employs

the relaxed dynamic programming formulation from [2],

† Corresponding author. Email:ulfj@math.kth.se
! Fujioka is with Kyoto University and Kao is with the University of

Melbourne.

were it is possible to take state and control constraints

into account. The approximate optimal controller provides

guaranteed robustness and stability margins.

The report [3] contains a more detailed account on the

results discussed in this paper.

II. PHYSICAL MODEL OF THE SYNCHRONOUS

CONVERTER

The circuit topology of the synchronous step-down con-

verter is shown in Fig. 1. By defining x(t) = [i�(t) vc(t)]T

as the state vector, where i�(t) is the inductor current and

vc(t) the capacitor voltage, the system is described by the

following set of affine continuous-time state-space equations.

ẋ(t) =

{
Fx(t) + fvs, kTs � t < (k + d[k])Ts,

Fx(t), (k + d[k])Ts � t < (k + 1)Ts.
(1)

where the matrices F and f are given by

F =
[− 1

x�
(r� + rorc

ro+rc
) − 1

x�

ro

ro+rc
1
xc

ro

ro+rc
− 1

xc

1
ro+rc

]
, f =

[
1
x�

0

]
. (2)

The first equation in (1) holds when S1 is conducting, the

second when S1 is off, and the duty cycle, d[k], for the k-th

period determines the fraction of the period where S1 is on.

The output voltage vo(t) across the load ro is expressed

as a function of the states through

vo(t) = gT x(t) with g =
ro

ro + rc

[
rc 1

]T
. (3)

The model incorporates the parasitic elements, in particu-

lar the internal resistance of the inductor and the Equivalent

Series Resistance (ESR) of the capacitor. Using normalized

quantities, ro denotes the output load which we assume to

be resistive, rc the ESR of the capacitor, r� is the internal

resistance of the inductor, x� and xc represent the inductance

and the capacitance of the low-pass filtering stage, and vs

denotes the input voltage. The circuit parameters expressed in

the per unit system are given by xc = 70
2π p.u., x� = 3

2π p.u.,

rc = 0.005 p.u. and r� = 0.05 p.u. If not otherwise stated, the

output resistance is given by ro = 1 p.u., the input voltage

is vs = 1.8 p.u., and the switching period is Ts = 1.

III. MODELLING FOR CONTROLLER DESIGN

Analysis and design of DC-DC converters are normally

done using small signal approximations of averaged mod-

els [4]. The averaging technique is convenient to use but
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Fig. 1: Synchronous buck converter.

it offers only a low frequency approximation of the true

dynamics where the effect of discontinuous switching is

ignored. The modelling techniques discussed in the paper

include several types of Piecewise Affine (PWA) models as

well as sampled data models.

A. CNRS-CRAN: Switched linear system

We consider a switched linear control system given by:

ẋ(t) = Aα(x,t)x(t) + Bα(x,t)E

y(t) = Cx(t),
(4)

where x ∈ R
n are the states, E = vs, α(x, t) : R

n × R
+ →

{1, 2, . . . ,m} is the switching function to be designed, and

matrix pair (Ai, Bi), 1 ≤ i ≤ m, defines a subsystem of (4).
The step-down converter belongs to the piecewise affine

description (4) with m = 2 and

A = A1 = A2 = F, B1 = f, B2 = 0, (5)

α(x, t) =

{
1 t ∈ [kTs, (k + d[k]Ts]
2 t ∈ [(k + d[k]Ts), (k + 1)Ts)],

(6)

where the switching period for the step-down converter is

Ts = 1 and d[k] represents the k-th duty cycle. The aim of

controlling the system (5)-(6) is to maintain the voltage over

the load ro at a constant value vo,ref and also to limit the

current il. We propose a predictive control approach which

relies on the use of Newton’s algorithm. Since there always

will be model uncertainty due to load changes or component

variations, we define another system with the same structure:

˙̂x(t) = Âα(x,t)x̂(t) + B̂α(x,t)E

ŷ(t) = Ĉx̂(t).
(7)

The system (7) will be denoted the identified model and the

equation (4) represents the real system.

B. ETH: Discrete-time Piecewise Affine (PWA) Systems

Polyhedral Piecewise Affine (PWA) systems are defined

by partitioning the state-space into polyhedra and associating

with each polyhedron an affine state-update and output

function [5].

In previous publications [6], [7] the notion of the ν-

resolution model has been introduced as an effective way to

describe the hybrid dynamics of the synchronous step-down

converter. This modeling approach leads to a discrete-time

PWA converter model that is valid for the whole operating

regime of the system. Additionally, it captures the behavior

of the controlled variables within the switching period, and,

through the choice of the resolution ν, provides a direct

trade-off between the accuracy of the obtained model and the

complexity that it introduces. As shown in [8], the converter

PWA model uses a transformed converter state vector x′

comprising the inductor current and the output voltage, both

scaled over the input voltage; for ν = 3, the discrete-time

PWA state-update map of the ν-resolution model amounts to

x′[k + 1] = Φ3x′[k]+

+

⎧⎨⎩ Φ2Ψ3d[k], d[k] ∈ [0, 1
3 ]

Φ2Ψ + ΦΨ3(d[k] − 1
3 ) d[k] ∈ [ 13 , 2

3 ]
Φ2Ψ + ΦΨ + Ψ3(d[k] − 2

3 ), d[k] ∈ [ 231]

(8)

with Φ = eFτs , Ψ =
∫ τs

0
eF (τs−t)dt f and τs = Ts

3 . Since (8)

refers to the transformed state vector, the matrices F , f
and g are different from the ones in (1); see [8] for exact

expressions.

C. KTH: Sampled Data Modeling

Our starting point is the following class of pulse-width

modulated systems where the dynamics periodically switches

in a given order between two affine vector fields

ẋ(t) =

{
F̌ x(t) + Ǧ1w(t) + Ǧ2, t ∈ Ǐ(d[k])
F̂ x(t) + Ĝ1w(t) + Ĝ2, t ∈ Î(d[k])

vo(t) =

{
Ȟ1x(t) + J̌1w(t), t ∈ Ǐ(d[k])
Ĥ1x(t) + Ĵ1w(t), t ∈ Î(d[k]),

(9)

where

Ǐ(d[k]) := [kTs, (k + d[k])Ts)

Î(d[k]) := [(k + d[k])Ts, (k + 1)Ts),
(10)

and Ts > 0 is the switching period and d[k] ∈ [0, 1] is

the kth duty cycle. The converter in Section II belongs to

this class and corresponds to the case when the state vector

is x = [il, vc]T . The signal w is used to model uncertainty

and disturbances in the load. The corresponding matrices are

F̌ = F̂ = F , Ȟ1 = Ĥ1 = gT ,

Ǧ1 = Ĝ1 =
[ 1

xl

rorc

ro+rc− 1
xc

ro

ro+rc

]
, Ǧ2 = fvs, Ĝ2 = 0,

and J̌1 = Ĵ1 = − rorc

ro+rc
. Finally, in addition to (9) there is

a discrete time output signal ψ, which is used for control

design. It has the following components:

ψ1[k] = (Savevo)[k] :=
1
Ts

∫ kTs

(k−1)Ts

vo(t) dt,

ψ2[k] =
[
il(kTs) v0(kTs)

]T
,

(11)

where Save denotes averaged sampling. The full detail of the

model can be found in [9].

The switching system is assumed to attain at least one

periodic solution xp of period Ts when w = 0. The

corresponding output, denoted by vp
o , is assumed to satisfy

(Savev
p
o)[k] = vo,ref , ∀ k, which is referred to as the tracking

condition.

Taking into account the disturbance w(t), the signals of the

disturbed system will be different from the nominal periodic
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version of them (i.e., xp and vp
o ). The control objective

is to ensure robust asymptotic tracking; i.e., the condition

limk→∞(Savev)[k] = vo,ref is satisfied under the presence

the w. For this purpose, we consider a H∞ performance

index between the output v and the load disturbance w. We

consider a sampled data model of the system as a basis for

the control design. The error signals x− xp and vo − vp
o are

characterized by a lifted system. The lifted system provides

a precise description of the dynamics of the error signals

at the switching instances and it allows the effect of the

continuous time disturbance w to be exactly accounted for

in an equivalent discrete time model [9].

D. LTH: Robust discrete time model

It is natural to formulate synthesis problems for fixed

frequency pulse-width-modulated systems in discrete time.

This is so because we can only make control decisions at

discrete time instances, k := Tsk ≥ 0. The exact state

propagation between time k and k+1 can easily be obtained

by integrating (1) over one period, we obtain

x[k + 1] = Φ(ro)x[k] + Γ(d[k], ro). (12)

The matrices Φ(ro) and Γ(d, ro) depend nonlinearly on the

duty cycle and the load in such a way that the model is not

suitable for control synthesis purpose. To obtain a model that

is useful in combination with our synthesis approach we will

make a constant linear approximation

x[k + 1] = Φx[k] + Γd[k]. (13)

When the model (12) is replaced by (13) the largest error

we make can be expressed as

J = sup ||Φx + Γd − (Φ(ro)x + Γ(d, ro))||,
where the supremum is taken over (x, d, ro) ∈ X × D × R,

where X is the set of states were the model should be

valid, R is the set of values the load can assume and

D = [0, 1]. Naturally, we would like minimize J . The robust

approximation problem is to compute

minimize J(Φ,Γ)

over (Φ,Γ). Our ability to solve this problem depend on the

choice of norm and the description of the set X × D × R,

the candidates are those which makes the resulting problem

a finite dimensional convex optimization problem.

Whatever model approximation we have decided to make

there will always remain some errors. A simple, and yet

effective, way to model this uncertainty is to introduce an

integrator state. Since our goal is to achieve asymptotic

tracking of the voltage reference we augment (12) with an

integrator state

e[k + 1] = e[k] − gT x[k] + vo,ref . (14)

This integrator state can now be used for feedback, and thus

the controller will have integral action.

IV. THE CONTROL PROBLEM

The goal is to develop synthesis methods subject to a

number of criteria. The resulting closed loop system should

(i) maintain a constant switching frequency with at most

one switch per period,

(ii) ensure that control and state constraints are satisfied,

(iii) be robust to input voltage changes and load disturbances

(iv) provide a regulator that easily can be implemented.

These design criteria are of very different nature and most

existing design techniques can explicitly take into account

only a few of them. The synthesis methods discussed in

the next section illustrates new ideas on how to explicitly

consider such design constraints.

The assumption that all states and parameters can be

measured and/or estimated was allowed as a starting point in

all the considered cases. However, the quantities that can be

measured in a practically implemented system are the input

and output voltage and the current of the inductor.

V. PROPOSED CONTROL APPROACHES

A. CNRS-CRAN: Predictive control with load estimation

We propose the predictive control scheme presented in

Fig. 2. We will briefly present each part of this scheme:

Predictive
  control

Identified Reference
trajectory SYSTEM

Load
observer

   model

ro

vod
xref

dref

Fig. 2: Proposed control scheme

1) Generation of reference trajectory: This is the main

contribution of our proposal, since we compute a reference

trajectory which leads to the desired limit cycle behavior.

Our task is to generate a reference xref and dref from the

system (7) at the beginning of each period. This pair will be

used as the input for the predictive control.

If the system (7) is periodic in steady state, then the duty

cycle for the corresponding average model is constant:

d∞ref = − vo,ref

ĈÂ−1B̂1

. (15)

The duty cycle (15) allows to reach vo,ref in average. The

corresponding state at the beginning of the period is:

x∞
ref =

[
I2×2 − e

̂ATs

]−1

Âe
̂ATs

[
I2×2 − e− ̂ATsd∞

ref

]
B̂1E.

The goal of the control is convergence to (x∞
ref , d∞ref ).

In order to obtain an optimal reference trajectory for the

predictive control, we use a Newton algorithm to minimize

a quadratic form of the error

x̃ref [(k+1)Ts] := xref [(k+1)Ts]−x∞
ref = e

̂ATs x̃ref [kTs]

− e
̂ATs(1−d∞

ref )Â−1
(
e− ̂ATsΔdref [kTs] − I2×2

)
B̂1E

with respect to Δdref [kTs] = dref [kTs] − d∞
ref . This

procedure ideally leads to a reference trajectory (xref [(k +
1)Ts], dref [(k + 1)Ts]) such that x̃ref → 0.
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2) Predictive control: Now, we search to track (xref [(k+
1)Ts], dref [(k+1)Ts]) each period using a predictive model.

As most of the predictive approaches, the structure of the

control is composed of a prediction step and by an obser-

vation step in one period Ts [10], [11]. The prediction error

criterion to be minimized is

G =‖xpred[(k + 1)Ts] − xref [(k + 1)Ts]‖2
Q2

+ η (ypred[(k + 1)Ts] − yref [(k + 1)Ts])
2

+ γ (Δdpred[kTs] − Δdref [kTs])
2
,

(16)

where η and γ are positive constants, Q2 is a positive definite

matrix, ‖x‖2
Q2

:= xT Q2x, xpred represents the prediction of

the next state and ypred is the output prediction. We use a one

step Gauss-Newton iteration to minimize (16). If necessary,

the duty ratio is adjusted to respect the current constraint.

3) Load observer: In this step we estimate the load ro.

This parameter appears in the matrices Â, B̂1 and Ĉ. In our

scheme, we use a technique based on a least-square criterion:

min
ro

(x − x̂)T Q(x − x̂). (17)

The formulation (17) can be solved efficiently.

B. ETH: Model Predictive Control

Our controller is based on constrained finite-time optimal

control (CFTOC) with a receding horizon policy, more

specifically on Model Predictive Control (MPC) [12]. In the

sequel, we assume that the input and output voltages vs and

vo, respectively, and the inductor current i� can be measured.

The output reference voltage vo,ref and the current limit

i�,max are given by the problem setup.

The control model equations are augmented to include the

system constraints on the control input, which is bounded by

0 and 1, and the current limit. In the case considered in this

paper, the control problem is defined on a five-dimensional

state-parameter space; this is given by the measured (scaled)

converter state vector x′[k], the previously used control input

(duty cycle) d[k − 1], and the parameters of the control

problem p′[k] = [v′
o,ref i′�,max]T , comprising the scaled

output voltage reference and the scaled current limit.

To induce a steady state operation under a constant non-

zero duty cycle, we introduce the difference between two

consecutive duty cycles Δd[k] = d[k] − d[k − 1]. Next, we

define the penalty matrix Q = diag(q1, q2) with q1, q2 ∈ R
+

and the vector ε[k] = [v′
o,err[k] Δd[k]]T with v′

o,err[k] being

an approximation of the average output voltage error, inte-

grated over the k-th switching period. Finally, we consider

the objective function

J(x′[k], d[k−1], p′[k],D[k]) =
N−1∑
�=0

‖Q ε(k+	|k)‖1 , (18)

which penalizes the predicted evolution of ε(k + 	|k) from

time-instant k on over the finite horizon N using the 1-

norm. The control input at time-instant k is then obtained

by minimizing the objective function over the sequence of

control inputs D[k] subject to the equations of the control

model and the constraints on the duty cycle and the inductor

i′�[k]

v′
o[k]

d
[k

]

−1

0

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

11

Fig. 3: State-feedback control law d[k] for d[k − 1] = 0.6, v′
o,ref =

0.556 p.u. and i′�,max = 1.667 p.u.

current. This amounts to a CFTOC problem leading to the

sequence of optimal duty cycles D∗[k], of which only the

first duty cycle d∗[k] is applied to the converter.

To allow an implementation of the proposed controller

despite the high switching frequency, the solution to the

CFTOC problem needs to be explicitly pre-computed off-

line. For this, the algorithm described in [13], [14] is used.

The resulting state-feedback control law d∗[k] is a PWA

function of [(x′[k])T d[k − 1] (v′
p[k])T ]T defined on a

polyhedral partition of the state-parameter space. Note that

the normalization of the converter model over vs allows

one to avoid the introduction of the input voltage as a

parameter in the control law, since any input voltage changes

are translated to changes in the output voltage reference.

For the converter PWA model derived for ν = 3 with the

model and control problem parameters considered in this

benchmark, we compute the PWA state-feedback control law,

which is defined on 633 polyhedral regions in the state-

parameter space. Using the optimal complexity reduction

algorithm [15], the controller is simplified to 121 regions.

Fig. 3 depicts the control input d[k] as a PWA function of

x′[k], where specific values are assigned to d[k − 1], v′
o,ref

and i′�,max. By using this method an explicit MPC scheme

for DC-DC buck converters was first presented as a novel

control approach in [7].

In order to avoid introducing additional complexity to the

CFTOC problem posed above, load variations are dealt with

by using the state-feedback controller (derived for a time-

invariant and nominal load), to which a loop comprising

a Kalman filter [16] is added. For this, the reformulated

(nominal) continuous-time model is augmented by a third

state v′
e that tracks the output voltage error, and the Kalman

filter is used to estimate it. In a last step, the output voltage

reference v′
o,ref is adjusted by the tracked voltage error.

C. KTH: Sampled-Data H∞-Control

The control objective is to ensure robust asymptotic track-

ing. For robustness, the controller must ensure that the

following H∞ performance index

‖vo − vp
o‖2

2 +
∥∥∥∥[

qed

ru

]∥∥∥∥2

2

− γ2 ‖w‖2
2 < 0 (19)
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Fig. 4: Feedback Control Configuration, inner loop.

is satisfied for some γ > 0. Here q > 0 and r ≥ 0 are design

parameters, vp is the nominal periodic solution, ed and u are

respectively defined as (d0 is the nominal duty ratio)

ed[k] :=
k−1∑
i=0

(ψ1[i] − vo,ref ), u[k] := d[k] − d0.

The term ed in (19) is introduced to penalize the integrator

state and allows us to introduce integral action in the result-

ing controller. Finally, the inductor current il and the duty

ratio should at all times satisfy the constraints

u + d0 ∈ [0, 1], il ≤ i�,max where i�,max = 3 p.u.. (20)

The optimization problem involving the error dynamics

and the constraints (19), and (20) is highly nonlinear and in

general intractable for optimization. In the sequel we there-

fore consider the linearization of the state equation together

with the quadratic approximation of (19). The constraints

will be taken into account using an outer loop.

The inner loop contains a linear dynamic discrete time

feedback regulator K. The controller K is designed to

achieve robust asymptotic tracking for a small perturbation

model of (9), (19), which is discussed in [9]. The structure

of the inner feedback loop is described in Fig. 4.

The linear controller K is surrounded by an outer loop

which, if necessary, will adjust the duty ratio computed by

K. The outer loop is motivated by a number of reasons:

1) The state constraints (20) are not considered in the

synthesis of K and need to be dealt with by some

additional control structure.

2) The controller K has integral action and the presence

of saturation suggests the need for an anti wind-up

strategy.

3) The controller K is designed for a fixed nominal input

voltage. Changes in the input voltage are handled by

the integrator state, but the response can be made faster

with feedforward control from the input voltage.

The outer loop can be implemented as a nonlinear map that

remains inactive under normal operation, see [3].

D. LTH: Relaxed Dynamic Programming

Except for special cases, the computations required to

solve a synthesis problem by means of exact dynamic

programming are prohibitive. The only possibility is to

resort to approximations. One such formulation was proposed

in [17], see also [18] for examples. Using this formulation,

different parameterization of the value function results in

different algorithms. In this paper we will use the algorithm

proposed by the author in [2]. This algorithm uses polyno-

mials as parameterization. The computations are essentially

a sequence of convex optimization problems and state and

control constraints can be directly accounted for. The reader

is referred to [2] for details.

The main control objective is to regulate the average output

voltage to its reference vo,ref , in presence of the constraints

d ∈ [0, 1] and il ≤ il,max. To achieve this we define the step

cost as

l(x, e, d̂, d) = q1|vo,ef − gT x|2 + q2|e|2 + q3|d − d̂|2, (21)

where d̂ is last control value and q1,q2 and q3 are non-

negative parameters chosen to reflect the relative importance

of the different terms in l. The reason to introduce the extra

state d̂ is to avoid subharmonic oscillations at stationary

conditions. We denote the state by z =
[

xT e d̂
]T

.

Now, the optimal value function is defined by

V ∗(z) = min
∞∑

k=0

l(z, d), (22)

where the minimum is taken over {d[k]}∞0 ∈ [0, 1]∞ such

that i[k] ≤ imax. The algorithm in [2] can be used to

compute an approximate convex value function V̂ (z) which

satisfies

βV ∗ ≤ V̂ ≤ αV ∗, (23)

where β ≤ 1 ≤ α are constants. This function then defines

the control law as,

d(z[k]) = argmind∈[0,1]{V̂ (z[k + 1]) + l(z[k], d)}.
Note that the nominal closed loop system will be asymptoti-

cally stable on invariant subsets where inequality (23) holds.

If the voltage source vs is assumed to be measurable the re-

sponse time of the closed loop can be improved considerably

by using such measurements in a simple feedforward loop. If

vs,nom is the nominal input voltage, a rescaling of the duty

cycle to d̂ = vs,nom

vs
d implies that the feedback controller

always sees the nominal gain, in fact the closed loop system

dynamics will be independent of the source voltage.

VI. SIMULATION RESULTS

The performance of the control approaches described

above will be evaluated on four case studies. These represent

different scenarios that are of interest in practical applications

and pose performance challenges for any control scheme.

The output voltage reference is chosen to be vo,ref = 1
and a current limit of i�,max = 3 p.u. is imposed for all

considered cases. The output regulation must be maintained

with an accuracy of ±1% except when the current limit

constraint is active in which case it may be lost.

1) The first case concerns the start-up of the converter

from zero initial conditions. The initial state is given by

x(0) = [0, 0]T , the input voltage is vs = 1.8 p.u.. During

this start-up, the current constraint must be respected by the

peaks of the inductor current.

2) In the second case, the response of the converter to input
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Fig. 5: CRAN: Closed loop step response from zero initial condition

voltage variations is tested. The converter is initially at

steady state when a step change in the input voltage from

vs = 1.8 p.u. to vs = 3 p.u. is applied with vo,ref = 1 p.u..

3) The third case examines the response of the converter to

step changes in the output load. Starting from the steady

state, the load drops from its nominal value to ro = 0.5 p.u.

4) In the last case, we examine a crucial aspect of the

controller operation, namely the system’s protection against

excessive load currents. The load drops from its nominal

value to a very small one (namely to ro = 0.05), almost

creating a short circuit at the output. In this case, the

controller must respect the current limit and force the output

voltage to drop to the level that is needed in order to keep

the current bounded.

Next we present a simulation study where each suggested

control strategy is tested on the four test cases discussed

above. All simulations are done using the same Simulink

code. Additional plots and case studies can be found in [3].

1) CNRS-CRAN: Predictive control with load estimation:
The simulation results are shown in Fig. 5-8. The first shows

that the step to the desired limit cycle takes 10 sampling

periods without any overshoot in the output voltage. The

current limitation is respected.

Fig. 6 and Fig. 7 shows that the system recovers quickly

from the input voltage step and the load resistance drop. We

do not use a known value of ro, but we make an estimation

of the load by solving the problem (17). Finally, Fig. 8 shows

the response when there almost is a short circuit.

A. ETH: Model Predictive Control

Regarding the optimal control scheme, the penalty matrix

is chosen to be Q = diag(4, 0.1), putting a rather small

weight on the changes of the manipulated variable. In all

simulations, the prediction horizon is set to N = 2. Based

on this a PWA state-feedback control law is derived, which

is shown in Fig. 3.

The simulation results for the four case studies are shown

in Figs. 9-12. As can be seen, the current constraint is

largely respected, and its small violations are due to the

coarse resolution of the ν-resolution model. Moreover, one

can observe in Fig. 11 a relatively large undershoot in the

response of the system to a load resistance drop. This stems

from the open-loop characteristics of the converter (relatively

small output capacitor) and the fact that the worst-case

scenario is examined here, where the disturbance is fed to
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Fig. 6: CRAN: Closed loop step response to a step in the source voltage
from vs = 1.8 p.u. to vs = 3 p.u.
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Fig. 7: CRAN: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 0.5 p.u
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Fig. 8: CRAN: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 0.05 p.u
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Fig. 9: ETH: Closed loop step response from zero initial condition

the control scheme with the maximum time delay of one

switching period.

B. KTH: Sampled-Data Control

The results to the four test cases are given in Fig. 13-16.

The outer loop of our control structure is only active during

the initial part of the step response and in the fourth test case

when there almost is a short circuit at the output. It would

be possible to tune the inner loop such that the current limit

is satisfied using only the linear control but that results in

slower responses. The feedforward from the input voltage

improves the response to the input voltage disturbances but

the integral action would be sufficient to ensure satisfactory

performance. The inner loop is a dynamic controller that only

uses the output voltage as a measurement.
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Fig. 10: ETH: Closed loop response to a step in the source voltage from
vs = 1.8 p.u. to vs = 3 p.u
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Fig. 11: ETH: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 0.5 p.u
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Fig. 12: ETH: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 0.05 p.u
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Fig. 13: KTH: Closed loop step response from zero initial condition
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Fig. 14: KTH: Closed loop response to a step in the source voltage from
vs = 1.8 p.u. to vs = 3 p.u
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Fig. 15: KTH: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 0.5 p.u
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Fig. 16: KTH: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 0.05 p.u

C. LTH: Relaxed Dynamic Programming

Our simulations are shown in Fig 17-20. As can be seen

the step response is very fast, it reaches its reference value

after only 7% cycles. We used a relatively high value on q1,

as compared to q2 and q3. The current constraint i ≤ 3 is

respected during the step response simulations. To achieve

this it was necessary to lower the bound to a value sightly less

then 3. However, when the load drops, Fig. 20, from ro = 1
p.u. to ro = 0.05 p.u the current constraint is violated for

a few cycles. This is not surprising since the controller was

designed for nominal load. By lowering the bound further it

would be possible to keep the current below the bound at

the expense of a slower step response.

The quick response to an increase in the source voltage is

due to a combination of integral action and feedforward, the

response would remain acceptable if the feedforward was

removed, see Fig. 18. The response to a 50% load drop is

a bit slow, see Fig. 19, it takes approximately 30 cycles to

get within 2% from the reference. It can be explained as a

trade-off for fast step response.

VII. COMPARISON AND CONCLUSIONS

The various control structures proposed in the paper are

all based on digital control techniques where measurement
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Fig. 17: LTH: Closed loop step response from zero initial condition
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Fig. 18: LTH: Closed loop response to a step in the source voltage from
vs = 1.8 p.u. to vs = 3 p.u
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Fig. 19: LTH: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 0.5 p.u

and actuation takes place only at the sampling instances.

The sampled data approach investigated by KTH is easy to

implement and allows fast sampling rates to be considered.

The model predictive control suggested by ETH and the re-

laxed dynamic programming approach by LTH allow a more

systematic treatement of the nonlinear design constraints but

may lead to increased yet manageable complexity of the

resulting controller. The predictive control of CNRS-CRAN

results in excellent performance but requires much more

computation than the other approaches.

An important conclusion from this benchmark is that some

nonlinear control action is necessary in order obtain a closed

loop system that respects the state and control constraints

without sacrificing too much in performance. Possible future

directions would be to investigate how the methods can be

extended to consider higher dimensional converter topologies

and to investigate how they cope with parameter variations

and dynamic uncertainties that appear under experimental

conditions.

In Part 2 of this paper we investigate hybrid control

strategies applied to a step-up (boost) converter. It is then

necessary adjust the strategies discussed in this paper. For

example, ETH reformulates their control problem as an
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Fig. 20: LTH: Closed loop response to a step in the load resistance from
ro = 1 p.u. to ro = 0.05 p.u

inductor current tracking scheme due to the non-minimum

phase relation between output voltage and duty cycle. KTH

uses a different cost function for the inner loop and designs

the outer loop with the objective of improving the step

response. LTH considers a different cost for their dynamic

programming approach.
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