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Abstract— We present new necessary and sufficient condi-
tions for the existence of fixed points in a finite system of coupled
phase oscillators on a complete graph. We use these conditions
to derive bounds on the critical coupling.

I. INTRODUCTION

Synchronized behaviour has been widely observed in

natural and engineered systems [13], [2], [12], [5], and

understanding the mechanisms behind its emergence is a key

issue in the study of interconnected dynamical systems. For

some time now, there has been considerable interest across

the mathematics, physics and engineering communities in the

development and analysis of simple mathematical models

of synchronization [8], [14], [15], [3], [16], [17]. One of

the most popular frameworks for the mathematical study of

synchronization is the so-called Kuramoto model of phase

coupled oscillators [9], [10], [18], [19], [1]. To date, several

characteristics of this model have been determined. For

instance, at very low values of the coupling strength, little

or no synchronization is observed. As the coupling strength

is increased, some partial synchronization appears in the

network up to a threshold value of the coupling strength,

referred to here as the critical coupling, at which fully

synchronized behaviour emerges [8], [3].

The traditional Kuramoto model assumes that all pairs

of oscillators in the network are connected with the same

coupling strength [9]. This type of coupling is referred to

as ‘all-to-all’ coupling and corresponds to a network in

which the underlying graph is complete [4]. Other traditional

classes of networks to have been considered include lattices

[7] and rings [15]. More recently, the synchronization of

coupled oscillators on networks with small-world [22], [21],

[6] and scale-free [11] topologies has also attracted attention.

Most recent results on synchronization and dynamics on

networks have either been based on numerical simulations

or else have been derived for the limiting case of networks

of infinite size. To date, relatively few rigorous results are

available for finite-size networks [18], [8], and there is a

clear need for analysis techniques to gain insight into so-

called finite-size effects. In this paper, we shall be concerned

with synchronization in finite systems of coupled oscillators.

Specifically: we shall establish (new) necessary and sufficient

conditions for the existence of fixed points in a finite system

of coupled oscillators (see also [20]) and compute bounds on

the critical coupling strength for such systems. Our analysis
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is in the spirit of the work presented in [8], [3], specializing

to the case of all-to-all coupling with particular emphasis on

the existence of fixed points. The stability of such fixed points

is also a topic of great interest, and has been considered in

[8], [14], [15], [3], but shall not be addressed in the current

paper.

The outline of the paper is as follows. In Section 2, we

introduce the Kuramoto model, and review some of its basic

properties. Here, we also give a formal definition of the

critical coupling. In Section 3, we state the main results.

In Section 4 a numerical example is presented. Section 5

closes with conclusions and an outlook on future research.

II. THE KURAMOTO MODEL

For the remainder of this paper, we shall be concerned

with the Kuramoto model of coupled phase oscillators under

the assumption of all-to-all coupling. Formally, this model is

given by

θ̇i = ωi +
k

N

N

∑
j=1

sin(θ j −θi), i = 1, . . . ,N. (1)

Here, θi(·)∈R (S1) and ωi ∈R respectively denote the phase

and intrinsic (or natural) frequency of oscillator i, and the

constant k ∈ R+ is a global coupling coefficient.

A. The order parameter

Let D denote the complex unit disc {z ∈ C : |z| ≤ 1}. We

consider a map r : R
N 7→ D, defined as follows:

r(θ) :=
1

N

N

∑
j=1

eiθ j . (2)

Let r−1(z) := {θ ∈R
N : r(θ) = z} denote the preimage of r,

and note that the preimage is nonempty for all z∈D provided

N ≥ 2. We introduce the notation R0 := r−1(0). It shall be

convenient to express r(θ) in terms of polar coordinates:

r(θ) =

{

R(θ)eiψ(θ) θ ∈ R
N\R0

0 θ ∈ R0

. (3)

Here, R : R
N 7→ [0,1] and ψ : R

N\R0 7→ [0,2π) are respec-

tively defined as

R(θ) :=

√

√

√

√

(

1

N

N

∑
j=1

sin(θ j)

)2

+

(

1

N

N

∑
j=1

cos(θ j)

)2

, (4)

and

ψ(θ) := arctan

(

1
N ∑N

j=1 sin(θ j)
1
N ∑N

j=1 cos(θ j)

)

. (5)
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It is not hard to see that the the magnitude R(θ) of r(θ)
is invariant under transformations of the form θ 7→ θ + c1,

where 1 denotes the vector of all ones and c is a real number.

In fact, this follows directly from Eqn. (2):

R(θ + c1) :=

∣

∣

∣

∣

∣

1

N

N

∑
j=1

ei(θ j+c)

∣

∣

∣

∣

∣

= |eic|R(θ) = R(θ). (6)

By the same token, one can show that, for θ ∈ R
N\R0,

ψ(θ + c1) = ψ(θ)+ c mod 2π. (7)

In the physics literature, r(·) is known as the order parame-

ter. {eiθ j : j = 1, . . . ,N}. Using definitions (4) and (5), we

rewrite Eqn. (1), as follows:

θ̇i =

{

ωi + kR(θ) sin(ψ(θ)−θi) θ ∈ R
N\R0,

ωi θ ∈ R0.
(8)

It follows from (3) that for θ ∈ R
N\R0,

R(θ) = e−iψ(θ)r(θ) =
1

N

N

∑
j=1

ei(θ j−ψ(θ)). (9)

Equating real and imaginary parts in (9), we obtain the

following two identities for θ ∈ R
N\R0:

R(θ) =
1

N

N

∑
j=1

cos(ψ(θ)−θ j); (10)

N

∑
j=1

sin(ψ(θ)−θ j) = 0. (11)

B. Fixed points

Let V ∈ R
N×N be given as

[Vi j] :=

{

N−1
N

j = i

− 1
N

j 6= i
. (12)

We define new coordinates x(t) := V θ(t). Note that V is a

projection matrix that maps R
N onto the N −1 dimensional

linear subspace VR
N := {x∈R

N : ∑N
j=1 x j = 0}. Define Ω :=

V ω . In the new coordinates, the system dynamics read:

ẋ = Ω+ k f (x), (13)

where fi(x) is defined as:

fi(x) :=
1

N

N

∑
j=1

sin(x j − xi). (14)

Or equivalently:

fi(x) :=

{

R(x)sin(ψ(x)− xi) x ∈ R
N\R0

0 x ∈ R0

. (15)

The objective of this paper is to find conditions on k and

Ω under which the system (13) has one or more fixed points,

where a fixed point is defined as follows.

Definition 1: Let Ω,x ∈ VR
N . We say that x is a fixed

point (of the system (13)) if k f (x) = −Ω.

A fixed point in the sense of Definition 1 is a state of

the system in which each oscillator is phase-locked to every

other and moves at constant speed θ̇i = 〈ω〉. See also [8].

C. Critical coupling

Definition 2: Let Ω ∈ VR
N . The critical coupling, kc, is

defined as:

kc := inf
k

{

k ∈ R+ : ∃x ∈VR
Ns.t. k f (x) = −Ω

}

(16)

We define the critical coupling kc as the smallest k for which

the system (13) has at least one fixed point. Note that in

the physics literature, the critical coupling has been defined

alternatively as the smallest value of k for which there exists

at least one solution x(t), t ≥ t0, and a constant c ∈ (0,1]
such that R(x(t)) = c for all t ≥ t0 (so called stationary or

steady solutions [18]). Our definition is identical to that of [8]

(where the critical coupling is denoted as KL).

III. MAIN RESULTS

A. Lower bounds

Inspection of Eqn. (13) shows that

kc ≥ ‖Ω‖∞ := max
i

|ωi −〈ω〉|. (17)

Eqn.(17) gives us a lower bound on the critical coupling.

Using the next result, we shall derive another lower bound.

Theorem 1: Let f (x) be given by (15). Then:

1) For all x ∈ R
N ,

‖ f (x)‖2 ≤
√

NR2(x)(1−R2(x)); (18)

2) If N is even, then for every c ∈ [0,1] there ex-

ists x ∈ VR
N such that R(x) = c and ‖ f (x)‖2 =

√

NR2(x)(1−R2(x));
3) If N is odd, then inequality (18) is strict for all x ∈R

N

such that 0 < R(x) < 1.

Proof: Part 1. Observe that inequality (18) is trivially

satisfied when x ∈ R0. Suppose therefore that x ∈ R
N\R0.

Then by definition

‖ f (x)‖2
2 :=

N

∑
j=1

( f j(x))
2

= R2(x)
N

∑
j=1

sin2(ψ(x)− x j), (19)

where ψ(x) and R(x) are the phase and magnitude of the or-

der parameter, previously defined in (5) and (4) respectively.

Introducing the shorthand notation zi(x) := cos(ψ(x)− xi),
and using (10) we now rewrite (19), as follows:

‖ f (x)‖2
2 =

(

1

N

N

∑
j=1

z j(x)

)2
N

∑
j=1

(

1− z j(x)
2
)

. (20)

To derive the desired inequality we pick a c ∈ [0,1] and

maximize ‖ f (x)‖2 over the set {x ∈ R
N : R(x) = c}. We

shall not solve this optimization problem directly, but take

an indirect route by considering another, easier optimization

problem, whose solution will then give us an upper bound

on the solution to the first problem. Then we shall show that,

under certain conditions, the two solutions coincide. To this

end, let c ∈ (0,1] and consider the constrained optimization

problem
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OPT 1:
maximize ∑N

j=1

(

1− z j(x)
2
)

subject to 1
N ∑N

j=1 z j(x) = c, x ∈ R
N\R0

Note that the constraint is feasible for all values of c in the

specified interval. We shall denote the solution to OPT 1 as

s1(c). Next consider a second optimization problem,

OPT 2:
maximize ∑N

j=1

(

1− y2
j

)

subject to 1
N ∑N

j=1 y j = c, y ∈ R
N .

and let the solution to this problem be denoted as s2(c). We

then have that s2(c)≥ s1(c) for all c ∈ (0,1]. In other words,

the solution to OPT 1 is upper bounded by the solution to

OPT 2. The solution to OPT 2 can be found by means

of standard Lagrange multiplier techniques. The optimum

s2(c) = N
(

1− c2
)

, is attained when yi = c for all i. We

conclude that

max
{x∈RN :R(x)=c}

‖ f (x)‖2
2 ≤ Nc2

(

1− c2
)

, (21)

and hence, ‖ f (x)‖2 ≤
√

NR(x)
√

1−R2(x). for all x ∈ R
N .

Part 2. To prove the second part of the theorem, let c ∈ (0,1]
and note that s1(c) = s2(c) if and only there exists x∈R

N\R0

such that

cos(ψ(x)− xi) = c (22)

for all i. Suppose N is even and let x be given as

xi :=

{

arccos(c) i = 1, . . . ,
N
2

−arccos(c) i = N
2
, . . . ,N.

(23)

Then ∑N
j=1 x j = 0, and, by definition, x ∈ VR

N . Moreover,

ψ(x) = 0, and cos(ψ(x)− xi) = c for all i. This completes

the second part. Part 3. To prove the third part, let N be odd

and suppose there exists x ∈ R
N such that Condition (22) is

satisfied. Then it follows from the identity sin2(ψ(x)−xi)+
cos2(ψ(x)− xi) = 1 that there must exist a ∈ {−1,1}N such

that sin(ψ(x)− xi) = ai

√
1− c2 for all i. By Identity (11),

we have that ∑ j sin(ψ(x)− x j) = 0, which, assuming c 6= 1,

implies that ∑N
j=1 a j = 0. But this cannot be true unless N is

even. Thus we arrive at a contradiction and we conclude that

if N is odd then s2(c) > s1(c) for all c such that 0 < c < 1.

This concludes the proof.

Figure 1 illustrates the result of Theorem 1. When N = 4

(even), the lower bound is attained at every value of R(x),
which shows that the given bound is the tightest possible.

However, as illustrated in the left panel, when N = 3, the

bound is never attained except on the subset of R
3 defined

by {x ∈ R
3 : R(x) ∈ {0,1}}.

Theorem 1 has a number of interesting implications. First

of all it tells us something about the rate at which solutions

converge to a fixed point. To see this, assume ωi = ω j for

all (i, j) and consider the homogeneous system
{

θ̇(t) = k f (θ(t))
θ(t0) = θ0

, (24)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

R(x) →

1 √
N
‖f

(x
)‖

2
→

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

R(x) →

1 √
N
‖f

(x
)‖

2
→

(a) N = 3 (b) N = 4

Fig. 1. Scatter plot of 1√
N
‖ f (x)‖2 for N = 3 (left panel) and N = 4 (right

panel). The phases x were drawn from a uniform distribution. The solid

black line in both panels is the upper bound R(x)
√

1−R2(x).

where θ0 ∈R
N . The time derivative of the magnitude squared

of the order parameter, L(·) := R2(·) is given as

dL(θ(t))

dt
:=

∂L(θ)

∂θ
θ̇(t) =

∂L(θ)

∂θ
k f (θ(t)).

Using the identity
∂L(θ)

∂θ = 2
N

[ f (θ)]T , it follows that

dL(θ(t))

dt
=

2k

N
‖ f (θ(t)‖2

2. (25)

The derivative is positive everywhere, except at the equilib-

ria, where it is zero. It follows that the magnitude of the order

parameter is a nondecreasing function of time. We formulate

the following conjecture (see also [3], [8]):

Conjecture 1: For almost all initial conditions θ0, the so-

lution θ(t) to the homogeneous system (24) has the property

that limt→∞ R(θ(t)) = 1.

In agreement with Conjecture 1, one can prove that, for

the homogenous system, the global phase-locking manifold

M := {θ ∈ R
N : θi = θ j for all i, j} is (locally) asymp-

totically stable. However, the existence of other invariant

manifolds, not contained in M , implies that M is not

globally asymptotically stable. We conjecture that M is

‘almost globally asymptotically stable’, in the sense that its

region of attraction is the entire space minus a set of measure

zero.

For our next result, we shall need the concept of a

dominating function, which is defined as follows:

Definition 3: Let f ,g : R 7→ R and let I ⊂ R be an

interval. We say that f dominates g on I if f (t) ≥ g(t)
for all t ∈ I . In that case we call f a dominating function

for g on I .

Using Theorem 1, we compute a dominating function for

L(·), as follows.

Corollary 1: Let θ(·) be a solution to the homogeneous

system (24) with initial condition θ(t0) = θ0. Then

D(t) :=
1

1− e−2k(t−t0)
(

L(θ0)−1

L(θ0)

) (26)

is a dominating function for L(θ(t)) on [t0,∞).
Proof: By (25) and Theorem 1 we have that L̇(θ(t))≤

2kL(θ(t))(1−L(θ(t))) for all t. This implies that, on [t0,∞),
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L(θ(t)) is dominated by the solution y(t) of the ODE

{

ẏ = 2ky(1− y)
y(t0) = L(θ0)

(27)

which is given as

y(t) =
1

1− e−2k(t−t0)
(

L(θ0)−1

L(θ0)

) , t ≥ t0. (28)

This completes the proof.

Figure 2 shows the graph of L(θ(t)) and that of the dom-

inating function D(t)—Eqn. (26) for a particular realization

of the initial condition θ0. In this example, N = 100 and

k = 2. We observe that, as expected, the solution converges

to the synchronized state, L((θ(t)) → 1.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

t →

↑
L(θ(t))

Fig. 2. Numerical simulation of the homogeneous system (24) with N = 100
oscillators and coupling coefficient K = 2: time evolution of L(t) := R2(t)
(solid line) and the dominating function D(t)—Eqn. (26) (dashed line).

Let σω :=
√

1
N ∑N

j=1 (ω j −〈ω〉)2
denote the sample stan-

dard deviation of ω . Using Theorem 1 we can derive a lower

bound on the critical coupling, as follows:

Corollary 2: The critical coupling, kc, satisfies:

kc ≥ 2σω (29)

Proof: Let x∗ ∈ VR
N and suppose x∗ is a fixed point.

Then by definition k‖ f (x∗)‖2 = ‖V ω‖2 =
√

Nσω and by

Theorem 1 we have that

‖ f (x∗)‖2 ≤
√

N

√

R2(x∗)(1−R2(x∗)) (30)

It is not hard to see that the right hand side of (30) is upper

bounded by 1
2

√
N. It follows that

kc ≥
√

Nσω√
N 1

2

= 2σω (31)

This completes the proof.

Note that the previous result is in agreement with the intu-

ition that greater variation in intrinsic frequencies requires

stronger coupling to achieve full synchronization.

B. Necessary and Sufficient conditions

Our next result provides a necessary and sufficient con-

dition for the system (13) to have a fixed point, given a

particular coupling strength k.

Theorem 2: Let k > 0 and Ω ∈ VR
N . The system (13)

has a fixed point iff there exists β ∈ [ 1
k
‖Ω‖∞,1] ⊂ R and

a ∈ {−1,1}N such that

β =
1

N

N

∑
j=1

a j

√

1−
(

Ω j

kβ

)2

. (32)

Proof: Suppose Ω 6= 0 (the case Ω = 0 is easy). Let x∗ ∈
VR

N be a fixed point. By definition, k f (x∗) =−Ω, and since

Ω 6= 0, we have that f (x∗) 6= 0, and consequently R(x∗) 6= 0.

It follows that

sin(ψ(x∗)− x∗i ) = − Ωi

kR(x∗)
, i = 1,2, . . . ,N. (33)

Let β := R(x∗). By (33) we have that β ≥ 1
k
‖Ω‖∞. Recall

that for all x ∈ R
N\R0, R(x) can be written as

R(x) =
1

N

N

∑
j=1

cos(ψ(x)− x j), (34)

and let ai be given as

ai :=

{

−1 if cos(ψ(x∗)− x∗i ) ≤ 0;

+1 otherwise.
(35)

Combining (33), (34), and (35), we arrive at

β =
1

N

N

∑
j=1

a j

√

1−
(

Ω j

kβ

)2

. (36)

This proves necessity. To prove sufficiency, let a ∈ {−1,1}N

be given, and suppose β ≥ 1
k
‖Ω‖∞ > 0 (again, the case Ω = 0

is easy). Then for every c ∈ R, the system
{

kβ sin(−yi − c) = −Ωi

ai cos(−yi − c) ≥ 0,
i = 1,2, . . . ,N (37)

has a unique solution y∗ ∈ [−π,π)N . We pick c such that

∑N
j=1 y∗j = 0. Since ∑N

j=1 sin(y∗j + c) = 0, it follows that

R(y∗) = R(y∗ + c1) =

∣

∣

∣

∣

∣

N

∑
j=1

cos(y∗j + c)

∣

∣

∣

∣

∣

(38)

From (37), we have that

cos(y∗i + c) = ai

√

1−
(

Ωi

kβ

)2

i = 1, . . . ,N. (39)

Combining (38) and (39), we arrive at

R(y∗) =

∣

∣

∣

∣

∣

∣

1

N

N

∑
j=1

a j

√

1−
(

Ω j

kβ

)2

∣

∣

∣

∣

∣

∣

(40)

Under the hypotheses of the theorem β = R(y∗). It follows

that kR(y∗)sin(ψ(y∗)−y∗i ) =−Ωi, for i = 1,2, . . . ,N. Hence,

y∗ is a fixed point. This concludes the proof.
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Theorem 2 gives us a necessary and sufficient condition

for the equation k f (x) = −Ω to have at least one solution

for a given value of k. It is not clear, however, that there

exists k for which this condition is satisfied. The following

Corollary provides an easy sufficient condition.

Corollary 3: Let k > 0 and Ω ∈VR
N . Suppose

1

k
‖Ω‖∞ ≤ 1

N

N

∑
j=1

a j

√

1−
(

Ω j

‖Ω‖∞

)2

(41)

for some a ∈ {−1,1}N . Then the system (13) has at least

one fixed point.

Proof: Suppose Ω 6= 0 (again, the case Ω = 0 is easy).

Let a ∈ {−1,1}N . Define g : [ 1
k
‖Ω‖∞,1] 7→ R, g(β ) := β and

H : [ 1
k
‖Ω‖∞,1]×{−1,1}N 7→ R,

H(β ,a) :=
1

N

N

∑
j=1

a j

√

1−
(

Ω j

kβ

)2

. (42)

Since Ω 6= 0 we have that g(1) > H(1,a). Now suppose

condition (41) is satisfied. Then we have that g( 1
k
‖Ω‖∞) ≤

H( 1
k
‖Ω‖∞,a), and by the Intermediate Value Theorem there

must exist β ∗ ∈ [ 1
k
‖Ω‖∞,1] such that g(β ∗) = H(β ∗,a). It

follows from Theorem 2 that the system (13) has a fixed

point.

Corollary 4: Let k > 0 and Ω ∈ VR
N . Then the sys-

tem (13) has at least one fixed point if and only if there

exist β ∈ [ 1
k
‖Ω‖∞,1] such that

β =
1

N

N

∑
j=1

√

1−
(

Ω j

kβ

)2

.

Proof: The proof of Corollary 3 suggests that if the

fixed point equation (32) does not have a solution, then

β >
1

N

N

∑
j=1

a j

√

1−
(

Ω j

kβ

)2

for all β ∈ [ 1
k
‖Ω‖∞,1] and for all a ∈ {−1,1}N . Since

1

N

N

∑
j=1

√

1−
(

Ω j

kβ

)2

≥ 1

N

N

∑
j=1

a j

√

1−
(

Ω j

kβ

)2

for all a ∈ {−1,1}N , it follows that the given condition is

necessary and sufficient for the system (13) to have at least

one fixed point. This concludes the proof.

Our next and final corollary gives us an easy upper bound

on the critical coupling.

Corollary 5: The critical coupling kc satisfies

kc ≤
‖Ω‖∞

1
N ∑N

j=1

√

1−
(

Ω j

‖Ω‖∞

)2
. (43)

Proof: Follows directly from Corollary 3.

−2

0

2.5

1 20
i →

↑
Ωi

Fig. 3. The frequencies Ωi := ωi −〈ω〉 used in the example.

IV. NUMERICAL EXAMPLE

We consider a system with N = 20 oscillators, with

‘natural frequencies’ {Ωi} as depicted in Figure 3.

For this example we have that ‖Ω‖∞ = 2.07 and

1

N

N

∑
j=1

√

1−
(

Ω j

‖Ω‖∞

)2

= 0.88

It follows from Corollary 5 that kc ≤ 2.35 and by (17),

we have that kc ≥ ‖Ω‖∞ ≈ 2.07. Figure 4 shows the time

evolution of R2(t) (previously denoted as L(t)), for two

different initial conditions and two values of the coupling

coefficient, k = 2.3 and k = 2.4. We observe that in the

second case, when k is slightly greater than the known upper

bound on kc, the value of R2(t) converges to a constant and

inspection shows that the solution x(t) of the system (13)

tends to a fixed point. When k = 2.3, convergence cannot be

established. Note that in this case we do not know whether

the system (13) has a fixed point or not, as the condition

stated in Corollary 5 is only sufficient. To gain more insight

into this case we fix the coupling coefficient at k = 2.3, and

numerically evaluate the function

h(β ,k) :=
1

N

N

∑
j=1

√

1−
(

Ω j

kβ

)2

(44)

for several values of β in the interval [ 1
k
‖Ω‖∞,1]. We repeat

the same for k = 2.4. The result is shown in Figure 5.

We observe that the equation h(β ,k) = β does not have a

solution on the interval [ 1
k
‖Ω‖∞,1] when k = 2.3, but does

have a solution when k = 2.4. By Corollary 4, we have that

2.3 ≤ kc ≤ 2.4. Figure 5 suggests that the critical coupling

corresponds to the smallest value of k for which the graph of

h(β ,k) intersects that of g(β ) := β . It can be shown that, at

the critical value of k, the point of intersection is unique (this

follows from the fact that h is a convex function and that,

at this critical point, the partial derivative of h with respect

to β must be equal to the derivative of g with respect to β .

From this it follows that the critical coupling can be found
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Fig. 4. Time evolution of R2 for two different initial condition (indicated
by a dashed and solid line respectively), and two values of k. In the left
panel, the value of k (2.3) is slightly below the known upper bound on kc

and the system does not converge to a fixed point; in the right panel the
value of k (2.4) is slightly above the known upper bound on kc and the
system converges to a fixed point as expected.

numerically by determining the unique solution u∗ of

1

N

N

∑
j=1

√

1−
(

Ω j

u

)2

=
1

N

N

∑
j=1

(

Ω j

u

)2

√

1−
(

Ω j

u

)2
. (45)

Indeed, let u∗ be the unique solution of (45) on (‖Ω‖∞,∞).
Then the critical coupling is given as

kc :=
u∗

1
N ∑N

j=1

√

1−
(

Ω j

u∗

)2
. (46)

We remark that the solution u∗ of (45) can be found very

efficiently by means of a bisection algorithm, noting that, on

(‖Ω‖∞,∞), the left hand side of (45) is a strictly increasing

function of u, and the right hand side of (45) is a strictly

decreasing function of u.

↑
h(β ,k)

β →

g(β )

h(β ,k)

1
k
‖Ω‖∞

1

1

↑
h(β ,k)

β →

g(β ) h(β ,k)

1
k
‖Ω‖∞

1

1

(a) k = 2.3 (b) k = 2.4

Fig. 5. h(β ,k)—Eqn. (44) vs. β for k = 2.3, 2.4 and β ∈ [ 1
k
‖Ω‖∞,1].

The dashed line is the graph of g(β ) := β . An intersection corresponds to
a solution of the fixed point equation h(β ,k) = g(β ).

V. CONCLUSION

We derived necessary and sufficient conditions for the

existence of fixed points in a finite system of coupled oscilla-

tors. In particular, we derived an easy sufficient condition in

terms of the individual oscillator frequencies (Corollary 3),

which we used to compute an upper bound on the critical

coupling (Corollary 5). Simulation results indicate that this

bound is tight, but at present we do not have analytical

results to support this. In future work we shall seek to extend

our analysis to complex networks of arbitrary topology, and

investigate more closely the impact of the shape of the

distribution on the value of the critical coupling.
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