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Abstract— Optimal control problems are formulated and
efficient computational procedures are proposed for attitude
dynamics of a rigid body with symmetry. The rigid body is
assumed to act under a gravitational potential and under a
structured control moment that respects the symmetry. The
symmetry in the attitude dynamics system yields a conserved
quantity, and it causes a fundamental singularity in the optimal
control problem. The key feature of this paper is its use of
computational procedures that are guaranteed to avoid the
numerical ill-conditioning that originates from this symmetry.
It also preserves the geometry of the attitude dynamics. The
theoretical basis for the computational procedures is summa-
rized, and examples of optimal attitude maneuvers for a 3D
pendulum are presented.

I. I NTRODUCTION

We study a discrete optimal control problem for attitude
dynamics of a rigid body with symmetry. The attitude is
represented by a rotation matrix, which has a Lie group
structure denoted bySO(3). We assume that the rigid body
is acting under an attitude dependent potential, and the
potential is invariant under a symmetry action. The external
control input is formulated such that it respects the symmetry.
This problem provides both a theoretical challenge and a
numerical challenge in the sense that the configuration space
has a Lie group structure, and the conserved quantity causes
ill-conditioning of the numerical optimization.

General purpose numerical integration methods, including
the popular Runge-Kutta schemes, typically preserve neither
the group structure of the attitude configuration space nor the
invariant properties of the dynamics. Geometric structure-
preserving integrators are symplectic and momentum pre-
serving, and they exhibit good energy behavior for an ex-
ponentially long time period [1]. In particular, Lie group
variational integrators have the desirable properties that they
preserve the group structure as well as the geometric fea-
tures, without needs of local parameterization, reprojection,
or constraints [2], [3]. The exact geometric properties of
the discrete flow not only generate improved qualitative
behavior, but also allow for accurate long-time simulation.

Optimal control problems on a Lie group have been
studied in [4], [5], [6]. These studies are based on the driftless
kinematics of a Lie group. The dynamics are ignored, and
elements in the corresponding Lie algebra are considered as
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control inputs. The discrete optimal control problems of a
rigid body are studied in [7], [8], where the dynamics as
well as the kinematics equations are explicitly utilized, and
an efficient numerical algorithm to solve discrete optimality
conditions is presented.

This paper introduces geometrically exact and numerically
efficient computational approaches to solve the optimal con-
trol problems of the attitude dynamics of a rigid body with
symmetry and structured control input. The dynamics are
discretized by a Lie group variational integrator, and discrete
necessary conditions for optimality are constructed. The
utilization of the Lie group variational integrator is justified
in this problem, since it preserves the momentum map orig-
inating from the symmetry. The rigid body is underactuated
since the control input does not act along the symmetry
direction. The symmetry of the controlled dynamics causes
difficulties in solving the necessary conditions for optimality.
A simple numerical approach is presented to overcome this
numerical ill-conditioning.

This paper is organized as follows. In Section II, a 3D
pendulum is presented as a model of rigid body attitude dy-
namics, and the symmetry of the 3D pendulum is described.
An optimal control problem with symmetry is studied in
Section III, and numerical results are given in Section IV.

II. DYNAMICS OF A 3D PENDULUM

A 3D pendulum is a rigid body supported by a fixed
frictionless pivot acting under the influence of uniform
gravitational field [9]. We use a 3D pendulum model to
study the optimal control for attitude dynamics of a rigid
body, since it has three degrees of rotational freedom, and the
gravitational potential has a symmetry: it is invariant under
a rotation about the gravity direction.

In this section, the continuous equations of motion are pre-
sented. The symmetry of the 3D pendulum are discussed, and
the control input structure is described. Discrete equations of
motion, referred to as a Lie group variational integrator, are
described for a controlled 3D pendulum model.

A. Continuous equations of motion

The configuration space of the 3D pendulum isSO(3).
We identify the tangent bundleTSO(3) with SO(3)× so(3)
by left translation, and we identifyso(3) with R

3 by an
isomorphismS(·) : R3 7→ so(3) defined by the condition
thatS(x)y = x×y for anyx, y ∈ R

3. We denote the attitude
and the angular velocity of the rigid body as(R,Ω) ∈
TRSO(3). The rotation matrixR ∈ SO(3) transforms a
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vector represented in the body fixed frame to one represented
in the inertial frame.

Let ρ ∈ R
3 be a vector from the pivot point to the mass

center of the rigid body expressed in the body fixed frame,
and letm, g ∈ R andJ ∈ R

3×3 be the mass of the rigid body,
the gravitational acceleration, and the moment of inertia
matrix of the rigid body about the pivot point, respectively.
The Lagrangian of the 3D pendulumL : TSO(3) 7→ R is
given by

L(R,Ω) =
1

2
tr
[

S(Ω)JdS(Ω)
T
]

+mgeT3 Rρ,

where Jd ∈ R
3×3 is a nonstandard moment of inertia

defined byJd = 1

2
tr[J ] I3×3−J , and we set the gravitational

direction in the inertial frame ase3 = [0; 0; 1] ∈ S
2.

The continuous equations, derived from the Lagrange-
d’Alembert principle, are given by

Π̇ + Ω×Π = mgρ×RT e3 +M, (1)

Ṙ = RS(Ω), (2)

whereΠ = JΩ ∈ R
3 is the angular momentum in the body

fixed frame, andM ∈ R
3 is the external control moment.

B. Symmetry of 3D pendulum

The kinetic energy of the rigid body is left invariant
on TSO(3), and the gravitational potential energy is in-
variant under a rotation about the gravity direction, which
can be represented by the left action of the subgroup
{

expS(θe3) ∈ SO(3)
∣

∣θ ∈ S
1
}

.
As a result, the Lagrangian of the 3D pendulum has a

symmetry action byS1, Φθ : S1×SO(3) 7→ SO(3) given by

Φθ(R) = expS(θe3)R,

for θ ∈ S
1. It can be shown thatΦ∗

θL(R,Ω) = L(R,Ω).
Suppose that there is no external control input. Noether’s

theorem states that a symmetry in the Lagrangian yields
conservation of the momentum map. For the 3D pendulum,
the momentum map of the symmetry actionΦθ corresponds
to the inertial angular momentum of the rigid body about the
gravity directionπ3 = eT3 RJΩ ∈ R. It is conserved for the
free dynamics of the 3D pendulum.

The structure of the control input respects the symmetry of
the uncontrolled free dynamics of the 3D pendulum, namely

M = RT e3 × u,

for a control parameteru ∈ R
3. Since the external control

moment has no component along the gravity direction,
the angular momentum about the gravity direction is also
preserved in the controlled dynamics. Such control inputs are
physically utilized by actuation mechanisms, such as point
mass actuators, that change the center of mass of the 3D
pendulum.

Here we introduce the concept of a geometric phase,
and it is used to interpret the numerical optimization result
in Section IV. Using the symmetry, the dynamics of the
3D pendulum can be expressed in terms ofΓ = RT e3
in the reduced configuration spaceSO(3)/S1 ≃ S

2. The

corresponding flow in the original configuration space is
reconstructed by lifting to a level set of the conserved
quantity. Suppose that the trajectory in the reduced space
is a closed loop, i.e.Γ(0) = Γ(T ) for someT > 0, and the
value of the angular momentum about the gravity direction
is zero. Then, the terminal attitude is related to the initial
attitude by a symmetric action. More explicitly, we have

R(T ) = Φθgeo(R(0)),

whereθgeo is the geometric phase determined by

θgeo=

∫

B

2 ‖JΓ‖2 − tr[J ] (ΓT JΓ)

(ΓT JΓ)2
dA, (3)

where B is a surface in S
2 whose boundary is

{

Γ(t)
∣

∣t ∈ [0, T ]
}

[10]. Note that the geometric phase is
determined only by the reduced trajectory ofΓ and the
characteristics of the rigid bodyJ . It is independent of the
velocity Γ̇.

C. Lie group variational integrator

The attitude of the 3D pendulum is represented by a
rotation matrixR ∈ SO(3). The conserved quantity, arising
from symmetry, is emphasized in this study. However, the
most common numerical integration methods, including the
widely used Runge-Kutta schemes, neither preserve the Lie
group structure nor first integrals. In addition, standard
Runge-Kutta methods fail to capture the energy dissipation
of a controlled system accurately [11]. For example, if we
integrate (2) by a typical Runge-Kutta scheme, the quantity
RTR inevitably drifts from the identity matrix as the simu-
lation time increases. It is often proposed to parameterize
(2) by Euler angles or unit quaternions. However, Euler
angles are not global expressions of the attitude since they
have associated singularities. Unit quaternions do not exhibit
singularities, but are constrained to lie on the unit three-
sphereS3, and general numerical integration methods do not
preserve the unit length constraint. Therefore, quaternions
have the same numerical drift problem. Renormalizing the
quaternion vector at each step tends to break other con-
servation properties. Furthermore, unit quaternions, which
are diffeomorphic toSU(2), double coverSO(3). So there
are inevitable ambiguities in expressing the attitude using
quaternions.

In [2], Lie group variational integrators are introduced by
explicitly adopting the approach of Lie group methods [12]
to the discrete variational principle [11]. They have the
desirable property that they are symplectic and momentum
preserving, and they exhibit good energy behavior for an
exponentially long time period. They also preserve the Lie
group structure without the use of local charts, reprojection,
or constraints.

Using the results in [2], a Lie group variational integrator
on SO(3) is given for the 3D pendulum by

hS(Πk) = FkJd − JdF
T
k , (4)

Rk+1 = RkFk, (5)



Πk+1 = FT
k Πk + hmgρ×RT

k+1e3 + hRT
k+1e3 × uk+1,

(6)

where the subscriptk denotes thekth discrete variable for
a fixed integration step sizeh ∈ R, andFk ∈ SO(3) is the
relative attitude between two adjacent integration steps.For
a given(Rk,Πk) and control inputs, (4) is solved to findFk.
Then(Rk+1,Πk+1) is obtained by (5) and (6). This yields a
map(Rk,Πk) 7→ (Rk+1,Πk+1) and this process is repeated.
The only implicit part is (4). The actual computation ofFk is
done in the Lie algebraso(3) of dimension 3, and the rotation
matrices are updated by multiplication. So this approach is
distinguished from integration of the kinematics equation
(2), and there is no excessive computational burden. The
properties of these discrete equations of motion are discussed
more explicitly in [2], [3]. We use these discrete equationsof
motion to formulate the following optimal control problem.

III. O PTIMAL CONTROL WITH SYMMETRY

We formulate an optimal attitude control problem for
a 3D pendulum with symmetry. Necessary conditions for
optimality are developed and computational approaches are
presented to solve the corresponding two point boundary
value problem.

A. Problem formulation

A discrete time optimal control problem is formulated as
a maneuver of the rigid pendulum body from a given initial
attitudeR0 ∈ SO(3) and an initial angular momentumΠ0 ∈
R

3 to a desired terminal attitudeRd
N ∈ SO(3) and a terminal

angular momentumΠd
N ∈ R

3 during a given maneuver time
N . The performance index is the square of thel2 norm of
the control inputs:

given: (R0,Π0), (R
d
N ,Πd

N ), N,

min
uk+1

J =

N−1
∑

k=0

h

2
‖uk+1‖

2
,

such thatRN = Rd
N , ΠN = Πd

N ,

subject to (4), (5) and (6).

B. Necessary conditions of optimality

Variational models: The necessary conditions of opti-
mality are developed using the standard variational approach.
We first derive certain variational formulas. The variationof
Rk ∈ SO(3) can be expressed in terms of a Lie algebra
elementS(ζk) ∈ so(3) for ζk ∈ R

3 and the exponential map
as

Rǫ
k = Rk exp ǫS(ζk).

The corresponding infinitesimal variation is given by

δRk =
d

dǫ

∣

∣

∣

∣

ǫ=0

Rk exp ǫS(ζk) = RkS(ζk). (7)

This gives an expression for the infinitesimal variation of a
Lie group element in terms of its Lie algebra. Then, small
perturbations from a given trajectory can be written as

Πǫ
k = Πk + ǫδΠk, (8)

Rǫ
k = Rk + ǫRkS(ζk) +O(ǫ2), (9)

whereδΠk, ζk are considered as elements ofR
3.

We derive expressions for the constrained variation ofFk

using its definition (5) and the variation of the rotation matrix
(9). SinceFk = RT

k Rk+1, the infinitesimal variationδFk is
given by

δFk = δRT
k Rk+1 +RT

k δRk+1,

= −S(ζk)Fk + FkS(ζk+1).

We can also writeδFk = FkS(ξk) for ξk ∈ R
3 using (7).

Using the propertyS(RTx) = RTS(x)R for anyR ∈ SO(3)
andx ∈ R

3, we obtain the constrained variation ofFk as

ξk = −FT
k ζk + ζk+1. (10)

We now relate the constrained variation ofδΠk to ξk by
starting with (4). Taking a variation of (4), we obtain

hS(δΠk) = FkS(ξk)Jd + JdS(ξk)F
T
k .

Using the properties,S(Rx) = RS(x)RT and S(x)A +
ATS(x) = S({tr[A] I3×3 −A} x) for any x ∈ R

3, A ∈
R

3×3, andR ∈ SO(3), the above equation is rewritten as

hS(δΠk) = S({tr[FkJd] I3×3 − FkJd}Fkξk).

Thus,ξk is given by

ξk = hFT
k {tr[FkJd] I3×3 − FkJd}

−1
= BkδΠk, (11)

whereB ∈ R
3×3.

Necessary conditions: Define an augmented perfor-
mance index as

Ja =

N−1
∑

k=0

h

2
‖uk+1‖

2
+ λ1,T

k S−1
(

logm(Fk −RT
k Rk+1)

)

+ λ2,T
k

{

−Πk+1 + FT
k Πk + hmgρ×RT

k+1e3
}

+ λ2,T
k

{

RT
k+1e3 × uk+1

}

, (12)

whereλ1
k, λ

2
k ∈ R

3, are Lagrange multipliers corresponding
to the discrete equations of motion (5) and (6). The constraint
(4) is applied implicitly by (11) when taking the variation.

Using the variational models (8)–(11), and the fact that
the variationsζk, δΠk vanish atk = 0, N , the infinitesimal
variation of the augmented performance index is written as

δJa =
N−1
∑

k=1

hδuT
k

{

uk −RT
k e3 × λ2

k−1

}

+ ζTk
{

−λ1
k−1 +AT

k λ
1
k + CT

k λ
2
k − hFkuk+1e

T
3 Rk+1

}

+ δΠT
k

{

−λ2
k−1 + BT

k λ
1
k +DT

k λ
2
k − hBT

k uk+1e
T
3 Rk+1

}

,

where

Ak = FT
k ,

Bk = hFT
k {tr[FkJd] I3×3 − FkJd}

−1 ,

Ck = hmgS(ρ)S(RT
k+1e3)F

T
k ,

Dk = FT
k + S(FT

k Πk)Bk + hmgS(ρ)S(RT
k+1e3)Bk.



Since δJa = 0 for all variations of δuk, ζk, δΠk, the
expressions in the braces of the above equation are zero. Thus
we obtain necessary conditions for optimality as follows.

hS(Πk) = FkJd − JdF
T
k , (13)

Rk+1 = RkFk, (14)

Πk+1 = FT
k Πk + hmgρ×RT

k+1e3 + hRT
k+1e3 × uk+1,

(15)

uk+1 = RT
k+1e3 × λ2

k, (16)
[

λ1
k

λ2
k

]

=

[

AT
k+1

CT
k+1

− hFk+1uk+2e
T
3 Rk+2

BT
k+1 DT

k+1 − hBT
k+1uk+2e

T
3 Rk+2

] [

λ1
k+1

λ2
k+1

]

.

(17)

In the above equations, the implicit parts are (13) and (17).
For a given initial condition(R0,Π0, λ

1
0, λ

2
0), we can find

F0 by solving (13). Then,R1 is obtained by (14). Since
u1 = RT

1 e3×λ2
0 by (16),Π1 can be obtained using (15). We

solve (13) to obtainF1 usingΠ1. Finally,λ1
1, λ

2
1 are obtained

by solving the implicit equation (17), sinceA1,B1, C1,D1

are functions ofR1,Π1, F1.
The implicit equation (13) is solved by Netwon’s iteration

in the Lie algebra, and the implicit equation (17) is solved by
fixed point iteration. Numerical computations show that two
or three iterations are typically required to achieve machine
precision.

C. Two point boundary value problem

The necessary conditions for optimality are given by a
12 dimensional two point boundary value problem. This
problem is to find the optimal discrete flow, multipliers,
and control inputs to satisfy the equations of motion (13)–
(15), optimality condition (16), multiplier equations (17), and
boundary conditions simultaneously.

We substitute the optimality condition (16) into the equa-
tions of motion and the multiplier equations, and we apply
the shooting method to solve the two point boundary value
problem using sensitivity derivatives. The shooting method is
numerically efficient in the sense that the number of iteration
parameters is minimized; 6 elements of the initial Lagrange
multiplier are iterated. In other approaches, the entire discrete
trajectory of the control input and Lagrange multiplier are
updated.

The drawback of the shooting method is that the extremal
solutions are sensitive to small changes in the unspecified
initial multiplier values. The nonlinearity makes it hard to
construct an accurate estimate of sensitivity. In addition
this problem, the symmetry and the underactuation induce
numerical ill-conditioning. Therefore, in order to apply the
shooting method, it is important to compute the sensitivities
accurately, and the effects of the symmetry should be taken
into account.

In this paper, the attitude dynamics of a rigid body is
described by the structure-preserving Lie group variational
integrator, and the sensitivity is expressed in terms of a
Lie algebra element. This approach completely avoids any
singularity in the attitude representation, and the discrete
flow respects the geometric features. The resulting sensitivity

derivatives are sufficiently accurate for the shooting method.
Furthermore, a simple numerical approach is presented to
eliminate the ill-conditioning caused by the symmetry.

Sensitivity derivatives: Taking a variation of the discrete
equations of motion and the multiplier equation using the
variational models, the linearized equations of motion and
the linearized multiplier equations can be written as

xk+1 = A11
k xk +A12

k δλk,

δλk = A21
k+1xk+1 +

(

A11
k+1

)T
δλk+1,

wherexk = [ζk; δΠk] ∈ R
6, and matricesAij ∈ R

6×6 are
suitably defined. The solution of the linear equations is given
by

[

xN

δλN

]

=

[

Ψ11 Ψ12

Ψ21 Ψ22

] [

x0

δλ0

]

,

whereΨij ∈ R
6×6. For the given two point boundary value

problem, the initial attitude and the initial angular momentum
are fixed, and the terminal multiplier is free. Thus, we have
the following sensitivity equation for the terminal attitude
and the terminal angular momentum with respect to the initial
multiplier;

xN = Ψ12δλ0. (18)

Avoiding numerical ill-conditioning: The symmetry
yields a conserved quantity by Noether’s theorem, and it
causes a fundamental singularity in the sensitivity derivatives
for the two point boundary value problem. At each iteration,
we require the inverse of the sensitivity derivative represented
by the matrixΨ12 to update the initial multiplier to satisfy
the terminal boundary condition. However, this sensitivity
matrix has a theoretical rank deficiency of one since the
vertical component of the inertial angular momentum is con-
served regardless of the initial multiplier variation. Therefore,
equation (18) is numerically ill-conditioned.

Here we presents a simple numerical scheme to avoid
the numerical ill-conditioning caused by the symmetry. We
decompose the sensitivity derivative into symmetric partsand
asymmetric parts. Equation (18) is rewritten as

[

ζN
δΠN

]

=

[

Ψ1 Ψ2

Ψ3 Ψ4

] [

δλ1
0

δλ2
0

]

, (19)

whereΨi ∈ R
3×3 are submatrices ofΨ12. Using the above

equation and (7), the infinitesimal variation of the inertial
angular momentum is given by

δπN = δ(RNΠN ) = δRNΠN +RNδΠN ,

= −RNS(ΠN )ζN +RNδΠN ,

= −RNS(ΠN )(Ψ1λ
1
0 + Ψ2λ

2
0) +RN (Ψ3λ

1
0 +Ψ4λ

2
0).

Now, the sensitivity derivative equation (19) can be rewritten
in terms of the inertial angular momentum variation as
[

ζN
δπN

]

=

[

Ψ1 Ψ2

RN (Ψ3 − S(ΠN )Ψ1) RN (Ψ4 − S(ΠN )Ψ2)

] [

δλ1
0

δλ2
0

]

.

(20)



From the symmetry, the third component of the inertial
angular momentum variation is zero;δ(πN )3 = 0. Thus, the
sixth row of the above matrix is zero. (Numerical simulation
in the later section shows that the norm of the last row of the
transformed sensitivity matrix is at the level of10−15.) Now,
we find an update of the initial multiplier by the pseudo-
inverse of the5× 6 matrix;

δλ0 = Ξ†x′
N = ΞT (ΞΞT )−1x′

N , (21)

where Ξ ∈ R
5×6 is composed of the first five rows of

the transformed sensitivity derivative in (20), andx′
N =

[ζN ; δ(πN )1; δ(πN )2] ∈ R
5. This approach removes the sin-

gularity in the sensitivity derivatives completely, and the re-
sulting optimal control problem is no longer ill-conditioned.
Numerical simulations show that the numerical optimization
procedure fails without this modification.

Newton iteration: Using the decomposed sensitivity, an
initial guess of the unspecified initial conditions is iterated
to satisfy the specified terminal boundary conditions in the
limit. Any type of Newton iteration can be applied. We use
a line search with backtracking algorithm, referred to as
Newton-Armijo iteration [13]. The procedure is summarized
as follows.

1: Guess an initial multiplierλ0.
2: FindΠk, Rk, λ

1
k, λ

2
k using (13)–(17).

3: Compute the terminal B.C. error;Error = ‖x′
N‖.

4: SetErrort = Error, i = 1.
5: while Error > ǫS .
6: Find a line search direction;D = Ξ†.
7: Setc = 1.
8: while Errort > (1 − 2αc)Error
9: Choose a trial multiplierλt

0 = λ0 + cDzN .
10: FindΠk, Rk, λ

1
k, λ

2
k using (13)–(17).

11: Compute the error;Errort = ‖ztN‖.
12: Setc = c/10, i = i+ 1.
13: end while
14: Setλ0 = λt

0, Error = Errort. (accept the trial)
15: end while

Here i is the number of iterations, andǫS , α ∈ R are
stopping criterion and a scaling factor, respectively. Theouter
loop finds a search direction by computing the sensitivity
derivatives, and the inner loop performs a line search to find
the largest step sizec ∈ R along the search direction. The
error in satisfaction of the terminal boundary condition is
determined at each inner iteration.

IV. N UMERICAL EXAMPLES

Numerical optimization results for the 3D pendulum are
given. Two elliptical cylinders, shown in Fig. 1, are used as
rigid pendulum models. The properties are chosen as

Body (A): m = 1, J = diag[0.13, 0.28, 0.17], ρ= 0.3e3.

Body (B): m = 1, J = diag[0.22, 0.23, 0.03], ρ= 0.4e3.

Four cases are considered. Each maneuver is from a
hanging equilibrium to another hanging equilibrium with
a rotation about the vertical axis. The rotation angles are

chosen as90◦ and 180◦. Since the vertical component
of the angular momentum is set to zero, the rotation is
purely caused by the geometric phase effect given in (3).
These problems are challenging in the sense that the desired
maneuvers are rotations about the gravity direction, but the
control input cannot directly generate any moment about the
gravity direction.

The corresponding boundary conditions are as follows.

(i) Body (A), hanging equilibrium to hanging equilibrium
with 90◦ yaw

R0 = I3×3, Rd
N =





0 −1 0
1 0 0
0 0 1



 ,

Π0 = 03×1, Πd
N = 03×1.

(ii) Body (A), hanging equilibrium to hanging equilibrium
with 180◦ yaw

R0 = I3×3, Rd
N = diag[−1,−1, 1],

Π0 = 03×1, Πd
N = 03×1.

(iii) Body (B), hanging equilibrium to hanging equilibrium
with 90◦ yaw

R0 = I3×3, Rd
N =





0 −1 0
1 0 0
0 0 1



 ,

Π0 = 03×1, Πd
N = 03×1.

(iv) Body (B), hanging equilibrium to hanging equilibrium
with 180◦ yaw

R0 = I3×3, Rd
N = diag[−1,−1, 1],

Π0 = 03×1, Πd
N = 03×1.

The optimal control results are given in Table I, where
the optimized performance index, the error in satisfactionof
the terminal boundary condition, and the simulation running
time are shown for each case. The terminal error is at the
level of machine precision, and the simulation time is about
5 minutes.

Figures 2–5 show snapshots of the attitude maneu-
vers, reduced trajectory ofΓ = RT e3 on a sphere,
control input history, and convergence rate. (A simple

(a) Body (A) (b) Body (B)

Fig. 1. Elliptical cylinder



TABLE I

OPTIMIZATION RESULTS

Case J
∥

∥

∥
logm(Rd,T

N RN )
∥

∥

∥

∥

∥Πd
N −ΠN

∥

∥ ∆T

(i) 5.91 2.30× 10−14 1.34× 10−14 2.72
(ii) 7.32 4.80× 10−15 1.66× 10−14 5.25
(iii) 1.73 1.22× 10−15 6.55× 10−14 4.09
(iv) 3.37 3.06× 10−14 3.04× 10−14 5.05

∆T : Simulation running time in Intel Pentium M 740
1.73GHz processor (min.)

animation for the attitude maneuver can be seen at
http://www.umich.edu/˜tylee.)

The convergence rate figures show violation of the termi-
nal boundary condition according to the number of iterations
in a logarithm scale. Red circles denote outer iterations in
Newton-Armijo iteration to compute the sensitivity deriva-
tives. For all cases, the initial guesses of the unspecified
initial multiplier are arbitrarily chosen. The error in satisfac-
tion of the terminal boundary condition converges quickly
to machine precision after the solution is close to the local
minimum at around 50th iteration. These convergence results
are consistent with the quadratic convergence rates expected
of Newton methods with accurately computed gradients. The
condition number of the decomposed sensitivity derivative
given at (21) varies from100 to 105. If the sensitivity
derivative is not decomposed, then the condition numbers
are at the level of1019, and the numerical iterations fail.

The numerical examples presented in this paper show
excellent numerical convergence properties. This is because
the proposed computational algorithms onSO(3)are geo-
metrically exact and numerically accurate. In addition, the
algorithm incorporates a modification that eliminates the
singularity caused by the symmetry.

We interpret the optimization results using the geometric
phase formula given by (3). For given initial conditions, the
vertical component of the initial angular momentum is zero.
Thus, the rotation about the vertical axis is purely caused by
the geometric phase. Since the geometric phase is determined
by a surface integral onS2 whose boundary is the reduced
trajectoryΓ, it is more efficient for the reduced trajectory to
enclose the area at which the absolute value of the integrand
of (3) is maximized.

In each subfigure (b) of Figures 2–5, the infinitesimal
geometric phase per unit area is shown by color shading. The
reduced trajectory, which represents the gravity direction in
the body fixed frame, is shown by a solid line. The north
pole of the sphere corresponds to the hanging equilibrium
manifold, and the reduced trajectory starts and ends at the
same north pole for the given boundary conditions.

Comparing Figures 2(b), 3(b) with Figure 4(b), 5(b), it can
be seen that Body (A) and Body (B) have different geometric
phase characteristics. This is caused by the fact that the
geometric phase depends on the moment of inertia of the
body. For Body (A), the absolute value of the infinitesimal

geometric phase is maximized at a point on the equator, and
for Body (B), it is maximized at the north pole. We see that
the optimized reduced trajectories try to enclose those points.

As a result, the optimized attitude maneuver of Body (A) is
distinguished from that of Body (B). The attitude maneuver
of Body (A) is relatively more aggressive than that of Body
(B) since the reduced trajectory passes near the equator
corresponding to a horizontal position. Body (B) does not
have to move far away from the hanging equilibrium since
the infinitesimal geometric phase is maximized at that point.
The resulting attitude maneuver is relatively benign.
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(a) Attitude Maneuver (b) Geometric Phase

(c) Control Input (d) Convergence Rate

Fig. 2. (i) Body A, hanging equilibrium to hanging equilibrium with 90
◦

yaw

(a) Attitude Maneuver (b) Geometric Phase

(c) Control Input (d) Convergence Rate

Fig. 3. (ii). Body A, hanging equilibrium to hanging equilibrium with
180

◦ yaw

(a) Attitude Maneuver (b) Geometric Phase

(c) Control Input (d) Convergence Rate

Fig. 4. (iii). Body B, hanging equilibrium to hanging equilibrium with
90

◦ yaw

(a) Attitude Maneuver (b) Geometric Phase

(c) Control Input (d) Convergence Rate

Fig. 5. (iv). Body B, hanging equilibrium to hanging equilibrium with
180

◦ yaw
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