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Abstract— Optimal control problems are formulated and control inputs. The discrete optimal control problems of a
efficient computational procedures are proposed for attitde rigid body are studied in [7], [8], where the dynamics as
dynamics of a rigid body with symmetry. The rigid body is || a5 the kinematics equations are explicitly utilizedda

assumed to act under a gravitational potential and under a - - - . . .
structured control moment that respects the symmetry. The &n efficient numerical algorithm to solve discrete optityali

symmetry in the attitude dynamics system yields a conserved conditions is presented.
quantity, and it causes a fundamental singularity in the opimal This paper introduces geometrically exact and numerically

control problem. The key feature of this paper is its use of efficient computational approaches to solve the optimat con
computational procedures that are guaranteed to avoid the trol problems of the attitude dynamics of a rigid body with

numerical ill-conditioning that originates from this symmetry. t d structured trol | t The d ,
It also preserves the geometry of the attitude dynamics. The Ssymmetry and sfructured control input. € dynamics are

theoretical basis for the computational procedures is summ  discretized by a Lie group variational integrator, and aite
rized, and examples of optimal attitude maneuvers for a 3D necessary conditions for optimality are constructed. The
pendulum are presented. utilization of the Lie group variational integrator is jifigd
in this problem, since it preserves the momentum map orig-
inating from the symmetry. The rigid body is underactuated

We study a discrete optimal control problem for attitudesince the control input does not act along the symmetry
dynamics of a rigid body with symmetry. The attitude isdirection. The symmetry of the controlled dynamics causes
represented by a rotation matrix, which has a Lie grougifficulties in solving the necessary conditions for optiitya
structure denoted b§O(3). We assume that the rigid body A simple numerical approach is presented to overcome this
is acting under an attitude dependent potential, and tigimerical ill-conditioning.
potential is invariant under a symmetry action. The externa This paper is organized as follows. In Sectioh Il, a 3D
control input is formulated such that it respects the symynet pendulum is presented as a model of rigid body attitude dy-
This problem provides both a theoretical challenge and Bamics, and the symmetry of the 3D pendulum is described.
numerical challenge in the sense that the configurationespan optimal control problem with symmetry is studied in
has a Lie group structure, and the conserved quantity causeectionll, and numerical results are given in Secfigh IV.
ill-conditioning of the numerical optimization.

General purpose numerical integration methods, including
the popular Runge-Kutta schemes, typically preserve eeith A 3D pendulum is a rigid body supported by a fixed
the group structure of the attitude configuration spacemer t frictionless pivot acting under the influence of uniform
invariant properties of the dynamics. Geometric structuredravitational field [9]. We use a 3D pendulum model to
preserving integrators are symplectic and momentum prétudy the optimal control for attitude dynamics of a rigid
serving, and they exhibit good energy behavior for an exXpody, since it has three degrees of rotational freedom, faad t
ponentially long time period [1]. In particular, Lie group gravitational potential has a symmetry: it is invariant end
variational integrators have the desirable propertiesttiey @ rotation about the gravity direction.
preserve the group structure as well as the geometric fea-In this section, the continuous equations of motion are pre-
tures, without needs of local parameterization, repriaject sented. The symmetry of the 3D pendulum are discussed, and
or constraints [2], [3]. The exact geometric properties othe control input structure is described. Discrete equatiuf
the discrete flow not only generate improved qualitativénotion, referred to as a Lie group variational integratoe, a
behavior, but also allow for accurate long-time simulation described for a controlled 3D pendulum model.

Optimal control problems on a Lie group have bee
studied in [4], [5], [6]. These studies are based on theldsit
kinematics of a Lie group. The dynamics are ignored, and The configuration space of the 3D pendulumSi9(3).
elements in the corresponding Lie algebra are considered W& identify the tangent bundIESO(3) with SO(3) x so(3)

by left translation, and we identifgo(3) with R® by an
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TThis research has been supported in part by NSF under graBt ECand the angmar ve_Iocity Of.the rigid bOdy QR,Q) €
0244977. TrSO(3). The rotation matrixR € SO(3) transforms a

I. INTRODUCTION

IIl. DYNAMICS OF A 3D PENDULUM

'\. Continuous equations of motion
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vector represented in the body fixed frame to one representearresponding flow in the original configuration space is
in the inertial frame. reconstructed by lifting to a level set of the conserved
Let p € R? be a vector from the pivot point to the massquantity. Suppose that the trajectory in the reduced space

center of the rigid body expressed in the body fixed framés a closed loop, i.el'(0) = I'(T") for someT > 0, and the
and letm, g € R andJ € R3*3 be the mass of the rigid body, value of the angular momentum about the gravity direction
the gravitational acceleration, and the moment of inertiss zero. Then, the terminal attitude is related to the ihitia
matrix of the rigid body about the pivot point, respectivelyattitude by a symmetric action. More explicitly, we have

The Lagrangian of the 3D penduluf : TSO(3) — R is

given by R(T) = ®g,.,(1(0)),
1 : : :
L(R,Q) = itr[S(Q)JdS(Q)T] + mgel Rp, wherefgyeo is the geometric phase determined by
2 _ T
where J; € R®>*3 is a nonstandard moment of inertia Ogeo = / 2||JL| Ttr[J]Q(F JT) dA, (3)
defined byJ; = 1tr[J] I35 —J, and we set the gravitational B (IJT)
direction in the inertial frame as; = [0;0; 1] € S”. where B is a surface in S*> whose boundary is
The continuous equations, derived from the Lagrangq-p(t)’t € [0,T]} [10]. Note that the geometric phase is
d’Alembert principle, are given by determined only by the reduced trajectory Bfand the
T+ Q x I = mgp x RTes + M, 1 chara_cte.ristics of the rigid body. It is independent of the
. velocity T'.
R = RS5(Q), (2)

wherell = JQ € R3 is the angular momentum in the bodyC‘ Lie group variational integrator

fixed frame, and\/ € R3 is the external control moment. The attitude of the 3D pendulum is represented by a
rotation matrixR € SO(3). The conserved quantity, arising
B. Symmetry of 3D pendulum from symmetry, is em(pr)1asized in this study. However, the
The kinetic energy of the rigid body is left invariant most common numerical integration methods, including the
on TSO(3), and the gravitational potential energy is in-widely used Runge-Kutta schemes, neither preserve the Lie
variant under a rotation about the gravity direction, whiclyroup structure nor first integrals. In addition, standard
can be represented by the left action of the subgroyRunge-Kutta methods fail to capture the energy dissipation
{exp S(fes) € SO(3)|0 € S*}. of a controlled system accurately [11]. For example, if we
As a result, the Lagrangian of the 3D pendulum has @tegrate [R) by a typical Runge-Kutta scheme, the quantity
symmetry action b', @, : S' x SO(3) — SO(3) given by  RT R inevitably drifts from the identity matrix as the simu-

®4(R) = exp S(fes) R, lation time increases. It is _often proposed to parameterize
@) by Euler angles or unit quaternions. However, Euler
for 6 € S'. It can be shown tha®;L(R, Q) = L(R, Q). angles are not global expressions of the attitude since they

Suppose that there is no external control input. Noetherfsave associated singularities. Unit quaternions do nabéxh
theorem states that a symmetry in the Lagrangian yieldsngularities, but are constrained to lie on the unit three-
conservation of the momentum map. For the 3D penduluraphereS?, and general numerical integration methods do not
the momentum map of the symmetry actidp corresponds preserve the unit length constraint. Therefore, quatemio
to the inertial angular momentum of the rigid body about théave the same numerical drift problem. Renormalizing the
gravity directionrs = e5 RJ( € R. It is conserved for the quaternion vector at each step tends to break other con-
free dynamics of the 3D pendulum. servation properties. Furthermore, unit quaternions,ctvhi

The structure of the control input respects the symmetry efre diffeomorphic taSU(2), double coverSO(3). So there
the uncontrolled free dynamics of the 3D pendulum, namelyre inevitable ambiguities in expressing the attitude gisin

ST guaternions.

M =R es xu, In [2], Lie group variational integrators are introduced by
for a control parameter € R3. Since the external control explicitly adopting the approach of Lie group methods [12]
moment has no component along the gravity directionp the discrete variational principle [11]. They have the
the angular momentum about the gravity direction is alsdesirable property that they are symplectic and momentum
preserved in the controlled dynamics. Such control inpres apreserving, and they exhibit good energy behavior for an
physically utilized by actuation mechanisms, such as poimixponentially long time period. They also preserve the Lie
mass actuators, that change the center of mass of the §ibup structure without the use of local charts, repropegti
pendulum. or constraints.

Here we introduce the concept of a geometric phase, Using the results in [2], a Lie group variational integrator
and it is used to interpret the numerical optimization resubn SO(3) is given for the 3D pendulum by
in Section[I¥. Using the symmetry, the dynamics of the
3D pendulum can be expressed in termsIof= R7es hS(My) = FyJa — JaFy, (4)
in the reduced configuration spa&®(3)/S' ~ S2. The Ri+1 = Ry Fy, (5)



M1 = FF T + hingp x REqes + hRi, ez X ugy1, ¢ = Ri + eRpS(C) + O(%), 9)

) ) ) (©) wheredlly, ¢, are considered as elementsif.
where the subscript denotes theth discrete variable for  \we derive expressions for the constrained variatiotpf
a fixed integration step size € R, and F;, € SO(3) is the sjng its definition[(5) and the variation of the rotation mat
relative attitude between two adjacent integration St€ps. @) SinceF;, = RT Ry.,1, the infinitesimal variatior F, is
a given(Ry, II;.) and control inputs[{4) is solved to firfg,. given by
Then(Rg+1,k+1) is obtained by[(5) and16). This yields a
map Ry, 1) = (Ri+1, 5. 1) and this process is repeated. 6F, = 6R} Ryy1 + RESRyq1,
The only implicit part is[(#). The actual computationgf is = —S5(C)Fr + FiS(Cyr)-
done in the Lie algebrso(3) of dimension 3, and the rotation
matrices are updated by multiplication. So this approach We can also writedF;, = F;.S(,) for &, € R® using [T).
distinguished from integration of the kinematics equatiohsing the propertys(R"z) = R"'S(x)R forany R € SO(3)
@), and there is no excessive computational burden. Tr@dz € R?, we obtain the constrained variation Bf as
properties of these discrete equations of motion are dseclis o T
more explicitly in [2], [3]. We use these discrete equatiohs §k = — L G + Gt (10)
motion to formulate the following optimal control problem. We now relate the constrained variation &1, to &, by

1. OPTIMAL CONTROL WITH SYMMETRY starting with [#). Taking a variation ofl(4), we obtain

We formulate an optimal attitude control problem for hS(611x) :FkS(gk)JdJrJdS(gk)F,;f.

a 3D pendulum with symmetry. Necessary conditions for . T
optimality are developed and computational approaches al@'ng the properties5(Rz) = RS(z)R" and S(z)A +
S(z) = S{t[A] Is3x3 — A}z) foranyz € R3, A €

presented to solve the corresponding two point bounda@3 3 A !
value problem. %3 and R € SO(3), the above equation is rewritten as

A. Problem formulation hS(61y) = S({t]FyJa] I3x3 — Fi.Ja} Fié).

A discrete time optimal control problem is formulated asthys, ¢, is given by

a maneuver of the rigid pendulum body from a given initial - L
attitude Ry € SO(3) and an initial angular momentubfy € & = hFy, {t(FpJa) Isxs — FiJa} ™ = Bpoll,,  (11)
R3 to a desired terminal attitude$, € SO(3) and a terminal 3%3

d 3 4 : .~ whereB € R*>*°.
angular momenturhl, € R® during a given maneuver time e .

. X Necessary conditions. Define an augmented perfor-

N. The performance index is the square of thenorm of mance index as

the control inputs:
N-1

o h
given: (Ro, o), (R, 1Y), N, Ja=Y_ 5 s || + A" S (logm(Fy, — RE Ryi1))
N-1 k=0
. 2
e J = ];) 3 lurs1l” A AT {1 + B Tk + hmgp x R, jes}
= 2,T T

such thatRy = RY%, Iy = 114, AT { Rigaes X k) (12)

subject to [#),[[5) and16). where\}, \? € R3, are Lagrange multipliers corresponding

. o to the discrete equations of motidn (5) abH (6). The constrai

B. Necessary conditions of optimality @) is applied implicitly by [TIL) when taking the variation.

Variational models: The necessary conditions of opti-  Using the variational model§1(8J=]11), and the fact that
mality are developed using the standard variational agroa the variations(;, 411 vanish atk = 0, N, the infinitesimal
We first derive certain variational formulas. The variat@in  variation of the augmented performance index is written as
R, € SO(3) can be expressed in terms of a Lie algebra .

3 .

leements*(ck) € s0(3) for ¢, € R® and the exponential map 57, = Z houl {w, — Rles x N2, )

k=1
RS = Ry expeS(Cr). + GF =My + AL+ CEN, — hFuggaed Ry )
The corresponding infinitesimal variation is given by + 0T { =Xy + BiAL + DA — hBJugqres Ry}
d h
OR, = —| RiexpeS(G) = ReS(G). () where
e=0 A = FkT’

This gives an expression for the infinitesimal variation of a T -1
Lie group element in terms of its Lie algebra. Then, small By, = hEy {tFxJa] Isxs — FiJa}
perturbations from a given trajectory can be written as Cr = hmgS(p)S(Rerleg)FkT,

€ = 10, + edlLy, (8) Dy, = Fyl + S(F i) By + hingS(p)S(R}, , €3) By.



Since §J, = 0 for all variations of jug, (, 011, the derivatives are sufficiently accurate for the shooting rodth
expressions in the braces of the above equation are zere. Thwurthermore, a simple numerical approach is presented to
we obtain necessary conditions for optimality as follows. eliminate the ill-conditioning caused by the symmetry.
Sensitivity derivatives. Taking a variation of the discrete

— T
hS(y) = FiJa = JaFy; (13) equations of motion and the multiplier equation using the
Ry11 = Ry Fy, (14)  variational models, the linearized equations of motion and
M1 = FXT, + hingp x R£+1e3 4 hR;2F+1€3 X Upi 1, the linearized multiplier equations can be written as
(15) Thtl = A,lglwk + A;lféx\k,
up+1 = Ri,jes x A}, (16)

T
oAk = AP 1w + (ARhy) " 0Xia,

wherez; = [(x; 011;] € R®, and matricesd”’ € R6*6 are
(17) suitably defined. The solution of the linear equations i€giv

In the above equations, the implicit parts drel (13) (175).y

For a given initial condition(Ro, IIy, A}, A3), we can find ey ][O w2 [
Fy by solving [IB). Then,R; is obtained by [[14). Since SAN| W W 6N
uy = R¥e3 x A2 by (18),11; can be obtained using{L5). We
solve [IB) to obtairf usingll;. Finally, \i, \? are obtained
by solving the implicit equation[{17), sincd;, B1,C1, D

{/\é] _ {“‘% 1 ckTT 1 thTHumegTRm] Pé +1] '
Ak Biy1 Diiq — hByqukt2es Riqa] [ Mg

where¥% ¢ R6*6, For the given two point boundary value
problem, the initial attitude and the initial angular mornan
are fixed, and the terminal multiplier is free. Thus, we have

ar?r:]uqct|o|n§tofR1,?1,%3 . ved by Net s iterati the following sensitivity equation for the terminal atti
€ Implicit equation ) is solved by Netwon’s itera 10N 4 nd the terminal angular momentum with respect to the Initia

in the Lie algebra, and the implicit equatidn¥17) is solvgd bmulti lier:
fixed point iteration. Numerical computations show that two pler;
or three iterations are typically required to achieve maehi zn = U265 )\,. (18)

recision. . : . N
P Avoiding numerical ill-conditioning: The symmetry

C. Two point boundary value problem yields a conserved quantity by Noether's theorem, and it

The necessary conditions for optimality are given by &auses afund_amental singularity in the sensitivity d_einiea_
12 dimensional two point boundary value problem. Thidor the two point boundary value problem. At each iteration,
problem is to find the optimal discrete flow, multipliers, W& require the inverse of the sensitivity derivative repreed
and control inputs to satisfy the equations of motibal (13)RY the matrix¥*? to update the initial multiplier to satisfy
(@3), optimality condition[{D6), multiplier equatiors}1and the t_ermmal boundary condition. I_-|9wever, this se_nsylvn
boundary conditions simultaneously. mat_rlx has a theoretical _rank_ deficiency of one since the
We substitute the optimality conditioFL{16) into the equa¥ertical component of the inertial angular momentum is con-
tions of motion and the multiplier equations, and we app|§erve(_1 regardlgss of the_z |n|t|all multlp!|gr variation. Téfere,
the shooting method to solve the two point boundary valugduation[IB) is numerically ill-conditioned. _
problem using sensitivity derivatives. The shooting metiso  Here we presents a simple numerical scheme to avoid
numerically efficient in the sense that the number of iterati the numerical ill-conditioning caused by the symmetry. We
parameters is minimized; 6 elements of the initial Lagrang@8compose the sensitivity derivative into symmetric panis
multiplier are iterated. In other approaches, the entiserdie asymmetric parts. Equatio{18) is rewritten as
trajectory of the control input and Lagrange multiplier are (v ][ W] [0
updated. LmN] - {% \IJJ Lng] ’
The drawback of the shooting method is that the extremal ] ]
solutions are sensitive to small changes in the unspecifidflere Vi € R** are submatrices 01112_. Using the above
initial multiplier values. The nonlinearity makes it hard t €guation andl{7), the infinitesimal variation of the indrtia
construct an accurate estimate of sensitivity. In additiofngular momentum is given by
this problem, the symmetry and the underactuation induGe: . — 5(RyIIy) = 6RNIIy + Ryolly,
numerical ill-conditioning. Therefore, in order to applyet — _RnS(y)Cx + BTl
shooting method, it is important to compute the sensiésiti NOVEINJSN T ANCEN
accurately, and the effects of the symmetry should be taken = —BnxS(IIn)(¥1Ag + W2AF) + Ry (U3hg + Wadj).

into account. Now, the sensitivity derivative equatiodfi{19) can be reterit

In t_his paper, the attitude dynar_‘nics _Of a rigid bF’dY IS terms of the inertial angular momentum variation as
described by the structure-preserving Lie group variation

(19)

integrator, and the sensitivity is expressed in terms of t;N] _ { vy Uy ] [5/\% .
Lie algebra element. This approach completely avoids any ™~ Ry (Vs — SIIn)¥1) Ry (¥s— SIn)P2)] |0AF
singularity in the attitude representation, and the discre (20)

flow respects the geometric features. The resulting seitgiti



From the symmetry, the third component of the inertiathosen as90° and 180°. Since the vertical component
angular momentum variation is zeré(my)s = 0. Thus, the of the angular momentum is set to zero, the rotation is
sixth row of the above matrix is zero. (Numerical simulatiorpurely caused by the geometric phase effect giverldn (3).
in the later section shows that the norm of the last row of th€hese problems are challenging in the sense that the desired

transformed sensitivity matrix is at the level of—1°.) Now,

maneuvers are rotations about the gravity direction, beit th

we find an update of the initial multiplier by the pseudo-control input cannot directly generate any moment about the

inverse of thes x 6 matrix;

gravity direction.
The corresponding boundary conditions are as follows.

S\ = Elaly = =T(2=T (21)

(i) Body (A), hanging equilibrium to hanging equilibrium

where £ € R5*6 is composed of the first five rows of with 90° yaw

the transformed sensitivity derivative i{20), an|, = 0 —1 0

[Cn;0(mwv)1; 0(m)2] € RS, This approach removes the sin- R r_l1 o0 o

gularity in the sensitivity derivatives completely, ane: tie- 07 43%3, AN 7 ’
. . . . " 0 0 1

sulting optimal control problem is no longer ill-conditied. .

Numerical simulations show that the numerical optimizatio Ho = 03x1, Iy = 03x1.

procedure fails without this modification.

Newton iteration: Using the decomposed sensitivity, an
initial guess of the unspecified initial conditions is ite
to satisfy the specified terminal boundary conditions in the
limit. Any type of Newton iteration can be applied. We use
a line search with backtracking algorithm, referred to as
Newton-Armijo iteration [13]. The procedure is summarized(iii) Body (B), hanging equilibrium to hanging equilibrium

(i) Body (A), hanging equilibrium to hanging equilibrium
with 180° yaw

Ro = I3x3, RY = diag[-1,-1,1],

My = 0351, % = 03x1.

as follows. with 90° yaw
1: Guess an initial multiplien. 0 -1 0
2: Find Hk,Rk,)\}Q,)\z.USing (IB)-). Ro = Izys, R]dv =11 0o of,
3: Compute the terminal B.C. erraError = ||y |. 0 0 1
4: SetError' = Error, i=1. M — 0 o —o
5: while Error > eg. 0 = V3x1, N = U3xl
6 Find a line search directior) = =. (iv) Body (B), hanging equilibrium to hanging equilibrium
7 Setc = 1. with 180° yaw
8 while Error* > (1 — 2ac)Error . .
o: Choose a trial multiplienl = \, + cDzy. Ry = I3x3, Ry = diag[-1,-1,1],
10: FindTl,, R, \i, A2 using [I3)-(I7). My = O3x1, 1% = 03x1.
11: Compute the errorror’ = ||2%]. _ o
12: Setc = ¢/10, i=1i+1. The optimal control results are given in Tallle I, where
13: end while the optimized performance index, the error in satisfactibn
14: Set\g = A}, Error = Error’. (accept the trial) the terminal boundary condition, and the simulation rugnin
15: end while time are shown for each case. The terminal error is at the

level of machine precision, and the simulation time is about

Here i is the number of iterations, ands,a € R are .
5 minutes.

stopping criterion and a scaling factor, respectively. dtger . .
loop finds a search direction by computing the sensitivi% Figures [PEb Sh.OW snapshots othhe attitude maneu-
S . . indeTS; reduced trajectory off = R‘'es on a sphere,
derivatives, and the inner loop performs a line search to f|nControl input history, and convergence rate. (A simple
the largest step size € R along the search direction. The P Y 9 ' P

error in satisfaction of the terminal boundary condition is
determined at each inner iteration.

IV. NUMERICAL EXAMPLES

Numerical optimization results for the 3D pendulum a
given. Two elliptical cylinders, shown in Fifl 1, are used
rigid pendulum models. The properties are chosen as

Body (A): m = 1, J = diag[0.13,0.28,0.17], p = 0.3es.
Body (B): m = 1, J = diag[0.22,0.23,0.03], p = 0.4es.
Four cases are considered. Each maneuver is from a

hanging equilibrium to another hanging equilibrium with
a rotation about the vertical axis. The rotation angles are

(2) Body (A)

(b) Body (B)

Fig. 1. Elliptical cylinder



TABLE |

OPTIMIZATION RESULTS

Case| J |[logm(Ry' Ry)| |04 —IIy|| | AT
() [ 591 230x107™  134x107 | 272
(i) |7.32  480x107'®  1.66x 107 | 5.25
(i) | 1.73  1.22x10715  6.55x 107 | 4.09
(v) | 337 306x107*  3.04x10~' | 505

AT: Simulation running time in Intel Pentium M 740

1.73GHz processor (min.)

geometric phase is maximized at a point on the equator, and
for Body (B), it is maximized at the north pole. We see that
the optimized reduced trajectories try to enclose thosetpoi

As aresult, the optimized attitude maneuver of Body (A) is
distinguished from that of Body (B). The attitude maneuver
of Body (A) is relatively more aggressive than that of Body
(B) since the reduced trajectory passes near the equator
corresponding to a horizontal position. Body (B) does not
have to move far away from the hanging equilibrium since
the infinitesimal geometric phase is maximized at that point
The resulting attitude maneuver is relatively benign.

animation for the attitude maneuver can be seen atfll
http://www.umich.edu/ tylee.) 2]

The convergence rate figures show violation of the termi-
nal boundary condition according to the number of iteration
in a logarithm scale. Red circles denote outer iterations irh]
Newton-Armijo iteration to compute the sensitivity deriva
tives. For all cases, the initial guesses of the unspecified
initial multiplier are arbitrarily chosen. The error in &fiic-
tion of the terminal boundary condition converges quickly
to machine precision after the solution is close to the local5]
minimum at around 50th iteration. These convergence iesult
are consistent with the quadratic convergence rates eegbect[g]
of Newton methods with accurately computed gradients. Thé’]
condition number of the decomposed sensitivity derivative
given at [Z1) varies froml0° to 10°. If the sensitivity
derivative is not decomposed, then the condition number]
are at the level ofl0'%, and the numerical iterations fail.

The numerical examples presented in this paper shoyg)
excellent numerical convergence properties. This is b&zau
the proposed computational algorithms 80)(3)are geo-
metrically exact and numerically accurate. In additiore th[10]
algorithm incorporates a modification that eliminates the
singularity caused by the symmetry. [t

We interpret the optimization results using the geometrig2]
phase formula given byX3). For given initial conditionse th
vertical component of the initial angular momentum is zerd:
Thus, the rotation about the vertical axis is purely caused b
the geometric phase. Since the geometric phase is detetmine
by a surface integral 082 whose boundary is the reduced
trajectoryT’, it is more efficient for the reduced trajectory to
enclose the area at which the absolute value of the integrand
of @) is maximized.

In each subfigure (b) of Figurdd [2-5, the infinitesimal
geometric phase per unit area is shown by color shading. The
reduced trajectory, which represents the gravity directio
the body fixed frame, is shown by a solid line. The north
pole of the sphere corresponds to the hanging equilibrium
manifold, and the reduced trajectory starts and ends at the
same north pole for the given boundary conditions.

Comparing Figures 2(b), 3(b) with Figure 4(b), 5(b), it can
be seen that Body (A) and Body (B) have different geometric
phase characteristics. This is caused by the fact that the
geometric phase depends on the moment of inertia of the
body. For Body (A), the absolute value of the infinitesimal
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