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Abstract— This paper considers consensus-seeking of net- unlikely to have noise free data delivery. The communicatio
worked agents in an uncertain environment where each agent noise issue also arises in the setting of distributed foncti
has noisy measurements of its neighbors’ states. We propose computation in sensor networks [12]. We note that most

stochastic approximation type algorithms with a decreasing step . h bl has f d
size. We first establish consensus results in a two-agent model previous research on consensus problems has focused on

via a stochastic double array analysis. Next, we generalize the Mmodels with perfect measurements, with only a few ex-
analysis to a class of well studied symmetric models and obtain ceptions (see, e.g., [29], [23], [5]). In particular, therwo

consensus results. [29] considered an averaging rule with additive noise and
attempted to minimize the long term mean square error by

I. INTRODUCTION - o ) .
h h ) optimizing the coefficients in averaging. In the consensus
The recent years have witnessed an enormous growifyqrithm of [5], multiplicative noises are introduced to

of re_search on the coordinatio_n_ and_control of (_jistr_ibuteq]oda logarithmic quantization error. In the early work, [4]
multi-agent systems, and specific topics appear in difterefyg) [27] convergence of consensus problems was studied in
forms such as swarming of honeybees, flocking of birds, and iqchastic setting, but the inter-agent exchange of rando

formation of autonomous vehicles; see e.g. [28], [9], [11]yessages was assumed to be error-free; see [13] for more
[17], [24], [20]. A common feature to these systems is thafatailed discussions.

the constituent agents need to maintain a certain coordmat |\ qdels with noisy measurements, one may easily

S0 as 1o cooperatively achieve a group objective. _construct an averaging rule with a constant coefficientimatr
For coordinating the agents’ behavior, it is usually iMy,ever, this in general leads to no convergence results. Fo
portant to propagate shared information within the Systemy,,sensys seeking in the stochastic models, the key fegtture
by communication rules which may be supported by thg, 4gorithm is a decreasing step size, and the algoritrsn ha
interconnection structure between the agents. In thisestnt gradient descending interpretation. We begin by an in
of fundamental importance is the so called consensus g, agent model. As it turns out, this simple model provides
agreement problem. In the literature, almost all cONSensus o, strycture for developing convergence analysis and
algorithms are constructed based on averaging rules, @d tf, i ates the solution to more general models. In this setup
usually leads to good convergence properties [14], [3]. g key technique is the stochastic double array analySis [2
In its basic formulation, a consensus model consists of 1, [22]. Next, we consider the stochastic consensus prabl
fixed network in which each agent updates its state by forja; 5 ¢lass of symmetric networks. In fact, many symmetric
ing a convex combination of the states of its neighbors and,qeis have arisen in practical applications includingotob
itself. Ste}rtlng from this formulation, many generalizsis teams, unicycle pursuit models [18], [17], cooperativ n
are possible. For instance, the state updqte may take plagg ork deployment for tracking [1] or sampling [16], and
asynchronously [21], [2]. In other scenarios, the networkqnsensus problems [5]. Hence, the symmetry assumption
tOPO'Ogy may_chang_e with t'me_ [21]._For convergence anaj;y; only simplifies the computation, but also has practical
ysis, stochastic matrix analysis is an important tool [Bld  j\hortance. For consensus analysis on networks without
in models with time-dependent communications, Set"’alueﬂ/mmetry, a different approach is developed in [13] via a

Lyapunov theory is also useful [19]. stochastic Lyapunov analysis.
In this paper, we are interested in consensus-seeking in

an uncertain environment. In contrast to most existing work Il. THE PROBLEM FORMULATION

in our model each agent can only obtain noisy measure- consider a set o agents distributed according to a
ments for the states of its neighbors while knowing its OWRiirected graph (or digrapl§ = (.#, &) consisting of a set of
state. Such modelling reflects many practical properties Wodesﬂ/ —{1,2,---,n} and a set of edge§ C A x N .
distributed networks. For instance, the information exgiea |, he digraph, an edge from nodeto nodej is denoted
between different agents may involve the usage of sensoty; 4, ordered paifi, j) wherei # j (so there is no edge
quantization, and wireless fading channels, which makes \{t.t 1 een a node and itself). A path (frémto i) consists of
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Fig. 1. Measurement with noisgX.

Fig. 2. In the noise free case, the states of the three nodeldygoonverge
the same constant level 2.143. Under Gaussian measurement noises

For convenience of exposition, the two names, agent a h variancea? = 0.01, the three state trajectories have large fluctuations.

node, will be used alternatively. The agéat(resp., node)
is a neighbor off; (resp., node) if (ki) € & wherek #1,
i.e., there exists an edge from nokléo nodei. Denote the \yhere
neighbors of nodé by .4 = {k|(k,i) € &}. Throughout the . 1 _
paper we consider digraphs. Note that any undirected graph m = z y{k. 4)
model can be equivalently represented as a directed graph. -] ke
For agentA;, we denote its state at tinteby x; € R, where  Note that the structure of (3) is very similar to the recur-
teZ"={0,12.-}. For eachi € ./, agentA receives gjon in classical stochastic approximation algorithmshiat t
noisy measurements of the states of its neighbors. We den%e_xi provides a correction term with the step siae
the resulting measurement by agéqnof agentAc’s state by  |ngeed, by introducing a suitable local potential invotyin
JEoXwk  tezt ke, W A and its neighborsy} —x may be interpreted as the noisy
measurement of a scaled negative gradient along the state of
wherewi e R is the additive noise; see Fig. 1 for illustration.Ai; see [13] for details. Since the additive noise is contained
The underlying probability space is denoted @y,.7,P). in {m,t >0}, each stateq will fluctuate randomly. These
We call y{k the observation of the state @ obtained by fluctuations will not die off if the step siza is selected as
A, and assume each; knows its own state<{ exactly. a constant. We introduce an example for illustration.
There may be various interpretations for the additive naise ~Example 1:We consider a strongly connected digraph
natural one is that is corrupted by noise during inter-agentwith three nodes{1,2,3} arranged on a line where node
communication [23]. We introduce the assumption: 2 is at the intermediate position anth = {2}, 42 = {1,3},
(A1) The noiseswi,t € ZT,i € 4 ke .4} are indepen- -#3={2}. We follow the notation introduced in this section,
dent and identically distributed with respect to the indiceand the scalar states are updated Xy; = (Xt +yi?)/2,
i,k,t and also independent of the initial statés i € .. X1 = O€+YF +¥7)/3, andxd, ; = (G +y¢?)/2,t > 0. The
In addition, sup. , E|x|? < e, and eactwX has zero mean i.i.d. Gaussian noises satis#) with varianceg? = 0.01.0
and variance > 0. O The simulation for Example 1 is shown in Fig. 2 with
Condition A1) means that the noises are i.i.d. with respeditial condition [x,x5,3] = [4,1,2]. For the noise free case,
to both space (associated with distributed agents) and tim@e change the state updating rule in Example 1 by replacing

The state of each agent is updated by: yiK by x&, which reduces to a standard algorithm in the litera-
_ a ' ture; see, e.g., [14]. Fig. 2 shows that the measuremeng nois
Xi1=(1—a)x + z vk, (2) causes a dramatic loss of convergence for this algorithm

S where the step size for nodlés in factal) = |4 /(| 4] + 1)

i i () — a) /|| = .
wherei € .4, t € Z* anda; € [0,1]. This gives an averaging to g'_vﬁ ehqual_ welghts %al - albl/‘z/bmh— 1/“‘?‘{' +h1)‘
rule in that the right hand side is a convex combination With the aim of getting a stable behavior for the agents,

of the agent’s state and ifs#{| observations, wher¢g is a decreasing sequenge;,t > 0} Wi_" F’e gsed below. .
used to denote the cardinality of a setThe objective of (A2) The sequencea,t > O} satisfies ija € [0,1] and ii)

the consensus problem is to seldet,t > 0} so that then there existsTo > 1 such that

individual states¢ converge to a common limit in a certain a B
sense. v <& < v (5)
To get some insight into the algorithm (2), we rewrite itfor all t > To, wherey € (0.5,1] and 0< a < 8 < o 0
in the form By starting from a suitabld and requiringg; < a only
X=X +a(m —x), A3) fort > To, wherea; € [0,1], we may allow large values far.

This gives more flexibility in choosing the step size seqeenc
1The edge in an undirected graph is denoted as an unordergdfquai and otherwisex greater than one would be excluded. Here
definiteness it is assumed there is no self-loop at any node. the segmentfa,t < Top} may be chosen freely as long as



& € [0,1]. In further analysis, the parametefg a,f3,y are Define
treated as fixed constants associated Wiht > 0}.

Note that £2) implies Mk=0Q-a)l-a 1) (1—a1)a, 9)
- - wherel > k> T;. By convention,My x = a.
Z)at = oo, Zoatz < oo, (6) Lemma 4:For I.'I|’|< defiped by (9) withk <1, we have the
t= t= upper bound estimate: (i) =1, we have
which is a typical property for the step size sequences used I 4| B Bk+1)2
in classical stochastic approximation theory [6], [15]. Mk < expq —2a Z C s PSR (10)
We introduce the following definitions on the asymptotic =kl
behavior of the agents’ state evolution. (i) If % <y<1, we have
Definition 2: (mean square consensysThe agents are _2a L L B
said to reach mean square consensui|i|2 < «, t >0, Mk < eXp{l_[(l +1)7 = (k+1) _V]} w1
i € 4, and there exists a random variabté such that 4
M E|X —x*2=0 for alli € .. O -

Let {c(t),t > tp} and {h(t),t > tp} be two sequences of
real numbers indexed by the intedger to, andh(t) > 0 for
all t > tp. We denotec(t) = O(h(t)) (resp.,c(t) =o(h(t))) if

Definition 3: (strong consensup The agents are said to
reach strong consensus if there exists a random varigble
such that with probability one lim,. X = x* for all i€ 4.0

If a sequence converges with probability one (w.p.1), we |y M <Cy < oo (resp lim M _ 0)
also say it converges almost surely (a.s.). In both mearrsqua ~ t—= h(t) — 7 "t h(t)
and strong consensus, the limit may depend on the initial Here C4 is called a dominance constant. In practice, it is
states, the noise sequence and the consensus algorithm. desirable to pick up a smaller value fG§ when possible.

A The Generalization to Vector States Lemma 5:We have the upper bound estimate: (iyH 1,

Ay 1

We give some discussions for the vector case where each ! N2, — O<}§‘{) !f 0< CI< 4 12

individual statext € RY with dimensiond > 1. It is easy to k_ZT tk= O(lT) if a= 3 (12)
extend (1)-(2) to the vector case by taking a vector noise — O(f) if a>g,

term. For the vector version of (2), we see that each aind (ii) If % <y<1,

the d components i is decoupled from the othet — 1 t 1
components during the iteration. Hence we may decompose Z r|t2k =0(%). (13)
the vector equation tal scalar equations. After adapting = 34
assumption A2) to the vector case, the consensus result in 0

the paper is easily generalized to vector individual states Remark. We give some discussions on estimating the
dominance constar@y in Lemma 5. For (12), whem # 2
is close to;l1 from left (resp., right), we need to take a large
. . Cq associated withO(z) (resp., {). For the casen = 3
In this section we analyze a two-agent model. Apart from}, (12), we may takeCy = B2. For (13), we takeCy = 4a,

IIl. M EAN SQUARE CONSENSUS IN ATWO-AGENT
MODEL

li h i hedding ligh h i i

enabling s arp estimates gnd shedding light on the Semec“Pegardless of the particular value p& (%71]_ O
of the step size, the techniques developed for such a systemrnaorem 6:Assume a system of two agents with the
will provide motivation for analyzing more general models,pitial condition X'o i = 1,2, each with noisy measurements

For the th() agzent case, we hawe=2 and.#" ={1,2}.  f the state of the other, and assurdd)-(A2). Then there
Define & = x: —x{. We notice the relation exists a limit random variablg* such that

1= (1—2a)& +av, @) lim Efx —x"[? =0,
wherev; = w{?—wg!. By the lower and upper bound condi- wherei = 1,2. This implies mean square consensus.
tion in (5), we may find an integef; > To such that Proof: Letting z = 3(x' +x?) for t > 0, we have
2a = W
1-521-2a>0  foral t=T  (®) Zpp=z+aw, =0 (14)

wherew; = 3(w{?+w2). By iterating (14), it follows that
Zi1 =2+ St oWk Since S a2 < o, there exists a
random variablez* such that linp ., E|z — 2| = 0.

Denotea; = 2&. In the estimate below, we start wifh
as the initial time. Fot > Ty, it follows from (7) that

Eii= (1-a)(1—a. 1) (1—an)én, Now we estimatef; = xt —xZ. We see that
= _ t
1—a)---(1—
+( at) ( aT1+l)aT1VT1 EEt2+l < (EE'Izlrltle‘l_ 2ak|2+ks>quEV2k > Z rltz,k)
=11 k:Tl

F(1-a)a 1Vt and it readily follows from Lemma 5 that lime EEt%rl =0.
Bl The mean square consensus property follows easily. O
+av. The i.i.d. noise assumption in Theorem 6 may be relaxed.



V. STRONG CONSENSUS FORTWO AGENTS @ @

So far we have shown that the states of the agents converge
to the same limit in mean square. It is well known that in /
classical stochastic approximation theory [6], [15], $amy @ )
structured algorithms have sample path convergence proper
ties under reasonable conditions. It is tempting to analyze
sample path behavior in this consensus context. Compared p
to the mean square consensus analysis, the proof of strong ®®
consensus requires far more analytic labor.

The following lemma is instrumental for our analysis. The Fig. 3. A ring network where each agent has two neighbors.
proving technique relies on asymptotic analysis of the sum
of random variables with weights in a double array.

Lemma 7:[25] Let {w,w,t > 1} be iid. real-valued  The requirementa > 3 for the casey =1 is a mild
random variables with zero mean and Variar@e and condition, and from an algorithmic pOint of view, it is not
{ai,1 <i <l 1 o,k>1} a double array of constants.an essential restricti_on since in applicatiofg,t > 0} is a
Assume (i) max<i<, |axi| = O((Ii/plogk)‘l), 0<p<2,and Sequence to be designed.

loglk = o(log”k), (ii) E|w|P < . Then V. NETWORKS WITH SYMMETRY STRUCTURES

ok In this section we consider models where the neighboring
im > aqw =0,  as (15 relation for then agents displays a certain symmetry. A
= simple example is shown by Fig. 3 with ring-coupled agents.

= We specify the associated digraph as follows. First, the

This lemma is an immediate consequence of Theoremftnodes are listed by the order2l---,n. Herei andi+

and Corollary 3 in [25] (pp. 331 and pp. 340) which dealty are unnecessarily neighbors to each other. ithenode
with the sum of weighted random variables. has a set of neighbors# listed as(ail,aiz,--- ,aiL) which
We need to estimate the magnitude of the individual termig 3 subset of 4 = {1,2,---,n}. The fixed constant. >
Mt k. Note that for each > Ty, M is defined fork starting 1 denotes the number of neighbors, which is the same for
from T, up tot. Hereafter, for notational brevity, we makeall nodes. Then thé¢i + 1)th node’s neighbors are given by
a convention by settingl;x =0, for 1<k < T, whent > (ai1_|_ 1, (j(i2_|__’L7 . 7ali__|_ 1). In other words, by incrementing
Ty, andMy, =0, for 1<k <t when 1<t <Ti. After this  each ofa| by one, where X k< L, we obtain the neighbor
extension, all the entrieS; x constitute a triangular array. set for nodei + 1, and after a total oh steps, we retrieve
Lemma 8:For case (i) withy= 1, we have nodei and its neighbors#{. In fact, the underlying graph
may be realized by arranging the nodes on a ring and

A1y 1
sup My = { O(f“) '; 0< Oi< 2 (16) adding the edges appropriately. For this reason, we may term
1<k<t O(¢) if a=>s, this symmetry as the circulant invariance property for the

neighboring structure. Throughout this section, if an inde
0 (e.g.,ap +1) for a node or agent exceedswe identify it
Theorem 9:Assume all conditions in Theorem 6 hold, and"]ls_l_"’;]n mtbeger betwee? 1 ancby t?km% modn) .t ¢
a > ;11 in the casey = 1. We have (a} converges a.s.. (b) € above symmetlry assumption does not ensure strong
lime_& — 0 a.s.. () The two sequencésl,t > O} and connectivity of the graph, which may be illustrated by sienpl
{(32,t > 0} converge to the same limit a.s. 7wﬁich impliesexamples. For this section, we make the assumption:
str(;ng_consensus ' (A3) The digraphG = (.#',&) has both the circulant
: ' o ~ ~ _invariance property and strong connectivity. O
Proof. Recall thatz.; = zp+ ZL:O W, wherewf = ' . . . . n

%(therth). Since{W, k> 0} is a sequence of independent Defmle t?e cientr0|d for the state COﬂflgurﬁn@ﬁ’..: 7f)'(t)
random variables WitlE = 0, EWi|2 < o0, by Khintchine- 354 = 7 2i=1% Under @A3), we can show that; satisfies
Kolmogorov convergence Theorem (see [8], pp. 110), if
Sh_oE|axWi|? < oo, then S}_paxWi converges a.s.. Indeed,
S oo Elaik|? < « follows from (A2) and sup.,EW? < «.
Hencez converges a.s.. - Lemma 10:Under @A1)-(A3), the sequencez,t > O}

Now we prove (b). Recalling the expression fr,, we CONverges both in mean square and almost surely. O
see that limL. & = 0 a.s., if im_e Zf«l Mixvk =0 a.s.. By We further denote the difference betwedh' andx by
Lemma 8 we have sypy Mtk = O((t/2logt) 1), for both g =Xt 17)
cases: (i) <y<1, (i) y=1anda > 3. t ’

To apply Lemma 7, we takig = k andp= 2, which yields for 1 <i < n, wherex! is identified as¢ by taking modn)
lIM¢_ e 2}(:1 Mi kv =0, a.s. Hence lim., & =0 a.s., and (b) for the superscript. Thu§" = Xt — . Here!, 1<i<n, are
follows. Assertion (c) then follows from (a) and (b). © not linearly independent sinc§" = — S ; &'. In formation

and for case (ii) with% <y<1, we have sup Mk =
O(1/tY).

A ik
1=+ — M ) tZO
nLieZA/keZA{



control the set oh—1 variablesft‘, 1<i<n-—1,is usually (i) There exist constantd* € (0,1) and T, > 0 which are
called the shape variables. Recall that we ha¥g =L, for independent oB, such that for alt > k> T,

all i € .. Specializing the stochastic algorithm (2) to the M(a)---M <l1—5).- (1— 5

model of this section, we have M) (@6 < |(1-0"a)-(1-8"a)e],

i L& ‘ i« whereT, is chosen such that < 1/2 for all t > To. O
%= (1-a)x+ kZ/V(Xt +w) (18) Let wy = €"/" wherei? = —1, and denote
_ = 1 1 1 .. 1
for eachi € .4/, and 1 1 o WP Wit
Xg= -t Ty W F=m ; ; ;
ket 1 @t mg(n—l> mgn—lﬂn—l)

— (1_&))4+1+% z (th+l—|—W{+l"k+l) (19)

on which is the so called Fourier matrix of ordefand satisfies

: ) ) FiF, =1 whereF is the complex adjoint matrix fof,. For
where we get (19) by the circulant invariance property. n’?t n P ) b

i i 0,1], we introduce the pol ial
Subtracting both sides of (19) by (18) leads to a € [0,1], we introduce the polynomia
& T—a)Ei+ 2§ ghy 2 e (20) $(a,2) = (1-a) +a(C1z+ CoZ2 + -+ + Cn_12").
=\ T —W, ieN, - .
tam R L kezﬂi L Then by well known results for circulant matrices [10], the
n eigenvaluegAyt,---,Ant} of M(a;) are given by

. . . . . Avs = k—1
WK — LRk W=y Wk 21) k,t- o (a, wy )
KEN wherek=1,---,n. Obviously,A1; = 1. FurthermoreM (&)
with k& 4 for ik may be diagonalized in the form
1 t -

Lemma 11:Assume A3) and leté/ andwi be defined by M(a) = Fy x Diag(Axt, -, Ant) X Fa.
(17) and (21), respectively. We have the following zero-sum Letting 1, =[1,---,1]", it is easy to verify that
property:Sic 4 & =0 andyic W =0 for all t > 0. | .t
We introduce then x n stochastic matrix M(ar) - M(@ak) = Fy x Mj_Diag(Asj, -~ Anj) X Fn
. 1
ac(0,1]. (22) =P < M5_Diag(0, Az ;- Anj) x Fa+ —1nly.

The matrixM€ is given in the form

where

M(a) =1 +aM®,

Corollary 14: Let 8, T, andd* be given as in Lemma 13
- and denoteM(t,k) = M(a;)---M(ax) for t > k> T,. Then

-1 c C <o Cne : s
1 2 nd the real matrixM°(t,k) £ M(t,k) — 21,17 satisfies

M® =

M(t, k)6 = M°(t,k)@

Ch-2 G- —1 G2 and [M°(t, k)| <CM'_,(1— 5*a;) for someC > 0 indepen-
. ) c dent oft andk, where|-|. denotes the largest absolute value
1 -+ Cna -1 of the elements in the matrix. |
- ) N Theorem 15:Assume A1)-(A3). Then the algorithm (2)
whereMf = —1 for 1<i <n, and for 2<k <n,

ensures (i) mean square consensus for any 0; and (ii)
strong consensus for () (0.5,1) associated with angr >
0 in (A2), and (b)y =1 provided thator > 1/(25*).

Proof: We first recall thatz converges in mean square
and a.s.. We write the recursion (23) fé, and show its
mean square convergence to zero by Lemma 11, and Lemma
13-(ii). Then mean square consensus follows. For proving
almost sure convergence &f, we use Lemma 11, Corollary
14 and Lemma 7 to carry out the double array analysis.

Without measurement noises, if the coefficient matrix
in the consensus algorithm is doubly stochastic, the state
average is an invariant, and it is possible to establisheaner

Gi1=M(a) G + %\M, t>0. (23) consensus [29] such that each individual state converges to
the initial state average. In our model, the noise causes the

Lemma 13:Assume f2)-(A3) hold, and the real vector |imit state to deviate from the initial state average altjtou
6 =[61,---,6n has a zero column sum, i.f ;6 =0. M(a) is doubly stochastic. We have the deviation estimate.
Then for allt > k> 0, we have: Proposition 16: Under (1)-(A3), the state iterates in

() The column sum of M(a)---M(a)6 is the consensus algorithm satisfy fim. E[x — 1 57, X5? =
zero, ie, 3L M%) = O, where we denote O(Q), whereQ is the variance of the i.i.d. noises, ang
ME = ME (D), ,ME(M]T = M(a)---M(ay)6. 1<i <n, denotes the initial state &t= 0. O

c 1 ifke.m
Mijc = G-1= { 0 otherwise
Since M€ is a circulant matrix [10], it is well defined after
specifying the first row. BothM® and M(a) are circulant
matrices.

Proposition 12: Under @A3), M(a) is doubly stochastic
for anyac [0,1], i.e., bothM(a) and[M(a)]" are stochastic
matrices. In additionM(a) is irreducible fora > 0. O

Define twoR"-valued vectorg; = (&,---,&MT andw; =
(W,--- W) T. We can show thaf; satisfies the recursion:



(2) 3

Fig. 4. A digraph with 3 nodes.
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Fig. 5. Equal weights (i.e., 0.5) are used for each agertite sind its
observation in the state iteration.

VI. SIMULATIONS

We consider the model in Fig. 4 wherés = {2}, 45 =
{3} and.#3 = {1}. The initial condition forx, = [x},x2,%]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

is [4,3,1] att =0, and the i.i.d. Gaussian noise has variance

02 =0.01. Fig. 5 shows the simulation with equal weight

(as in Example 1) in the averaging rubé (; = (¢ +y{?)/2,

9]

etc.), without obtaining consensus. Fig. 6 shows the strong
consensus result achieved by algorithm (2) with the step si#]

sequencga; = (t+5)7%8t > 0}.
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