
Predicting Voltage Instability of Power System

via Hybrid System Reachability Analysis

Yoshihiko Susuki and Takashi Hikihara

Abstract— Estimating voltage instability of power systems is
important for reduction of large blackouts. This paper proposes
to use reachability analysis of hybrid systems for predicting
voltage instability of a power system. The reachability analysis
is performed by computing backward reachable sets for unsafe
sets of hybrid automata. The automata represent continuous
voltage dynamics and discrete operations by relay devices. The
unsafe sets of hybrid automata are also subsets of state space
in which a system voltage shows unacceptable levels such as
low or high values. With single machine-load bus (SMLB)
system with controlled route switching, we show that voltage
instability in the SMLB system can be predicted using the
reachability analysis. The obtained result implies that voltage
instability leading to large blackouts is possibly detected before
its occurrence in power systems.

I. INTRODUCTION

The problem of estimating voltage instability is of
paramount importance for power system operation and plan-
ning. Voltage instability is concerned with a power system’s
ability to maintain acceptable levels of voltages, following
a load variation or event disturbance [1]. The instability im-
plies in this paper that a power system is under unacceptable
levels of voltages. There were many power system blackouts
caused by voltage instability, including Japan and Sweden
[2], and North Europe [3]. Recent regulatory reforms and
uses of distributed power sources make it more difficult to
keep safe levels of system voltages. It is by now widely rec-
ognized that such voltage dynamics cannot be fully estimated
using conventional methods. A comprehensive approach has
been therefore strongly required.

Hybrid systems theory has potential to provide a novel
framework of voltage instability estimation of power sys-
tems. Hybrid dynamical systems and their control are active
research subjects in computer science and control engineer-
ing [4]. Several researchers have recently worked on hybrid
systems theory and voltage stability problems. Hiskens et
al. [5], [6] propose a hybrid modeling of power systems
including transformer tap changes and relay operations. Tong
et al. [7] propose a hybrid system view of voltage instability
problem. Geyer et al. [8], [9] and Leirens et al. [10] use
hybrid control theory for voltage stability enhancement.

This paper proposes a numerical method for predicting
voltage instability of a power system based on hybrid sys-
tems theory. The term prediction here implies that we deter-
mine voltage instability in a power system using numerical
simulations of the corresponding dynamical model before its
occurrence. A hybrid system-based approach to modeling
and stability analysis of power systems is proposed in [11],
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[12]. The modeling is performed via hybrid automata [13].
The stability analysis is based on reachability analysis of
hybrid automata which is a well-established technique of
safety verification in engineering systems [14]. This paper
focuses on voltage instability following an event disturbance,
called transient voltage instability [1], and proposes a nu-
merical method for predicting the voltage instability. The
method is demonstrated via an analysis of single machine-
load bus (SMLB) system. We show that transient voltage
instability in the SMLB system can be predicted using
the reachability analysis. A similar approach to transient
angle instability is reported in [15]. The approach requires a
different mathematical formulation from that in this paper.

II. PREDICTING VOLTAGE INSTABILITY VIA

REACHABILITY ANALYSIS: A PROPOSED METHOD

The second section introduces a numerical method for
predicting the voltage instability. It is based on modeling
of voltage dynamics via hybrid automata and reachability
analysis of the hybrid automata.

A. Definition of hybrid automaton as power system model

A hybrid automaton H [14] is defined to be a collection

H = (Q ∪ X, Init, In, f,Dom, e), (1)

where

• Q ∪ X is the union of discrete and continuous states.
The state of H is represented as a pair (q, x), describing
the discrete and continuous state;

• Init ⊆ (Q ∪ X) is a set of initial states;
• In = (U ∪ D) ∪ (Σu ∪ Σd) is the union of actions and

inputs. u ∈ U is used to represent variables that can be
controlled, called control inputs, and d ∈ D represents
disturbance inputs, which are variables that cannot be
controlled. σu ∈ Σu represents control actions and σd ∈
Σd disturbance actions;

• f is a function that takes state and input and maps
to a new state f : (Q ∪ X) × In → (Q ∪ X). f
represents a continuous vector field or continuous-state
control system indexed by the discrete state;

• Dom is called a domain and describes, for each discrete
state, the subset of the continuous state space within
which the continuous state may exist;

• e : (Q ∪ X) × In → 2Q∪X is a transition relation
and describes the transition logic, which may depend
on continuous state and input, as well as discrete state
and action.

Trajectories of the hybrid automaton H evolve continuously
as well as in discrete jumps. Mathematical descriptions of its
trajectories and behavior are presented in [14] and references
therein.
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The hybrid automaton H can combine continuous voltage
dynamics with discrete operations of power systems. The
vector field f in H describes continuous voltage dynamics
of generators and loads, and dynamic response of control
systems. The discrete variables {q} are assigned to system
configurations or modes. A conventional setting [1] of sta-
bility study implies that there are three discrete variables
assigned to pre-fault, fault-on, and post-fault modes. Trans-
former tap positions and shunt capacitor states should be
also represented by the discrete variables for voltage insta-
bility estimation. The transition relation e can then describe
topological changes of transmission networks and changes
of transformer tap positions and shunt capacitor states. The
transition e is driven by control and disturbance actions
(σu[·], σd[·]) ∈ (Σu∪Σd). The actions include controlled and
uncontrolled operations of relay devices, transformer tap, and
shunt capacitors, and unanticipated event disturbances such
as lightning and timber contact. The hybrid automaton H can
also comprise continuous state controllers such as dc links
[16] and SVCs (Static Var Compensators) [17] by u(·) ∈ U
and include unregulated power flow due to electricity trading
by d(·) ∈ D. The hybrid automaton H is hence applicable
to modeling of voltage dynamics with considering discrete
operations.

B. Predicting voltage instability via reachability analysis of
hybrid automaton

The present subsection introduces a numerical method for
predicting the voltage instability. This prediction is based on
reachability analysis of hybrid automata [14]. Now define
an unsafe set G ⊂ (Q ∪ X) for the hybrid automaton H .
This unsafe set is interpreted as a set of operating conditions
in which a system voltage shows unacceptable levels such
very high or low values. A backward reachable set Rt(G)
for the time t(< 0) in the hybrid automaton H is then
defined by a subset of Q ∪ X in which any state reaches
the boundary ∂G of G in time 0 to |t| despite of any
control (u(·), σu[·]). The term despite of any control implies
that G is reachable despite controls acting to avoid G. A
mathematical description of the backward reachable set is
given in [14] and references therein. The reachable sets are
important for estimating the voltage instability. If a state
exists in Rt(G), then it can be evaluated that the system
voltage will reach the unacceptable levels in time 0 to |t|.
This estimation is possible at any time in operations such as
onset of fault occurrence and clearing. In other words, by
evaluating the reachable sets of hybrid automaton H , it can
be examined at any onset in operations whether the system
voltage settles down to unacceptable levels as time passes.
The reachability analysis thus makes it possible to predict
the voltage instability.

C. Remarks

Modeling of power system dynamics via hybrid automata
is not a new approach. Hiskens et al. [5], [6] use a hybrid
automaton for modeling of power systems with considering
transformer tap positions and relay internal states. Fourlas et
al. [18] also adopt a hybrid input/output automaton for an
analysis of power transmission system. The previous works
make it possible to formulate hybrid voltage dynamics in this
paper.

Transient voltage instability as well as static instability has
been studied by several researchers. Static voltage instability
is a well-established subject of power engineering: see [1],
[2] and references therein. For transient voltage instability,
as defined in [1], the problem is concerned with a power
system’s ability to reach an acceptable operating condition
following an event disturbance. With a power system model,
the problem is mathematically translated into that of de-
termining a stability region of attractor that corresponds to
an acceptable operating condition. Moreover, it is stated in
Section I that the problem is concerned with an ability to
maintain system voltages in acceptable levels during transient
period. This aspect of voltage problem is formulated in [1]
as the problem of determining the size and shape of stability
region. There are some previous works [19], [20], [21] on
the transient voltage instability via energy functions.

The estimation of transient voltage instability is possible
by evaluating backward reachable sets of hybrid automata
as power system models. The method proposed here uses
a backward reachable set for unsafe set which represents
dangerous levels of system voltages. The complementary
set to the reachable set may include the stability region.
Therefore, the proposed method evaluates the stability re-
gion indirectly. Moreover, the complementary set provides
quantitative measure of the stability region. This makes it
possible to evaluate the size and shape of stability region.
Thus, the problem of transient voltage instability is solved
with the present formulation, which is based on reachable
sets of hybrid automata.

The proposed method has many advantages of estimating
transient voltage instability. The present attention to unsafe
operations offers effective solutions for the following ques-
tions: how long does it take for system voltages to decrease
by 10 %?; and how much do system voltages decrease in 10
seconds? Such quantitative information of voltage instability
is important for operations of power systems. Unfortunately,
it cannot be obtained with the previous methods [19], [20],
[21], because they cannot fully handle the hybrid nature
of voltage dynamics. Detailed simulations in power system
analyzers are also used for voltage stability analysis. They
can consider the hybrid nature of system dynamics. However,
it does not contribute to the prediction of transient voltage in-
stability and also does not provide any effective information
for synthesizing controllers that make it possible to avoid the
unsafe operations.

III. APPLICATION TO SINGLE MACHINE-LOAD BUS

SYSTEM

This section applies the proposed method to an analysis
of single machine-load bus (SMLB) system in Fig. 1. The
SMLB system is given by Venkarasbramanian et al. [20] and
consists of a synchronous machine, a load bus, and ac trans-
mission lines. The aim of this application is to investigate
whether the bus voltage of load reaches unacceptable levels,
depending on a relay operation and continuous dynamics of
synchronous machine.

A control action of relay devices is introduced for the
present analysis. Suppose that one transmission route with
two lines is tripped at time tc(> 0 s) by relay devices. Fig. 1
also shows the control action and describes the change of
transmission routes at t = tc. The control action generates
two modes of operations shown in Fig. 1: (a) two routes
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Fig. 1. Single machine-load bus (SMLB) system and control action
following hybrid voltage dynamics. The SMLB system is given by Venkaras-
bramanian et al. [20] and consists of a synchronous machine, a load bus,
and ac transmission lines. One transmission route with two lines is tripped
at time tc(> 0 s) by relay devices. Section. III aims at 0 s to predict the
instability of bus voltage E with considering the relay operation.

operation and (b) one route operation. The onset time tc
is a control parameter of the SMLB system. This section
aims to predict the voltage instability governed by the hybrid
dynamics at 0 s.

A. Modeling of continuous dynamics [20]

Continuous voltage dynamics at each mode are modeled
via a differential-algebraic equation (DAE). Suppose that the
active power output of generator is equal to the consumed
active power of load, and that there are no electro-mechanical
dynamics of synchronous machine, i.e., the generator speed
derivation is zero. Voltage dynamics are then isolated from
the electro-mechanical dynamics. With a simplified one
axis generator model and a first-order model of automatic
voltage regulator (AVR), Venkarasbramanian et al. derive the
following DAE for the voltage instability analysis:


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



















T ′

d0Ė
′ = −

xl + xd

x′
E′ +

xd − x′

d

x′

E2 + x′Q(E)

E′

+Efd,

, f1(E
′, Efd, E; xl),

T Ėfd = −(Efd − E0
fd) − K{EG(E; xl) − Er},

, f2(Efd, E; xl),

0 = E′2E2 − (x′P )2 − {x′Q(E) + E2}2,

, g(E′, E; xl),
(2)

TABLE I

PHYSICAL MEANING OF VARIABLES AND PARAMETERS FOR THE SMLB

SYSTEM. THE PARAMETER SETTING EXCEPT tc AND Ec IS BASED ON

VENKARASBRAMANIAN et al. [20].

generator voltage behind transient reactance E′

field excitation Efd

bus voltage of load E
generator bus voltage EG

open-circuit transient time constant T ′

d0
5 s

transmission reactance (two routes) xl 0.1
transmission reactance (one route) xl 0.2
d-axis synchronous reactance xd 1.2
d-axis transient reactance x′

d
0.2

time constant of first-order model of AVR T 1 s

nominal field excitation E0
fd

2
gain constant of first-order model of AVR K 7
set-point value of generator bus voltage Er 1
mechanical input power to generator Pm 0.9
constant reactive power of load Q0 0.5Pm

current source of load H 0
impedance load B 0
onset time of relay operation tc 2.5 s
critical value of bus voltage Ec 0.7

where


























EG(E; xl) =
1

E

√

(xlP )2 + {xlQ(E) + E2}2,

x′ = xl + x′

d,

P = Pm,

Q(E) = Q0 + HE + BE2.
(3)

The physical meaning of variables and parameters are shown
in Tab. I. The load model also includes an algebraic depen-
dence of reactive load on voltage. The reactive power Q
consists of a constant power source Q0, a current source
HE, and an impedance load BE2.

Some mathematical structures of the DAE (2) are now
reviewed. The subsets L and S in three-dimensional space
(E′, Efd, E) ∈ R

3 are defined for the DAE (2) as






















L(xl) , {(E′, Efd, E) ∈ R
3 | g(E′, E; xl) = 0},

S(xl) , {(E′, Efd, E) ∈ L(xl)
∣

∣

∣

∣

∂g

∂E
(E′, E; xl) = 0

}

.

(4)
All solutions of the DAE (2) exist on the constraint set L. L
typically consists of a two-dimensional manifold in the three-
dimensional space. S is called singular surface in which the
solutions of the DAE (2) do not generally hold uniqueness
properties. The DAE (2) describes a unique vector field on
the subset or smooth manifold L \ S in R

3.

B. Modeling of transition relation

External jumps in the DAE (2) is central to modeling of
transition relation which represents the route trip. The above
subsection regards the switching of transmission routes as a
control action. The switching is mathematically represented
by a discontinuous change of parameter xl in the DAE
(2). The values of xl are denoted as follows: x−

l
for two

routes operation and x+

l
for one route operation. Then, the

constraint set L(x−

l
) for two routes operation is different
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(a) (b) (c)

EP EP

S

Fig. 2. External jumps and possible phase portraits in boundary layer (BL)

system (5). The initial point is at E = E(t−c ). The equilibrium point (EP)

possibly coincides with E = E(t+c ). The phase portraits, including stability

of the EP, are parameterized by the values of E′(t−c ) and x
+

l
. In Fig. (a) the

transition relation e is modeled with the trajectory of the BL system (5). In
Figs. (b) and (c) any transition cannot be defined in the present formalism.

from L(x+

l
) for one route operation. The difference is the

origin of the transition e at t = tc. Such behavior has
been discussed for power system models [22], [23], [24]
and is called external jumps [23]. The previous works [22],
[23] characterize the external jumps via boundary layer (BL)
systems.

This transition is discussed using phase portraits of a BL
system. Now introduce the following remark presented in
[22], [23]:
Remark If the DAE (2) admits of the external jump at
t = tc, then the trajectory of the BL system

Ė = g(E′(t−c ), E; x+

l
), (5)

with the initial point E = E(t−c ) converges to the point
E(t+c ) as time passes, satisfying (E′(t−c ), Efd(t−c )) =
(E′(t+c ), Efd(t+c )).
This remark shows that the point E = E(t−c ) is on a stable
manifold of the equilibrium point (EP) E(t+c ) in the BL
system (5). Therefore, phase portraits in the BL system
(5) play an important role in characterizing the external
jumps. Fig. 2 shows examples of phase portraits in the
BL system (5). Each of them is on one dimensional space.
The initial point denotes E = E(t−c ), and the EP possibly
coincides with E = E(t+c ). The three portraits in Fig. 2 are
parameterized by the value of E′(t−c ) and are explained as
follows:

(a) The initial point exists on a stable manifold of the EP.
In other words, the trajectory from the initial point
converges to the EP as time passes. The EP exactly
coincides with E(t+c );

(b) This denotes a critical phase portrait in which the EP
exists on the singular surface S. The EP has zero
eigenvalue, and the portrait is structurally unstable;

(c) The initial point does not exist on any stable manifold.
Then, depending on detailed structures of the phase
portrait, the trajectory from the initial point has a
possibility of not converging to any steady state.

The transition relation e at t = tc is modeled via
trajectories of the BL system (5). In Fig. 2(a), the transition e
is represented as the continuous trajectory that connects the
initial point and the EP. In Figs. 2(b) and (c), any transition
cannot be defined in the present formalism. This shows a loss
of causality [25], [26] of the DAE (2) and possibly indicates a
modeling breakdown.1 Here, to use the above modeling, it is

1It has been unclear whether the lose of model causality directly implies
the system instability or not. This should be clarified by comparing numer-
ical results of reduced power system models including the DAE (2) and
detailed ones in power system simulators.

q

σ1

=t tc

1

2 routes
operation

2
q

operation
1 routet:= 0s

Fig. 3. Hybrid automaton (6) including one control action which represents
the route trip

necessary to check at each transition whether the BL system
(5) has the hyperbolic EP which stable manifold contains
the initial point E = E(t−c ). It is shown in [23] that the
check is analytically possible for the BL system (5) with an
energy function. Unfortunately, there is no analytical method
for general DAE and BL systems. The check therefore relies
on numerical simulations shown in Section III-D.

C. Description of hybrid automaton and unsafe set

With the hybrid automaton (1), the intersection of con-
tinuous voltage dynamics and relay operation in the SMLB
system is represented as







































































Q ∪ X = {q1, q2} ∪ (R3 × R
+),

(E′, Efd, E, z) ∈ X,

U ∪ D = ∅,

Σu ∪ Σd = {σ} ∪ ∅,

f(q, (E′, Efd, E, z)T),

Dom =

2
⋃

i=1

(

qi, (Li \ Si) × R
+
)

,

e(q, (E′, Efd, E, z)T, σ),

(6)

where L1 = L(x−

l
), L2 = L(x+

l
), S1 = S(x−

l
), and S2 =

S(x+

l
). Fig. 3 describes the hybrid automaton (6) with two

modes and one control action. The continuous state space
is augmented with a timer z ∈ R

+ in order to force the
transition relation e. The discrete variable q1 is assigned to
the two routes operation and q2 to the one route operation.
The relay operation is also regarded as the control action σ.
The continuous vector field f on Dom is represented as

f(q, (E′, Efd, E, z)T) =
























1

T ′

d0

f1(E
′, Efd, E;xl)

1

T
f2(Efd, E; xl)

−

{

∂g

∂E
(E′, E; xl)

}−1

·
2E′E2

T ′

d0

f1(E
′, Efd, E; xl)

1

























at

{

xl = x−

l
if q = q1,

xl = x+

l
if q = q2.

(7)
The present description of vector field is given in [20]. The
vector field has the first integral g(E′, E; xl), and its trajec-
tories therefore satisfy the algebraic constraint g(E′, E; xl)
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in the DAE (2). Thus, with the description of vector field,
the trajectories of the DAE (2) are derived. The transition
relation e is driven by the control action σ and is given
by the trajectories of the BL system (5). Suppose that
φt(·;E

′(t−c ), x+

l
) is a flow defined by the BL system (5),

then the transition e is represented by

e(q1, (E
′(t−c ), Efd(t−c ), E(t−c ), tc)

T, σ)

= (q2, (E
′(t+c ), Efd(t+c ), E(t+c ), tc)

T),
(8)

where














E′(t+c ) = E′(t−c ),

Efd(t+c ) = Efd(t−c ),

E(t+c ) = lim
t→+∞

φt(E(t−c );E′(t−c ), x+

l
).

(9)

Under the parameter setting in Tab. I, the above repre-
sentation of the transition e is valid only if the value
E(t+c ) is bounded. If otherwise, any transition cannot be
described in the present formalism. In numerical simulations
of Section III-D, if the above situation of transition occurs,
then the numerical simulations are stopped.

The proposed method in Section II requires detailed infor-
mation about unacceptable operations of the SMLB system
and associated unsafe sets of the hybrid automata (6). The
present analysis is performed under the following unsafe set
G and the set Init of initial conditions:








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










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



























Go =
2

⋃

i=1

(

qi, {(E
′, Efd, E, z) ∈ Li × R

+

| E < Ec}),

∂G =
2

⋃

i=1

(

qi, {(E
′, Efd, E, z) ∈ Li × R

+

| E = Ec}),

Init =
(

q1, {(E
′, Efd, E, z) ∈ L1 × R

+

| E > Ec, z = 0}) ,

(10)

where Ec = 0.7. All states in G physically imply unaccept-
able operations of the SMLB system because of the decrease
of bus voltage of load.

The definition of unsafe sets is crucial for the proposed
method in this paper. The prediction of voltage instability
strongly depends on how unacceptable states of a power
system are set. The application here aims to predict the
instability of bus voltage E, depending on the generator
dynamics and the route trip. The above setting of Ec is
meaningful for preventing its very low value. Here, the DAE
possesses a singular surface S as a subset of L satisfying
E < 0.7. Namely, the surface S is contained in the unsafe
set Go.

D. Numerical reachable set and prediction

This section shows a numerical result of reachable set in
the hybrid automaton (6). The parameter setting, given in
Tab. I, is based on Venkarasbramanian et al. [20] except tc
and Ec. The computation of reachable set in each individual
mode is straightforward and is accomplished by comput-
ing time-reverse trajectories from usable parts [27] on the
boundary ∂G. This paper adopts the 3rd-stage Radau-IIA
implicit Runge-Kutta method [28] for numerical integration.
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The problem here is how to deal with the interaction between
the two modes. For the present case, the following three
reachable set computations are necessary:

(a) The set of states which lead to voltage instability in the
mode q1. This set is obtained as time-reverse trajectories
from the usable parts in time 0 s to −tc at the mode
q1;

(b) The set of states which lead to voltage instability in
the mode q2. This set is also given by time-reverse
trajectories from the usable parts in time 0 s to −∞
at the mode q2;

(c) The set of states which, after mapped from the mode
q1, lead to voltage instability in the mode q2. This set
is derived as follows: First, the set of states at the mode
q1 is computed which are mapped by the transition e
onto the derived reachable set in (b). Second, the time-
reverse trajectories from the obtained set are computed
during the interval [0 s,−tc]. Lastly, all the states on
the trajectories at time −tc form our questing reachable
set.

Figure 4 shows the reachable set of the hybrid automaton
(6). The figure shows the set Init of initial conditions and the
unsafe set G. Init is the two dimensional plane in the space
(E′, Efd, E) ∈ R

3 and corresponds to the plane containing
the sets Ri (i = 1, 2, 3) and NR in Fig. 4. The union of the
sets Ri is the reachable set. R1 is the subset of Init from
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which any trajectory reaches ∂G before the transition e. R2 is
the subset of Init from which any trajectory directly lands on
G by the transition e. R3 is also the subset of Init from which
any trajectory reaches ∂G after the transition e. The region
NR is the subset of Init in which any transition cannot
be defined, i.e., the case (c) of phase portraits in Fig. 2.
The white region in Init of Fig. 4 therefore corresponds to
the transient voltage stability region with considering the
transition relation e. Fig. 5 shows the transient behavior
starting from the four initial conditions in Fig. 4. All the
behavior in Fig. 5 reaches the unsafe set and is characterized
by the reachable set. The figures show that the fate of bus
voltage E can be estimated at 0 s. The prediction of transient
voltage instability is hence achieved via the computation of
reachable sets.

IV. CONCLUDING REMARKS

This paper proposed to use reachable sets of hybrid
automata for the prediction of transient voltage instability.
The proposed method is based on modeling of voltage dy-
namics via hybrid automata which include nonlinear DAEs.
Linearized discrete time models are used in [8], [9], [10]
for analysis of voltage behavior. The nonlinear nature of
the modeling makes it possible to examine global voltage
dynamics of power systems, in other words, voltage behavior
far from acceptable operating conditions.

The proposed method is also based on reachability anal-
ysis of hybrid automata. Computation of reachable sets is
crucial for the prediction of voltage instability. The present
computation for the SMLB system is simple. It is therefore
non-trivial whether its computation strategy in Section III is
generalized into the cases of complicated transition relations
and high-dimensional DAEs. Non-uniqueness in reverse time
of trajectories [29] also becomes a limitation of the compu-
tation. An effective computation for DAE-based models is
a next challenging issue for analysis of actual bulk power
systems.
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