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Abstract— In this paper, deadzone compensator with additive
gain is proposed for robust tracking problem. After modeling a
two-link manipulator via TS fuzzy model, the neural network is
trained on-line to reduce the tracking error caused by deadzone.
Based on the Linear Matrix Inequality (LMI) design approach,
a class of a state feedback controller with additive gain such as
neurocontroller is established. Also sufficient condition for the
existence of guaranteed cost (GC) controller is derived. Under
the proposed intelligent control scheme, it is shown that we
succeed in reducing the tracking error.

I. INTRODUCTION

It is well known that the robotic manipulators have highly
nonlinear interconnection terms. As another nonlinearity, a
deadzone exists when torque generated by the motor is
assumed to be proportional to input voltage. Therefore, the
exact dynamic model to compute the torque such that such
nonlinear dynamics of the robotic manipulator system is
compensated is necessary. So far, to estimate the deadzone,
various reliable approaches such as neural networks, adaptive
fuzzy logic control, and iterative learning control have been
developed [1], [2], [3]. Particularly, stability proofs and
design of deadzone compensator for two-link robot arm using
a neural networks (NNs) or fuzzy logic are given in [2],
[3], respectively. However, in these studies, much effort has
been made towards finding a controller that guarantees robust
stability. As the practical control system application, the
robust stability and the adequate cost performance should
be attained.

NNs and fuzzy logic control have been used extensively
in feedback control systems. Most applications seem to be
ad hoc with no demonstrations of stability for the overall
closed-loop systems. Moreover, it is found that attempts to
approximate jump functions such as deadzone using smooth
activation functions require many NN nodes and many
training iterations and still do not yield excellent results.

Recently, the Linear Matrix Inequality (LMI) approach has
been applied to the guaranteed cost (GC) control problem
[4]. This method has the advantage that not only the robust
stability, but also an adequate upper bound of the perfor-
mance index can be attained. Very recently, the LMI-based
guaranteed cost stabilization for the uncertain discrete-time
servo systems has been discussed [7]. However, it can be
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seen that due to the presence of the deadzone in the practical
robotic manipulators, the stability of the closed-loop systems
has been destroyed. Moreover, the cost performance would
be degraded by these nonlinearity and payload variation.

In this paper, the LMI-based additive gain for the GC
control problem of robotic manipulator with deadzone is in-
vestigated. The compensator consists of the TS fuzzy model
and the additive gain. The first one is used to represent the
deadzone and the other one is combined to reduce the large
cost caused by the GC control. It is interesting to point out
that the deadzone can be represented by using the TS fuzzy
model. Additionally, the proposed additive gain can be used
as the various artificial intelligence controller such as NNs,
fuzzy logic control and PID tuning. The main contribution
is that the tracking problem with the additive gain and the
deadzone can be solved via the LMI. As a result, although
the additive gain and the TS fuzzy model is considered in the
robotic manipulator with the deadzone, the robust stability
of the closed-loop system and the reduction of the cost are
both attained. It is noteworthy that the GC control with
the additive gain is applied to the robotic manipulator with
the deadzone for the first time. Furthermore, adapting the
weights of the cost function of the GC controller the transient
response can be changed to the adequately desired trajectory.
Hence, this result seems to be novelty. Finally, in order
to demonstrate the efficiency of our design approach, the
numerical example that is based on the robotic manipulator
is given.

II. PROBLEM STATEMENT

The fuzzy dynamical model, proposed by Takagi and
Sugeno [5], is described by fuzzy IF-THEN rules, which
represented local linear input-output relations of a nonlinear
system. In this paper, we represent a given nonlinear discrete-
time system by the TS fuzzy model whose ith rule is of the
following form:

Plantrule i :
IF z1(k) is Mi1 and ... and zg(k) is Mig

THEN x(k + 1) = Aix(k) + Biu(k), i = 1, 2, ..., r, (1)

where x(k) ∈ �n is the state vector, and u(k) ∈ �m is the
control input vector. Ai and Bi are known constant matrices.
Mij is the fuzzy set, r is the number of IF-THEN rules.
z1(k), ... , zg(k) are the premise variables. It is assumed in
this paper that the premise variables do not explicitly depend
on the input variables u(k).
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Given a pair of (x(k), u(k)), the final output of the fuzzy
system is inferred as follows:

x(k + 1) =
∑r

i=1 µi(z(k))[Aix(k) + Biu(k)]∑r
i=1 µi(z(k))

=
r∑

i=1

hi(z(k))[Aix(k) + Biu(k)] (2)

where z(k) = [z1(k) z2(k) ... zg(k)] and

µi(z(k)) =
g∏

j=1

Mij(zj(k)),

hi(z(k)) =
µi(z(k))∑r
i=1 µi(z(k))

.

Mij(zj(k)) is the grade of member ship of zj(k) in Mij . It
is assumed that

µi(z(k)) ≥ 0, i = 1, 2, ..., r and
r∑

i=1

µi(z(k)) > 0 (3)

for all k. Then we can obtain the following conditions:

hi(z(k)) ≥ 0, i = 1, 2, ..., r and
r∑

i=1

hi(z(k)) = 1 (4)

for all k.
It should be noted that the deadzone can be represented by

relative few fuzzy rules, while the NNs need to have many
nodes and many training iterations to denote the deadzone
[3]. Thus, we will use TS fuzzy model.

The cost function associated with the system is given by

J =
∞∑

k=0

(xT(k)Qx(k) + uT(k)Ru(k)) (5)

where Q > 0 and R > 0 are given weighting matrices.
Based on the fuzzy model (1), the following compensator is
proposed to deal with the LQ control problem for a nonlinear
discrete-time system that includes the deadzone with the cost
function (5):

u(k) = (K + ∆K(k))x(k), (6)

where

∆K(k) = DkN(k)Ek, (7)

where Dk and Ek are known constant matrices and N(k) ∈
�p×q is arbitrary function of additive gain. In this paper,
NN will be used as additive gain. It is assumed that N(k)
satisfies the norm condition

NT(k)N(k) ≤ Iq. (8)

Hence, from (2) and (6), we can obtain that the closed-loop
system

x(k + 1) =
r∑

i=1

hi(z(k)) [Aix(k) + Biu(k)] = Āx(k) (9)

where Ā =
∑r

i=1 hi(z(k))(Ai + Bi(K + ∆K(k))). In this
case, cost function (5) is given by

J =
∞∑

k=0

xT(k)[Q+(K+∆K(k))TR(K+∆K(k))]x(k). (10)

In this paper, the problem under consideration is to design a
compensator (6) such that the resulting closed-loop overall
fuzzy system (9) is globally asymptotically stable and the
cost function (10) satisfies the bound J ≤ J∗, where J∗ is
also termed a GC. Such a controller is called to be the reliable
GC controller. Moreover, we want to design an optimal
reliable GC fuzzy compensator in the sense of minimizing
an upper bound.

III. RELIABLE GC CONTROL OF THE TS FUZZY
MODEL

The following result presents a sufficient condition that
guarantees the stability of the closed-loop system (9) and
provides a GC for the cost function (10).

Theorem 1: Consider the closed-loop system (9) and cost
function (10). Assume that there exist matrices P = PT > 0
that satisfy




−P ΦT Q
1
2 ĀT

Φ −In 0 0
Q

1
2 0 −In 0

Ā 0 0 −P−1


 < 0, (11)

where Φ := R
1
2 (K + DkN(k)Ek).

Then the closed-loop system (9) is globally asymptotically
stable. In this case, the cost function (10) satisfies the bound

J ≤ xT
0 Px0 := J∗, (12)

where x0 is the initial state.
Proof: Assume that the inequalities of (11) are satisfied

for some P = PT. It follows from the Schur complement that

ĀTPĀ − P + (K + DkN(k)Ek)TR(K + DkN(k)Ek)
+Q < 0. (13)

Consider the following quadratic functions as the Lyapunov
function candidate

V (x(k)) = xT(k)Px(k). (14)

Along the state trajectory of (9), and using (13), we then
have

V (x(k + 1)) − V (x(k))

= xT(k)(ĀTPA − P)x(k)
< −xT(k)[(K + DkN(k)Ek)TR(K + DkN(k)Ek)

+Q]x(k). (15)

Obviously, V (x(k + 1)) − V (x(k)) < 0. Hence, the closed-
loop system (9) is globally asymptotically stable. In this case,
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V (x(∞)) = 0. Summing the inequality (15) from k = 0 to
k = ∞, we have

V (x(∞)) − V (x(0))
= −V (x(0)) = −xT

0 Px0

< −
∞∑

k=0

xT(k)[Q + (K + ∆K(k))TR(K + ∆K(k))]x(k)

= −J. (16)

Thus, it follows from (16) that (12) holds.
Remark 1: Note that the GC of the cost function (10)

obtained in Theorem 1 depends on the initial condition x0.
To avoid this dependence on x0, we will assume x0 is a
random variable satisfying

E[x0] = 0 and E[x0xT
0 ] = In, (17)

where E[·] denotes the expectation operator. Then, the cost
bound (12) leads to

E[J ] ≤ E[xT
0 Px0] = trace[P]. (18)

In order to resolve the nonconvexity problem of (11), we
will use the similar method of [8]. We introduce a new
nonsingular matrix variable Z ∈ �n×n into (11) and consider
the new extended LMIs (19). The following theorem presents
a solution to the reliable GC control problem for the fuzzy
system (1) in terms of LMIs.

Theorem 2: Consider the system (1) and cost function
E[J ] of (18). If there exist a common nonsingular matrix
Z, X = XT and Y, satisfying the LMI (19) for all i =
1, 2, ... , r, then there exists a reliable GC controller (6) such
that the closed-loop system (9) is globally asymptotically
stable and the cost function E[J ] of (18) satisfies the bound

E[J ] ≤ trace[X−1]. (24)

Furthermore, the state feedback gain matrix is given by

K = YZ−1. (25)
In order to prove Theorem 2, the following Lemma will be
used [9].

Lemma 1: Consider the appropriate matrix F which is
satisfying FFT ≤ In and for any matrices G and H, there
exists the positive parameter λ > 0 such that the following
inequality holds

GFH + HTFTGT ≤ λGGT + λ−1HTH. (26)
Let us prove Theorem 2 by using the above Lemma 1.

Proof: Assume there exist a common nonsingular matrix Z,
X = XT, and Y, satisfying the LMI (19). Let us define

Y = KZ. (27)

Applying the Schur complement [10] to (19) and using
(27) result in Ni. Using the standard matrix inequality
(26) of Lemma 1, for all admissible additive gain, it is
easy to verify that Mi < 0. Multiplying hi(z(k)) > 0
to Mi < 0 and summing the inequality (20) from i =
1 to i = r, we have (21). It is clear from (21) that
X > 0 and Z + ZT > X. Thus, Z is nonsingular. Using
the inequality X − Z − ZT ≥ −ZTX−1Z that is obtained

from (ZT − X)X−1(Z − X) ≥ 0, we have (22). Pre- and
post- multiplying (22) by block diag

(
Z−T, In, In, In

)
and block diag

(
Z−1, In, In, In

)
, respectively, we have

(23). Obviously, the inequality of (23) results in (11) under

P = X−1. (28)

It follows from Theorem 1 that the closed-loop system
(9) is globally asymptotically stable and we have (24).
Furthermore, by (27), we obtain (25).

It seems to be formidable to obtain the common LMIs
solution that satisfy the (1). However, since the deadzone can
be represented by relative few fuzzy rules, we can obtain the
common reliable solutions X, Y and Z.

To minimize the upper bound on the cost function E[J ]
of (18), we seek to minimize an upper bound on the GC
trace[X−1]. With an auxiliary variable V ∈ �n×n , which is
an upper bound on X−1 and consider the following LMIs:[ −V In

In −X

]
< 0, (29)

where we want to minimize trace[V] instead of

E[J ] ≤ trace[X−1] < trace[V]. (30)

IV. ADDITIVE GAIN USING NEURAL NETWORK

The LMI design approach usually yields the conservative
controller and large cost due to the presence of the additive
gain N(k) such as the output of NN.

A. On-line learning algorithm of neurocontroller

It is expected that the reduction of the cost will be attained
when the neurocontroller can manage that the error dynamics
including deadzone converges to zero rapidly as possible.
That is, the neurocontroller is required to reduce the response
of system.

E(k) :=
1
2

xT(k + 1)x(k + 1). (31)

If E(k) can be reduced as small as possible, the position
error x(k) would become small. That is, robotic manipulator
will follow the desired position more precisely.

In the learning phase of NN, the weight updating rules
can be described as

wij
g (k + 1) = wij

g (k) + ∆wij
g (k). (32)

On the other hand, the modification of the weight coefficient
wij

g (k) is given by

∆wij
g (k) = −η

∂E(k)
∂wij

g (k)
, (33a)

∂E(k)
∂wij

g (k)
=

∂E(k)
∂N(k)

· ∂N(k)
∂wij

g (k)
, (33b)

where η is the learning ratio.
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


X − Z − ZT ZTET
k YTR

1
2 ZTQ

1
2 ZTAT

i + YTBT
i

EkZ −εkIn 0 0 0
R

1
2 Y 0 −In + εkR

1
2 DkDT

k R
1
2 0 εkR

1
2 DkDT

k BT
i

Q
1
2 Z 0 0 −In 0

AiZ + BiY 0 εkBiDkDT
k R

1
2 0 −X + εkBiDkDT

k BT
i




< 0. (19)

Mi :=




X − Z − ZT ZTKTR
1
2 ZTQ

1
2 ZT(Ai + BiK)T

R
1
2 KZ −In 0 0

Q
1
2 Z 0 −In 0

(Ai + BiK)Z 0 0 −X




+




0 ZT(DkN(k)Ek)TR
1
2 0 ZT(DkN(k)Ek)TBT

i

R
1
2 DkN(k)EkZ 0 0 0

0 0 0 0
BiDkN(k)EkZ 0 0 0




≤




X − Z − ZT ZTKTR
1
2 ZTQ

1
2 ZT(Ai + BiK)T

R
1
2 KZ −In 0 0

Q
1
2 Z 0 −In 0

(Ai + BiK)Z 0 0 −X




+εk




0
R

1
2 Dk

0
BiDk




[
0 DT

k R
1
2 0 DT

k BT
i

]
+ ε−1

k




ZTET
k

0
0
0




[
EkZ 0 0 0

]
= Ni < 0. (20)

r∑
i=1

hi(z(k))Mi < 0 ⇔




X − Z − ZT ZT(K + DkN(k)Ek)TR
1
2 ZTQ

1
2 ZTĀT

R
1
2 (K + DkN(k)Ek)Z −In 0 0

Q
1
2 Z 0 −In 0

ĀZ 0 0 −X


 < 0. (21)




−ZTX−1Z ZT(K + DkN(k)Ek)TR
1
2 ZTQ

1
2 ZTĀT

R
1
2 (K + DkN(k)Ek)Z −In 0 0

Q
1
2 Z 0 −In 0

ĀZ 0 0 −X


 < 0. (22)




−X−1 (K + DkN(k)Ek)TR
1
2
T

Q
1
2 ĀT

R
1
2 (K + DkN(k)Ek) −In 0 0

Q
1
2 0 −In 0

Ā 0 0 −X


 < 0. (23)

The term
∂E(k)
∂N(k)

of the equation (33b) can be calculated

from the energy function (31) as follows:

∂E(k)
∂N(k)

= x(k + 1)BDkEkx(k). (34)

Using (34), the NN can be trained so as to decrease the cost
E[J ] in on-line.

B. Multilayered Neural networks

The utilized NN is of a three–layer feed–forward network
as shown in Fig. 1. The linear function is utilized in the
neurons of the input and the hidden layers, and a sigmoid
function in the output layer. The inputs and outputs of each

layer can be described as follows.

si
g(k) : =




Ui(k), {g = 1(input layer)}∑
w

(i,j)
1 (k)oj

1(k), {g = 2(hidden layer)},∑
w

(i,j)
2 (k)oj

2(k), {g = 3(output layer)}

oi
g(k) : =




si
1(k), {g = 1(input layer)}

si
2(k) + θ

(i)
1 (k), {g = 2(hidden layer)},

1 − e(−si
3(k)+θ

(i)
2 (k))

1 + e(−si
3(k)+θ

(i)
2 (k))

, {g = 3(output layer)}

where si
g(k) and oi

g(k) are the input and the output of the
neuron i in the gth layer at the time t. wi,j

g (k) indicates
the weight coefficient from the neuron j in the gth layer to
the neuron i in the (g + 1)th layer. Ui(k) is the input of
NN. θ

(i)
g (k) is a positive constant for the threshold of the
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θ2
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threshold threshold

w2
(t, s)

(k)

Fig. 1. Structure of the multilayered neural networks

neuron i in the (g + 1)th layer. As the additive gain defined
in the formula (7), the outputs of NN are set in the range of
[−1.0, 1.0].

V. A NUMERICAL EXAMPLE

In order to demonstrate the effectiveness of the proposed
deadzone compensator, a numerical example is given. Con-
sider the two-link robotic manipulator that is given in Fig.
2. The system parameters are chosen as link mass m1 =
7.43[kg], m2 = 1.72[kg], lengths l1 = l2 = 0.2[m], joint
angular positions θ1(k)[rad], θ2(k)[rad].

Let us consider a following linearized equation of motion
for the two-link robotic manipulator with the deadzone given
by

x(k + 1) = Ax(k) + BDu(k), (35)

where

Du(k) = f(u(k)) :=
{

u(k), |ui(k)| > 0.2
0, |ui(k)| ≤ 0.2 ,

x(k) =
[

x1(k) x2(k) x3(k) x4(k)
]T

=
[

θ1(k) θ2(k) θ̇1(k) θ̇2(k)
]T

,

u(k) :=
[

uT
1 (k) uT

2 (k)
]T

.

Hence, taking the deadzone nonlinearity shown by Fig. 3
into account, it is assumed that the model of the nonlinear
discrete-time system with deadzone is given by

x(k + 1) = Ax(k) + B
[

u3
1(k)

u3
2(k)

]
+ Cu(k), (36)

where

A =




1.0000 0 0.001 0
0 1.0000 0 0.001
0 0 1.0000 0
0 0 0 1.0000


 ,

B =




0 0
0 0

0.003 0
0 0.4055


 , C = 10−3




0 0
0 0

0.003 0
0 0.4055


 ,

Dk =
[

0.03 0.001 0.01 0.001
0.001 0.02 0.001 0.025

]
, Ek = 0.1,

N(k) = diag
(
N1(k) N2(k) N3(k) N4(k)

)
,

with Ni(k) denotes the NN input such that |Ni(k)| ≤ 1.
The novel idea is as follows. It should be noted that

for sufficiently small constant C such deadzone can be
approximate f(ui) = u3

i −Cui, i = 1, 2. Thus, we choose
this parameter as C = 0.001. Finally, we can apply the TS
fuzzy model to this deadzone. To construct a TS fuzzy model
for this system, it is assumed that ui(k) ∈ [−a, a], where
a is a positive value. Since the nonlinear term is u3

i (k),
using the same procedure as in [6], the nonlinear term can
be represented as

u3
i (k) = F 1

1 (ui(k)) · 1 · ui(k) + F 2
1 (ui(k)) · 0 · ui(k), (37)

where F 1
1 , F 2

1 ∈ [0, 1], and F 1
1 (ui(k)) + F 2

1 (ui(k)) = 1. By
solving the equations, they are obtained as follows:

F 1
1 (ui(k)) = u2

i (k), F 2
1 (ui(k)) = 1 − u2

i (k).

F 1
1 and F 2

1 can be interpreted as membership functions of
fuzzy sets. By using these fuzzy sets, the nonlinear system
can be represented by the following TS fuzzy model:

Plant rule 1:
If ui(k) is F 1

1 (ui(k))
Then x(k + 1) = A1x(k) + B1u(k),
Plant rule 2:
If ui(k) is F 2

1 (ui(k))
Then x(k + 1) = A2x(k) + B2u(k),

where A1 = A2 := A, B1 := B + C and B2 := C.
Therefore, it is expected that the TS fuzzy model can

exactly represent the nonlinear of the deadzone.
Remark 2: If the deadzone has the complex structure,

the fuzzy logic rules have to be increased. However, the
existence condition of the common LMIs solutions will be
conservative.

The initial system condition is x1(0) = π
3 , x2(0) = π

4 ,
x3(0) = 0, x4(0) = 0, and the weighting matrices are
Q = diag(200, 200, 1, 1) and R = diag(0.001, 1),
respectively. Desired reference positions are x1d = 0 and
x2d = 0. In the following simulation, it is assumed that
a = 1 and when −0.2 ≤ ui(k) ≤ 0.2, the system has a
deadzone such that u(k) = 0.

Solving the LMIs (19), the state feedback control gain K
is given by

K

=
[ −447.3798 0.3191 −548.9171 0.1428

0.0042 −7.2240 −0.0070 −4.8232

]
. (38)

To specify simulation results, the proposed method is
compared with the existing GC approach [7] that does not
consider the deadzone. The GC control gain K̂ based on the
GC approach is given by

K̂

=
[ −215.0992 −0.0305 −24.6845 −0.0028

0.0025 −8.8177 0.0003 −0.8361

]
. (39)

The neurocontroller consists of four neurons in the input
and the output layers and 30 neurons in the hidden layers,
respectively. The initial weights are set randomly in the range
of [−0.05, 0.05].
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Fig. 2. The two-link robotic manipulator.
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Fig. 3. Deadzone.

The simulation results are shown in Figs. 4, 5. Note that
the solid lines mean the response via the proposed method,
while the dash lines mean the response via the existing
method [7]. Although the responses of the proposed system
are both stable, the control result of the existing method [7]
is very oscillatory for the link two. This result shows that
our proposed method can attain good tracking performance
for the robotic manipulator system with deadzone system.
However, because the proposal method obtains a high gain,
the cost is higher than the conventional system.

VI. CONCLUSIONS

In this paper, the LMI-based deadzone compensator of
the robotic manipulator has been investigated. Our novel
idea is that the TS fuzzy model is used to represent the
deadzone and the NN is combined to reduce the large cost.
Furthermore, although the compensator consists of TS fuzzy
model and NNs, the asymptotic stability of overall closed-
loop system with deadzone and adequate cost bound are
both attained. It is noteworthy that the proposed controller
can be designed by means of the common solution of a
few LMIs. Additionally, for the proposed additive gain, the
various artificial intelligence control approach can be used. In
this paper, although the NN is used, the fuzzy logic control
may be used because many NN nodes and many training
iterations are not needed compared with NN. It may be
noted that the GC control with the additive gain has been
applied to the robotic manipulator with the deadzone for the
first time. As another important feature, adapting the weights
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Fig. 4. Simulation result for position x1(k) = θ1(k) of link one.
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Fig. 5. Simulation result for position x2(k) = θ2(k) of link two.

of the cost function, the transient response can be changed
appropriately. Finally, the numerical example has shown the
excellent results.

In order to demonstrate the new control scheme such as
output feedback control case, experimental result of two-link
manipulator seems to be needed. This practical problem will
be addressed in future investigations.
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