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Abstract— This paper considers the control of discrete
linear repetitive processes, which are a distinct class of two-
dimensional (2-D) discrete linear systems, i.e. information
propagation in two independent directions, which are of
both system-theoretic and applications interest. In this
paper we report new results on the design of control
laws with guaranteed levels of performance. In particular,
develop algorithms for the design of an H∞ and `2-`∞
dynamic output feedback controller which guarantees that
the resulting controlled process is stable and has prescribed
disturbance attenuation performance as measured by H∞
and `2-`∞ norms.

I. INTRODUCTION

The unique characteristic of a repetitive, or multipass,
process is a series of sweeps, termed passes, through
a set of dynamics defined over a fixed finite duration
known as the pass length. On each pass an output, termed
the pass profile, is produced which acts as a forcing
function on, and hence contributes to, the dynamics
of the next pass profile. This, in turn, leads to the
unique control problem for these processes in that the
output sequence of pass profiles generated can contain
oscillations that increase in amplitude in the pass-to-pass
direction.

To introduce a formal definition, let α < +∞ denote
the pass length (assumed constant). Then in a repetitive
process the pass profile yk(p), 0 ≤ p ≤ α−1, generated
on pass k acts as a forcing function on, and hence
contributes to, the dynamics of the next pass profile
yk+1(p), 0 ≤ p ≤ α − 1, k ≥ 0. The source of the
unique control problem then appears (if at all) in the
output sequence generated in the form of the collection
of pass profile vectors {yk}k.
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Podgórna 50, 65-246 Zielona Góra, Poland. Email: {w.paszke,
k.galkowski}@issi.uz.zgora.pl

E. Rogers is with School of Electronics and Computer Sci-
ence, University of Southampton, Southampton SO17 1BJ, UK.
Email: etar@ecs.soton.ac.uk

This work was partially supported by RGC HKU7028/04P and
William Mong Fund

Physical examples of repetitive processes include
long-wall coal cutting and metal rolling operations (see,
for example, the references cited in [10]). Also in recent
years applications have arisen where adopting a repeti-
tive process setting for analysis has distinct advantages
over alternatives. Examples of these so-called algorith-
mic applications include classes of iterative learning con-
trol (ILC) schemes (see, for example, [4]) and iterative
algorithms for solving nonlinear dynamic optimal control
problems based on the maximum principle [9]. In the
case of iterative learning control for the linear dynamics
case, the stability theory for differential (and discrete)
linear repetitive processes is one method which can be
used to undertake a stability/convergence analysis of a
powerful class of such algorithms and thereby produce
vital design information concerning the trade-offs re-
quired between convergence and transient performance
(see, for example, [5]).

Attempts to control these processes using standard
(or 1D) systems theory/algorithms fail (except in a few
very restrictive special cases) precisely because such an
approach ignores their inherent 2D systems structure, i.e.
information propagation occurs from pass-to-pass and
along a given pass. Also the initial conditions are reset
before the start of each new pass and the structure of
these can be somewhat complex. For example, if they
are an explicit function of points on the the previous pass
profile then this alone can destroy stability. In seeking a
rigorous foundation on which to develop a control theory
for these processes, it is natural to attempt to exploit
structural links which exist between these processes and
other classes of 2D linear systems.

The case of 2D discrete linear systems recursive in
the positive quadrant (i, j) : i ≥ 0, j ≥ 0 (where i
and j denote the directions of information propagation)
has been the subject of much research effort over the
years using, in the main, the well known Roesser and
Fornasini Marchesini state-space models. More recently,
productive research has been reported on H∞ and H2

approaches to analysis and controller design — see, for
example, [12] and [1]. In general, this theory is not
applicable to repetitive processes due to the fact that
information propagation in one of the independent direc-
tions, along the pass, only occurs over a finite duration —
the pass length. Also the boundary conditions are reset
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before the start of each new pass and, as noted above,
the structure of these is crucial in terms of stability (and
hence control law design).

In terms of control laws for repetitive processes, it is
possible to use feedback control action on the current
pass and/or feedforward control from the previous pass
(or passes). The critical role of the previous pass profile
dynamics means that current pass feedback control alone
is not enough and it must be augmented by feedforward
control. This approach has been the subject of significant
research effort and results are beginning to emerge on
how to undertake control law design in the presence of
uncertainty. For example, [6], [8] give results on control
law design in an H∞ setting. The control laws used in
some of this work are based on the use of feedback of
the current state vector which, of course, requires that all
elements of this vector can be measured to allow control
law implementation. Often, however, this assumption
is not valid, since some of these elements cannot be
measured for various reasons.

There are two commonly used methods to deal with
the control design problem when state components are
not accessible. One is to design a state observer to esti-
mate the immeasurable state components, and synthesize
an observer-based control law, the other is to design a
controller which is only activated by pass profile (or
output) information where such controllers are usually
classified as either static or dynamic respectively.

Generally speaking, dynamic output feedback is the
more flexible since the controller introduces additional
dynamics. Also it is known that the problem of designing
such control laws can be formulated as a convex opti-
mization problem over LMIs [7], [11] and hence can
be effectively computed using numerical optimization
packages. This work also shows that there are two com-
plementary approaches to problem formulation. These
are the well known variables elimination procedure and
using linearizing variables transforms, respectively.

This latter approach provides a general framework to
formulate synthesis problems as a convex optimization
problem involving LMIs. It is based on applying specific
invertible transforms of the controller parameters to
achieve LMI conditions in terms of the new set of vari-
ables. When the resulted LMIs have a solution, the con-
troller parameters can be computed by applying inverse
transforms. This approach becomes less computationally
effective as the number of decision variables increases
and hence elimination of some decision variables can
be still required, but these can only be applied to the
specific structures of underlying matrix inequalities. The
known results on designing a so-called H∞ dynamic
pass profile controller are based on variables elimination
method, see [7].

Based on the above, it can be concluded that there is

a clear need to investigate alternative design algorithms
based on linearizing variables transform method, with
the overall aim of providing a general set of control
law/controller design tools for the designer to chose the
one most appropriate to the the particular application
under consideration. Moreover, to-date only H∞ and H2

(and mixed H2/Hzinfty settings have been considered
but there are alternatives to deal, for example, with the
case when there is only partial information available on
the noise corruption present. Here we develop significant
new results in this direction with `2-`∞ performance
included. In particular, we extend the results of [7], to
the design of H∞ and `2-`∞ dynamic output feedback
control for discrete linear repetitive processes to guar-
antee stability and have H∞ and an `2-`∞ disturbance
attenuation respectively. Sufficient conditions for the
existence of such dynamic output feedback controllers
are established in the strict LMI form , which can be
readily solved using standard numerical software [2].

Throughout this paper, the null matrix and the identity
matrix with appropriate dimensions are denoted by 0 and
I , respectively. Moreover, M > 0 (respectively, ≥ 0)
denotes a real symmetric positive definite (respectively,
semi-definite) matrix. Similarly, M < 0 (respectively,
≤ 0) denotes a real symmetric negative definite (re-
spectively, semi-definite) matrix. We also require the
signal space `2 {[0,∞), [0,∞)} , i.e. the space of square
summable sequences on {[0,∞), [0,∞)} with values in
Rn.

II. H∞ AND `2-`∞ PERFORMANCE

A. Process Description and Preliminaries

As essential background for the rest of this paper,
we in this section what is meant by H∞ and `2-
`∞ performances for discrete linear repetitive processes
described by the following state-space model over 0 ≤
p ≤ α, k ≥ 0,

xk+1(p+1)=Axk+1(p)+B0yk(p)+B1ωk+1(p)
yk+1(p)=Cxk+1(p)+D0yk(p)+D1ωk+1(p)

(1)

where on pass k, xk(p) ∈ Rn is the state vector;
yk(p) ∈ Rm is the pass profile vector; ωk(p) ∈ Rl is the
disturbance vector which belongs to `2 {[0,∞), [0,∞)} ;
A, B0, B1, C, D0 and D1 are real constant matrices. The
current pass state (xk(p)) and pass profile (yk(p)) may
not be fully accessible. Hence consider the control (and
estimation) in such cases based on the assumed available
measured output signal vector given by

vk+1(p) = Exk+1(p) + F0yk(p) + F1ωk+1(p) (2)

where vk(p) ∈ Rr and E, F0 and F1 are real constant
matrices. The controlled output signal is given by

zk+1(p) = Gxk+1(p) + H0yk(p) (3)
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where zk(p) ∈ Rq, G and H0 are real constant matrices.
To complete the process description, it is necessary to

specify the boundary conditions, that is, the state initial
vector on each pass and the initial pass profile (that is,
on pass 0). Here we consider the case when

xk+1(0) =dk+1, ∀ k ≥ 0
y0(p) =f(p)

(4)

where dk+1 ∈ Rn has known constant entries and f(p) ∈
Rm is an vector whose entries are known functions of p
over [0, α].

This state space model allows for disturbances which
affect both the state and pass profile dynamics on each
pass. The stability theory [10] for linear repetitive pro-
cesses is based on an abstract model in a Banach space
setting which includes a wide range of such processes as
special cases, including those described by (1). In terms
of their dynamics it is the pass-to-pass coupling (noting
again the unique control problem for them) which is
critical. This is of the form yk+1 = Lαyk, where
yk ∈ Eα (Eα a Banach space with norm || · ||) and Lα is
a bounded linear operator mapping Eα into itself. Two
concepts of stability can be defined but in general it is the
stronger of these, so-called stability along the pass which
is required. This holds if, and only if there exist numbers
M∞ > 0 and λ∞ ∈ (0, 1) independent of α such that
||Lk

α|| ≤ M∞λk
∞, k ≥ 0 (where || · || also denotes

the induced operator norm) and can be interpreted as
bounded-input bounded-output stability independent of
the pass length. Note also that stability along the pass
can be analyzed mathematically by letting α → ∞ and
we make no further explicit reference to this fact for the
remainder of this paper.

For the processes considered here, there are a wide
range of stability along the pass tests which could be
employed. Here, however, we use the following LMI
based condition [3] since, see also below, it leads
immediately to algorithms for control law design — a
feature which is not present in alternatives.

Lemma 1: A discrete linear repetitive process de-
scribed by (1) and (4) is stable along the pass if there ∃
matrix W = diag {W1,W2} > 0 such that the following
LMI holds [

−W MT W
∗ −W

]
< 0 (5)

where M =
[

A B0

C D0

]
.

To assess the performance of the controlled process
under the H∞ and `2-`∞ measures, we introduce the
following definition. From this point onwards assume
zero boundary conditions and make no further explicit
reference to them.

Definition 1: A discrete linear repetitive process de-
scribed by (1) and (4) is said to have H∞ (or `2-`∞)

performance level γ2,2 > 0 (or γ2,∞ > 0), and for all
nonzero ωk+1(p) ∈ l2 {[0,∞), [0,∞)} , we have

‖zk+1(p)‖2,∞ < γ2,2 ‖ωk+1(p)‖2,∞ (γ2,2 > 0) (6)

H∞ performance, and for `2-`∞ performance, we have

‖zk+1(p)‖∞,∞ < γ2,∞ ‖ωk+1(p)‖2,∞ (γ2,∞ > 0)
(7)

where

‖fk(p)‖2,∞ :=
√∑∞

k=0

∑∞

p=0
fT

k (p)fk(p)

‖fk(p)‖∞,∞ :=
√

sup
∀ k,p∈[0,∞]

fT
k (p)fk(p)

and γ2,2, γ2,∞ are given real positive scalars.

B. H∞ Performance

Here we consider H∞ performance for discrete linear
repetitive process, for which the following result is
developed.

Theorem 1: A discrete linear repetitive process de-
scribed by (1) is stable along the pass with an H∞
performance level γ2,2 > 0 if there exist matrices P > 0
and Q > 0 such that the following LMI holds

−P 0 0 AT P CT Q GT

∗ −Q 0 BT
0 P DT

0 Q HT
0

∗ ∗ −γ2
2,2I BT

1 P DT
1 Q 0

∗ ∗ ∗ −P 0 0
∗ ∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ ∗ −I

<0 (8)

Proof: To establish the stability along the pass,
consider the following candidate Lyapunov function

V (k, p) =V1(p, k) + V2(k, p)

=xT
k+1(p)Pxk+1(p) + yT

k (p)Qyk(p)
(9)

where P > 0 and Q > 0 with increment

∆V (k, p) = ∆V1(p, k) + ∆V2(k, p)
= xT

k+1(p + 1)Pxk+1(p + 1)
− xT

k+1(p)Pxk+1(p)
+ yT

k+1(p)Qyk+1(p)− yT
k (p)Qyk(p)

(10)

Substitution from the plant state-space model (noting
that stability along the pass is independent of the dis-
turbance terms and hence they can be set equal to
zero) following by some routine manipulation and an
application of the Schur’s formula then yields the LMI
condition of (8).

To establish the H∞ performance, the route is to
consider the following performance index

J := ‖zk+1(p)‖22,α − γ2
2,2 ‖ωk+1(p)‖22,α (11)
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It can be shown that

J <
∞∑

k=0

α∑
p=0

ηT
k (p)Πηk(p) (12)

where ηk(p) ,
[

xT
k+1(p) yT

k (p) ωT
k+1(p)

]T
, and

Π ,

 −P 0 0
∗ −Q 0
∗ ∗ −γ2I

 +

 AT

BT
0

BT
1

P

 AT

BT
0

BT
1

T

+

 CT

DT
0

DT
1

Q

 CT

DT
0

DT
1

T

+

 GT

HT
0

0

 GT

HT
0

0

T

<0.

Further transformation complete the proof.

C. `2-`∞ Performance

Here we consider `2-`∞ performance for discrete
linear repetitive process, for which the following result
is developed.

Theorem 2: A discrete linear repetitive process de-
scribed by (1) is stable along the pass with an `2-`∞
performance level γ2,∞ > 0 if there exist matrices
P > 0 and Q > 0 such that the following LMIs hold

−P 0 0 AT P CT Q
∗ −Q 0 BT

0 P DT
0 Q

∗ ∗ −I BT
1 P DT

1 Q
∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ −Q

 < 0 (13)

 P 0 GT

∗ Q HT
0

∗ ∗ γ2
2,∞I

 > 0 (14)

Proof: Stability along the pass is established as in
the previous result. The performance level is established
by considering the performance index

I = V (k, p)−
∞∑

s=0

∞∑
β=0

ωT
s+1(β)ωs+1(β) (15)

Note 1: Repetitive processes are defined over the fi-
nite pass length α, and in practice the process will only
complete a finite number of passes, say, N. Hence the
corresponding cost function in this last result should be
evaluated as

I = V (k, p)−
k−1∑
s=0

p−1∑
β=0

ωT
s+1(β)ωs+1(β) (16)

However, it is routine to argue that the signals involved
can be extended from [0, α] to the infinite interval in such
a way that projection of the infinite interval solution onto
the finite interval is possible. Likewise from the infinite
set to [0, N ], and hence we will work with (15).

III. DYNAMIC OUTPUT FEEDBACK CONTROL

A. Problem Formulation

The processes considered here are described by the
model of (1) augmented by control input terms, i.e.

xk+1(p + 1) =Axk+1(p) + Buk+1(p)
+ B0yk(p)+B1ωk+1(p)

yk+1(p) =Cxk+1(p) + Duk+1(p)
+ D0yk(p)+D1ωk+1(p)

(17)

where on pass k, uk(p) ∈ Rs is the control input vector
and B and D are real constant matrices.

Here, we are interested in designing a full-order
dynamic output feedback controller of general structure
described by

ϕk+1(p+1) =Acϕk+1(p)+B0cφk(p)+Bczk+1(p)
φk+1(p) =Ccϕk+1(p)+D0cφk(p)+Dczk+1(p)
uk+1(p) =Gcϕk+1(p)+H0cφk(p)+Hczk+1(p)

(18)

where on pass k, ϕk(p) ∈ Rn is the state vector of
controller, φk(p) ∈ Rm is the pass profile vector, and Ac,
B0c, Bc, Cc, D0c, Dc, Gc, H0c and Hc are appropriately
dimensioned constant matrices to be determined. Now,
augmenting the model of (17) to include the states of
dynamic output feedback controller of (18) and consider-
ing (2)–(3), we obtain the following closed-loop process

ξk+1(p+1) = Ãξk+1(p)+B̃0ζk(p)+B̃1ωk+1(p)

ζk+1(p) = C̃ξk+1(p)+D̃0ζk(p)+D̃1ωk+1(p)

vk+1(p) = G̃ξk+1(p)+H̃0ζk(p)
(19)

where ξk+1(p) ,
[

xT
k+1(p) ϕT

k+1(p)
]T

and

Ã,

»
A+BHcE BGc

BcE Ac

–
, C̃ ,

»
C+DHcE DGc

DcE Cc

–
B̃0 ,

»
B0+BHcF0 BH0c

BcF0 B0c

–
, B̃1 ,

»
B1+BHcF1

BcF1

–
D̃0 ,

»
D0+DHcF0 DH0c

DcF0 D0c

–
, D̃1 ,

»
D1+DHcF1

DcF1

–
G̃ ,

ˆ
G 0

˜
, H̃0 ,

ˆ
H0 0

˜
,

ζk(p) ,
ˆ

yT
k (p) φT

k (p)
˜T

The problem considered in this section now is: design
a controller of the form (18) with either H∞ or `2-`∞)
performance subject to the following two requirements:

1) The controlled process is stable along the pass;
2) The controlled process has disturbance attenuation

level γ2,2 in an H∞ (or level γ2,∞ in an `2-`∞)
sense. In particular, for all nonzero ωk+1(p) ∈
`2 {[0,∞), [0,∞)} , (6) holds for the H∞ case
and (7) for `2-`∞.
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B. H∞ Dynamic Output Feedback Control Design
The following result for stability along the pass of the

controlled process is obtained from interpreting Theo-
rem 1 in terms of (19).

Theorem 3: Consider the discrete linear repetitive
processes in (1), and let γ2,2 > 0 be a prescribed
scalar. There exists a full-order dynamic output feedback
controller in the form of (18) such that the closed-loop
process (19) is stable along the pass and (6) is satisfied
if there exist matrices P > 0, R > 0, Q > 0, S > 0,
Ac, B0c, Bc, Cc, D0c, Dc, Gc, H0c and Hc such that the
following LMI holds:266666666666664

−P −I 0 0 0 (PA+BcE)T

∗ −R 0 0 0 AT
c

∗ ∗ −Q −I 0 (PB0+BcF0)
T

∗ ∗ ∗ −S 0 BT
0c

∗ ∗ ∗ ∗ −γ2
2,2I (PB1+BcF1)

T

∗ ∗ ∗ ∗ ∗ −P
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

(A+BHcE)T (QC+DcE)T Υ19 GT

(AR+BGc)
T CT

c Υ29 RGT

(B0+BHcF0)
T (QD0 +DcF0)

T Υ39 HT
0

(B0S+BH0c)
T DT

0c Υ49 SHT
0

(B1+BHcF1)
T (QD1+DcF1)

T Υ59 0
−I 0 0 0
−R 0 0 0
∗ −Q −I 0
∗ ∗ −S 0
∗ ∗ ∗ −I

377777777777775
<0

(20)

where

Υ19 =(C+DHcE)T
, Υ29 =(CR+DGc)

T
,

Υ39 =(D0+DHcF0)
T

, Υ49 = (D0S+DH0c)
T

,

Υ59 =(D1+DHcF1)
T

(21)

Moreover, a desired H∞ dynamic output feedback con-
troller can be found by solving the following equations:

Hc , Hc,

H0c , HcF0S + H0cS
T
12,

Gc , HcER+ GcR
T
12,

Dc , QDHc + Q12Dc,

Bc , PBHc + P12Bc,

D0c , Q (D0 + DHcF0)S + Q12DcF0S
+ QDH0cS

T
12 + Q12D0cS

T
12,

Cc , Q (C + DHcE)R+ Q12DcER
+ QDGcR

T
12 + Q12CcR

T
12,

B0c , P (B0 + BHcF0)S + P12BcF0S
+ PBH0cS

T
12 + P12B0cS

T
12,

Ac , P (A + BHcE)R+ P12BcER
+ PBGcR

T
12 + P12AcR

T
12 (22)

Proof: The proof is based on the stability along
the pass with an H∞ performance for the closed-loop
process.

C. `2-`∞ Dynamic Output Feedback Control

In a similar manner to the H∞ case, the following
result can be established using, in effect, the arguments
required in the proof of Theorem 2.

Theorem 4: Consider the discrete linear repetitive
processes in (1), and let γ2,∞ > 0 be a prescribed
scalar. There exists a full-order dynamic output feedback
controller in the form of (18) such that the closed-loop
process (19) is stable along the pass and (7) is satisfied
if there exist matrices P > 0, R > 0, Q > 0, S > 0,
Ac, B0c, Bc, Cc, D0c, Dc, Gc, H0c and Hc such that the
following LMIs hold:2666666666664

−P −I 0 0 0 (PA + BcE)T

∗ −R 0 0 0 AT
c

∗ ∗ −Q −I 0 (PB0 + BcF0)
T

∗ ∗ ∗ −S 0 BT
0c

∗ ∗ ∗ ∗ −I (PB1 + BcF1)
T

∗ ∗ ∗ ∗ ∗ −P
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

(A + BHcE)T (QC +DcE)T Υ19

(AR+ BGc)
T CT

c Υ29

(B0 + BHcF0)
T (QD0 +DcF0)

T Υ39

(B0S + BH0c)
T DT

0c Υ49

(B1 + BHcF1)
T (QD1 +DcF1)

T Υ59

−I 0 0
−R 0 0
∗ −Q −I
∗ ∗ −S

37777777777775
< 0

(23)


−P −I 0 0 GT

∗ −R 0 0 RGT

∗ ∗ −Q −I HT
0

∗ ∗ ∗ −S SHT
0

∗ ∗ ∗ ∗ −γ2
2,∞I

 < 0 (24)

where Υ19, Υ29, Υ39, Υ49 and Υ59 have been defined
in (21). Moreover, a desired `2-`∞ dynamic output
feedback controller can be computed from (22).
Proof. The proof again is based on the exploiting the
requirement that the closed-loop process in (19) is stable
along the pass with an `2-`∞ performance level γ2,∞ >
0.

IV. CONCLUSION

In this paper, the problems of robust H∞ and `2- `∞
based controllers for discrete linear repetitive processes
have been investigated. Sufficient conditions have first
been developed for the existence of such controllers to
guarantee stability along the pass and prescribed H∞
and `2-`∞ performance.
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