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Abstract— In this paper we present a 6DOF Euler-Lagrange
model formulation of relative translation and rotation in a
leader-follower spacecraft formation. To show the applicability
of the model, we also present a solution to the problem
of relative translational and rotational tracking, using the
concept of vectorial integrator backstepping. The controller
solution utilizes the quaternion representation to achieve a
shorter rotation path on commanded attitude changes, and the
equilibrium points in the closed-loop system are proved to be
uniformly asymptotically stable. Finally, simulation results are
presented to show the performance of the derived control law,
together with the impact of orbital perturbations when these
are left uncompensated.

I. INTRODUCTION

A. Background

Spacecraft flying in formation are revolutionizing our way

of performing space-based operations, and bring out several

advantages in space mission accomplishment, as well as

new opportunities and applications for such missions. The

concept makes the way for new and better applications in

space industry, such as improved monitoring of the Earth

and its surrounding atmosphere, geodesy, deep-space imag-

ing and exploration and even in-orbit spacecraft servicing

and maintenance. The replacement of traditionally large

and complex spacecraft with an array of simpler micro-

satellites introduces a multitude of advantages regarding

mission cost and performance. However, the advantages of

using spacecraft formations come at a cost of increased

complexity and technological challenges. Formation flying

introduces a control problem with strict and time-varying

boundaries on spacecraft reference trajectories, and requires

detailed knowledge and tight control of relative distances and

velocities for participating spacecraft.

B. Previous Work

Synchronized control of spacecraft formations in Earth

orbit has received increased attention over the last years.

From the first models of relative translation in spacecraft

formations in circular orbits presented in [1], [2], later

achievements include nonlinear models as presented in e.g.

[3], [4], and later in [5] and [6], derived for arbitrary orbital

eccentricity and with added terms for orbital perturbations.

Models of both translational and rotational motion in a

leader-follower spacecraft formation have been considered by
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few researchers, and most of the previous work has focused

on translational models only. However, notable exceptions

are [4], [7], where models of coupled translational and rota-

tional motion were derived. State feedback tracking control

laws for relative position and attitude were developed in [4],

[8], and these solutions were proved to result in exponen-

tially stable equilibrium points in the closed loop system.

Semiglobal asymptotic convergence of relative position and

attitude errors was proved in [9] for an adaptive output

feedback controller using relative position only, tracing the

steps of [7]. The stability result was proved using a Lyapunov

framework and standard signal-chasing arguments.

C. Contribution

As described above, several researchers have published

results on modelling and control of leader-follower spacecraft

formations. As a result of visions for tighter spacecraft

formations in highly elliptic orbits, the quality of the pre-

viously presented models has increased. Our contribution

to the ongoing research is a 6DOF Euler-Lagrange model

formulation of relative spacecraft translation and rotation (cf.

[10], [11]). The motivation for a 6DOF model is scenarios

where you need to control both relative translation and

rotation between spacecraft in the formation. Examples are

observer-type formations with viewing constraints, in-orbit

surveillance operations and spacecraft rendezvous and dock-

ing. In addition, the dynamical effect of non-conservative

actuators and orbital perturbations on the spacecraft in the

formation is a coupling of the rotational and translational

motion of the follower spacecraft.

The model is tailored for control purposes, and to show

the applicability of the model, we present a state feedback

solution to the problem of tracking relative translation and

rotation in a leader-follower spacecraft formation, using the

concept of vectorial integrator backstepping. The controller

is an extension of earlier work in [12] on relative attitude

control. As in the latter paper, the solution presented here

also utilizes the quaternion representation to achieve a shorter

rotation path on commanded attitude changes.

The rest of the paper is organized as follows: Section

II defines the different reference frames used and presents

the mathematical models of relative attitude dynamics and

kinematics in a leader-follower spacecraft formation. The

controller design is performed in Section III, and simulation

results of a system with the derived controller are presented

in Section IV. Concluding remarks are given in Section V.
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II. MODELLING

In this section, we formulate the satellite formation prob-

lem. We describe the different reference coordinate frames,

together with the necessary coordinate transformations, that

form the basis for our system, before we present models

of the relative translation and rotation in a leader-follower

spacecraft formation.

A. Cartesian Coordinate Frames

The coordinate reference frames used throughout the paper

aredefined as follows:

Earth Centered Inertial (ECI) frame: This frame is de-

noted F i, and has its origin located in the center of the

Earth. Its z axis is directed along the rotation axis of the

Earth towards the celestial north pole, the x axis is directed

towards the vernal equinox, and finally the direction of the

y axis completes a right handed orthogonal frame.

Leader orbit reference frame: The leader orbit frame,

denoted F l , has its origin located in the center of mass of

the leader spacecraft. The er axis in the frame is parallel to

the vector rl pointing from the center of the Earth to the

spacecraft, and the eh axis is parallel to the orbit momentum

vector, which points in the orbit normal direction. The eθ

axis completes the right-handed orthogonal frame. The basis

vectors of the frame can be defined as

er =
rl

rl

, eθ = eh × er and eh =
h

h
, (1)

where h = rl × ṙl is the angular momentum vector of the

orbit, h = |h| and rl = |rl |.

er

eθ

eh

ix

iy

iz

rl

r f

Leader

Follower

p

Fig. 1. Reference coordinate frames [13].

Follower orbit reference frame: This frame has its origin in

the center of mass of the follower spacecraft, and is denoted

F f . The vector pointing from the center of the Earth to the

center of the follower orbit frame is denoted r f . Its origin

is specified by a relative orbit position vector p = [x y z]⊤

expressed in F l frame components,and the frame unit vectors

align with the basis vectors of F l . Accordingly,

p = r f − rl = xer + yeθ + zeh . (2)

Body reference frames: For both the leader and the follower

spacecraft, body reference frames are defined and denoted

Fbl and Fb f , respectively. These frames have, similar to the

orbit frame, the origin located in the center of mass of the

respective spacecraft, but the basis vectors are fixed in the

spacecraft body and coincide with its principal axis of inertia.

B. Coordinate Frame Transformations

1) Rotation from ECI to Leader Orbit Frame: The ro-

tation from the ECI frame to the leader orbit frame is

dependent on the parameters of the leader spacecraft orbit,

and can be expressed by three consecutive rotations. The

total rotation matrix can be written

Rl
i = Rz,ω+νRx,iRz,Ω (3)

where Ω is the right ascension of the ascending node of the

orbit, i is the inclination of the orbit, ν is the true anomaly

of the leader orbit, and ω is the argument of perigee of the

same. The sum of ν and ω represents the location of the

spacecraft relative to the ascending node.

2) Body Frame Rotation: The rotation matrix describing

rotations from an orbit frame to a body frame can be

described by

Rb
o = [c1 c2 c3] = I+2ηS(ε)+2S2 (ε) (4)

where the elements ci are directional cosines, and q =
[

η, ε⊤
]⊤

are the Euler parameters, which satisfy the con-

straint

η2 + ε⊤ε = 1 . (5)

The matrix S(·) is the cross product operator given by

S(ε) =ε× =





0 −εz εy

εz 0 −εx

−εy εx 0



 (6)

when ε = [εx εy εz]
⊤

. The inverse rotation is given by the

complex conjugate of q as q̄ =
[

η, − ε⊤
]⊤

.

C. Relative Translation

The fundamental differential equation of the ideal two-

body problem can be expressed as [14]

d2r

dt2
+

µ

r3
r = 0 (7)

where r = r2 − r1 is the relative position of masses m1 and

m2 with respective ECI position vectors r1 and r2, and µ =
G(m1 +m2) with G as the universal constant of gravity. This

equation can be generalized to include force terms due to

orbital perturbations and control input vectors from onboard

actuators. Accordingly, (7) can be expressed as

r̈s =−
µ

r3
s

rs +
fds

ms

+
fas

ms

(8)

where fds ∈R
3 is the disturbance term due to external effects

and fas ∈ R
3 is the actuator force. The superscript/subscript

s is used in general to denote the spacecraft in question, so

s = l, f for the leader and follower spacecraft, respectively. In

addition, spacecraft masses are assumed to be small relative

to the mass of the Earth Me, so µ ≈ GMe. By using the true

anomaly ν of the leader spacecraft, and denoting relative
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velocity as v = ṗ, we obtain the nonlinear position dynamics

represented in the F l frame on the form (cf. [6],[15])

m f v̇+Ct (ν̇)v+Dt (ν̇, ν̈,r f )p+nt (rl ,r f ) = Fa +Fd (9)

where

Ct (ν̇) = 2m f ν̇





0 −1 0

1 0 0

0 0 0



 ∈ SS (3) (10)

is a skew-symmetric Coriolis-like matrix,

Dt (ν̇, ν̈,r f )p = m f









µ

r3
f

− ν̇2 −ν̈ 0

ν̈ µ

r3
f

− ν̇2 0

0 0
µ

r3
f









p (11)

may be viewed as a time-varying potential force, and

nt (rl ,r f ) = m f µ

[

rl

r3
f

−
1

r2
l

0 0

]⊤

. (12)

The composite disturbance force Fd and the relative control

force Fa are given by

Fd = fd f −
m f

ml

fdl Fa = fa f −
m f

ml

fal . (13)

D. Relative Rotation

The time derivative of a matrix Ra
b as in (4) can according

to [11] be written as

Ṙa
b = S

(

ωa
a,b

)

Ra
b = Ra

bS
(

ωb
a,b

)

(14)

where ωb
a,b is the angular velocity of frame b relative

to frame a represented in frame b and S(·) is the cross

product operator described in (6). The kinematic differential

equations for a spacecraft in its orbit frame can be found

from (14) together with (4) as

q̇s = T(qs)ωsb
s,sb, T(qs) =

1

2

[

−εT
s

ηsI+S(εs)

]

(15)

where ωsb
s,sb is the angular velocity of the spacecraft body

frame relative to the orbit frame, referenced in the body

frame. Moreover, with the assumptions of rigid body move-

ment, the dynamical model of a spacecraft can be found from

Euler’s momentum equation as [16]

Jsω̇
sb
i,sb =−S

(

ωsb
i,sb

)

Jsω
sb
i,sb + τsb

ds + τsb
as (16)

ωsb
s,sb =ωsb

i,sb +ωoc2 (17)

where Js is the spacecraft inertia matrix and ωsb
i,sb is the

angular velocity of the spacecraft body frame relative to the

inertial frame, expressed in the body frame. The parameter

ωo is the orbit angular velocity, τsb
d is the disturbance torque,

τsb
a is the actuator torque, and c2 is the directional cosine

vector from (4).

Further, by expressing the relations in (15) and (16)-(17)

for both the leader and the follower spacecraft, and utilising

the quaternion product defined in [11] as

q = q f ⊗ q̄l ,

[

η f ηl + εT
f εl

ηlε f −η f εl −S(ε f )εl

]

(18)

the relative attitude kinematics can be expressed as [17]

q̇ =

[

η̇
ε̇

]

= T(q)ω, ω = ω
f b
i, f b −R

f b
lb ωlb

i,lb (19)

where ω is the relative angular velocity between the leader

body reference frame and the follower body reference frame.

Moreover, from (19) the relative attitude dynamics can be

expressed as

J f ω̇ =J f ω̇
f b
i, f b −J f Ṙ

f b
lb ωlb

i,lb −J f R
f b
lb ω̇lb

i,lb

=J f ω̇
f b
i, f b −J f S

(

ω
f b
i,lb

)

ω−J f R
f b
lb ω̇lb

i,lb (20)

where (14) and the facts that ω
f b
lb, f b = ω and S(a)b =

−S(b)a have been used. Insertion of (16), evaluated for both

the leader and follower, into (20) results in (cf. [15])

J f ω̇+Cr (ω)ω+nr (ω) = ϒd +ϒa (21)

where

Cr (ω) = J f S
(

R
f b
lb ωlb

i,lb

)

+S
(

R
f b
lb ωlb

i,lb

)

J f

−S
(

J f

(

ω+R
f b
lb ωlb

i,lb

))

(22)

is a skew-symmetric matrix, Cr (ω) ∈ SS (3),

nr (ω) = S
(

R
f b
lb ωlb

i,lb

)

J f R
f b
lb ωlb

i,lb

−J f R
f b
lb J−1

l S
(

ωlb
i,lb

)

Jlω
lb
i,lb (23)

is a nonlinear term, and

ϒd = τ
f b
d f −Jf R

f b
lb J−1

l τlb
dl , ϒa = τ

f b
a f −Jf R

f b
lb J−1

l τlb
al (24)

are the relative disturbance torques and relative actuator

torques, respectively.

E. Total Model

To write the total 6DOF model of relative translation and

rotation in the spacecraft formation, define the state vectors

x1 =
[

p⊤ q⊤
]⊤

and x2 =
[

v⊤ ω⊤
]⊤

. (25)

Based on (9) and (21), the total model of the relative

translational and rotational motion between the leader and

the follower spacecraft can now be expressed

ẋ1 = Λ(x1)x2 (26)

Mf ẋ2+C(ν̇,ω)x2+D(ν̇, ν̈,rf)x1+n(ω,rl ,rf) = U+W (27)

where

M f =

[

m f I 0

0 J f

]

(28)

is a symmetric positive definite matrix containing the mass

and moments of inertia of the follower spacecraft,

Λ(x1) =

[

I 0

0 T(q)

]

(29)

is the coupling term between the first and second order

dynamics,

C(ν̇,ω) =

[

Ct (ν̇) 0

0 Cr (ω)

]

∈ SS (6) (30)
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is the skew-symmetric Coriolis-like matrix,

D(ν̇, ν̈,r f )x1 =

[

Dt (ν̇, ν̈,r f ) 0

0 0

]

x1 (31)

is the time-varying potential force term,

n(ω,rl ,r f ) =

[

nt (rl ,r f )
nr (ω)

]

(32)

is the composite nonlinear term, and finally

U =

[

Fa

ϒa

]

and W =

[

Fd

ϒd

]

(33)

contains the relative input forces and orbital perturbations,

respectively. The dynamical effect of orbital perturbations

on the spacecraft in the formation is a coupling of the

rotational and translational motion of the follower spacecraft.

Perturbing forces working on the follower are dependent

on its position, and especially its altitude. The resulting

torques due to these perturbing forces, which cause rotational

motion of the spacecraft, will thus also depend on the

position. Accordingly, the rotational motion is affected by

the translational motion. Similar, the effect of perturbing

forces due to atmospheric drag and solar radiation on the

translational motion is dependent on the orientation of the

spacecraft, varying with the size of the equivalent surface

area in the force direction. Therefore, the translational motion

of the follower spacecraft is affected by the rotational motion

of the spacecraft. The result of orbital perturbations is thus a

two way coupling in the model presented in (27). Also, use

of non-conservative actuators as thrusters, magnetic rods and

solar sails will in some actuator configurations cause both

rotational and translational spacecraft motion. For a more

detailed derivation of the 6DOF model, see [15].

III. CONTROLLER DESIGN

Having established the 6DOF mathematical model of rel-

ative translation and rotation in a leader-follower formation,

we now present a solution to the control problem. Equation

(27) can be interpreted as a ”mass-damper-spring” system

with an added nonlinear term, and the model has many sim-

ilarities with models of systems such as robot manipulators,

marine crafts and underwater vehicles (cf. [10], [18]). This

is convenient since automatic control theory for these types

of systems is highly developed.

A. Integrator Backstepping

The control problem is to design a controller that makes

the state x1 converge to and proceed to track a time-

varying smooth trajectory xd (t). The desired trajectory can

be specified as

xd1 =

[

pd

qd

]

xd2 =

[

vd

ωd

]

(34)

so that

ẋd1 = Λ(xd1)xd2 . (35)

Following the concept of the integrator backstepping design,

we define our first backstepping variable as

z1 =





p̃

1−|η̃|
ε̃



 (36)

where p̃ = p− pd is the translation error, and the rotation

error q̃ =
[

η̃ ε̃⊤
]⊤

is given from the quaternion product

q̃ = q⊗ q̄d =

[

ηηd + ε⊤εd

ηdε−ηεd −S(ε)εd

]

. (37)

Perfect trajectory tracking can be expressed as

x1 (t) = xd1 (t) ⇔ x̃1 (t) =

[

p̃

q̃

]

=





0

±1

0



 (38)

for all t ≥ 0. Following the notation in (15), it can be shown

that

˙̃q = T(q̃) ω̃ =
1

2

[

−ε̃⊤

η̃I+S(ε̃)

]

ω̃ (39)

with ω̃ = ω−ωd . Accordingly, the dynamics of the z1-system

can be expressed as

ż1 = G⊤ (x̃1) x̃2 (40)

where

G⊤ (x̃1) =





I 0

0 1
2

[

sgn(η̃) ε̃⊤

(η̃I+S(ε̃))

]



 (41)

and x̃2 = [ṽ, ω̃]. A virtual control input is now defined as

x̃2 = α1 + z2 (42)

where α1 is a stabilizing function and z2 is a new state

variable; Hence,

ż1 = G⊤ (x̃1)(α1 + z2) . (43)

It can be shown that

G(x̃1)z1 = 0 ⇔

[

p̃

sgn(η̃) ε̃

]

= 0 (44)

and the signum function sgn(x) is therefore defined nonzero

as

sgn(x) =

{

−1, x < 0

1, x ≥ 0
(45)

to avoid a singularity when η̃ = 0. A Lyapunov Function

Candidate (LFC) is chosen as

V1 =
1

2
z⊤1 z1 (46)

V̇1 =z⊤1 ż1 = z⊤1 G⊤ (x̃1)(α1 + z2) . (47)

Furthermore, the stabilizing function α1 is chosen as

α1 = −K1G(x̃1)z1 (48)
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where K1 = K⊤
1 > 0 is a feedback gain matrix. Inserting this

into the LFC in (47) yields

V̇1 = −z⊤1 G⊤K1Gz1 + z⊤1 G⊤z2 (49)

where the argument of the matrix G(x̃1) is left out for

readability. It should be noted that G⊤K1G is a symmetric

positive semidefinite matrix. The z1-system from (40) can be

written accordingly as

ż1 =G⊤ (α1 + z2) (50)

=−G⊤K1Gz1 +G⊤z2 . (51)

For the second step, (42) is differentiated to express the z2-

dynamics as

ż2 = ˙̃x2 − α̇1 (52)

= ẋ2 − ẋd2 − α̇1 (53)

and insertion of (27), with matrix arguments ignored for

readability, leaves

M f ż2 =M f ẋ2 −M f ẋd2 −M f α̇1 (54)

=U+W−Cx2 −Dx1 −n−M f ẋd2 −M f α̇1 . (55)

A second LFC can now be expressed as

V2 =V1 +
1

2
z⊤2 M f z2 (56)

and hence

V̇2 =V̇1 + z⊤2 J f ż2 (57)

=V̇1 + z⊤2 [U+W−Cx2−Dx1−n−Mf ẋd2−Mf α̇1] . (58)

Assume that the leader spacecraft is perfectly controlled in

its orbit, so that τlb
al = −τlb

dl and fal = −fdl . Assume also

that the disturbance vectors τ
f b
d f and fd f can be measured

or estimated. Then, choosing the actuator torque u f =

[f⊤a f , (τ
f b
a f )

⊤]⊤ as

u f =−K2z2 −Gz1 −w f +Cx2 +Dx1 +n

+M f ẋd2 +M f α̇1 (59)

where K2 = K⊤
2 > 0 is the feedback gain matrix for the z2-

system and w f = [f⊤d f , (τ
f b
d f )

⊤]⊤, leaves the LFC as

V̇2 =V̇1 + z⊤2 [−K2z2 −Gz1] (60)

=− z⊤1 G⊤K1Gz1 − z⊤2 K2z2 (61)

=−W (z1,z2) ≤ 0 (62)

and the closed-loop dynamics as

ż1 =−G⊤K1Gz1 +G⊤z2 (63)

M f ż2 =−K2z2 −Gz1 . (64)

B. Stability Properties

The stability properties of the closed loop system given by

(63)-(64) follows from (56) and (62). From (56) it is seen that

V2 (z1,z2) > 0, V2(0) = 0 and V2 (z1,z2)→∞ as (z1,z2)→∞.

Similarly, by (5) and (44) it can be shown that W (z1,z2) > 0

and W (0) = 0, and hence W (z1,z2) is positive definite. From

invoking standard Lyapunov theorems (cf. [19]), it follows

that both of the equilibrium points x̃1 = [0⊤ ± 1 0⊤]⊤ are

uniformly asymptotically stable (UAS), and it follows from

(38) that x1 (t)→ xd1 (t) as t →∞. Also, (42) and (48) implies

that x̃2 (t) → 0 as t → ∞.

Remark 1: If the first backstepping variable in (36) is

chosen as

z1 =





p̃

1− η̃
ε̃



 (65)

the equilibrium point x̃1 = [0⊤ 1 0⊤]⊤ will be UAS, while

x̃1 = [0⊤ −1 0⊤]⊤ will be unstable. Hence, the scalar part of

the quaternion must always be regulated to the stable point

where η̃ = 1, even if a rotation to the point where η̃ = −1

requires less power. A discussion concerning this can be

found in [20]. When both equilibrium points are UAS, the

relative attitude can be regulated to the closest equilibrium

point with respect to rotation path, which will imply less use

of energy.

Remark 2: We stress that the asymptotic stability prop-

erties for the equilibrium points are only local. Since the

unit quaternion parameter set is redundant, a given physical

attitude for a rigid body will have two mathematical rep-

resentations, where one of these includes a rotation of 2π
about an axis relative to the other. This is the advantage

that is exploited by our choice of backstepping variables,

to render both equilibrium points UAS, as mentioned in

Remark 1. Based on the physical nature of the problem, it

might be appealing to think that the equilibrium point set

x̃1 = [0⊤ ±1 0⊤]⊤ has global stability properties, but this is

however not the case. A discussion concerning this point can

be found in [21]. It is however noted that the lack of global

properties is a result of the attitude representation, and if the

same controller was derived for position tracking only, the

closed-loop system would have only one UGAS equilibrium

point.

Remark 3: The asymptotic stability property of the equi-

librium points is a result of the assumption of known distur-

bance vectors τ
f b
d f and fd f , and a perfectly controlled leader.

If this assumption is relaxed to unknown, but bounded,

disturbance vectors and leader motion, it can be shown that

the stability property will degenerate to uniform practical

asymptotic stability (cf. [22]). That is, the state errors in

the closed-loop system can be proved to converge from any

initial conditions to a ball in close vicinity of the origin in

a stable way, and this ball can be diminished arbitrarily by

increasing the gains in the control law.

Remark 4: Notably, an alternative choice of actuator input
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is

u f =−K2z2 −Gz1 −w f +C(xd2 +α1)+Dx1 +n

+M f ẋd2 +M f α̇1 (66)

which also yields the result (62). This is due to the fifth term

Cx2 in (59), which is added to remove the corresponding

term in (58). In (66) the term C(xd2 +α1) is used instead,

to add up with −Cx2 so that

z⊤2 [C(xd2 +α1)−Cx2] = −z⊤2 Cz2 = 0 (67)

since the matrix C is skew-symmetric.

Remark 5: Note that, besides reducing the length of the

rotation path, no attempt is made to minimize the fuel

consumption during the maneuver. The main point in this

paper is to show that standard controller design methods

developed for general nonlinear time-varying systems, and

specifically Euler-Lagrange systems, are straightforward to

use on our model formulation, and topics such as fuel

minimization/equalization, optimal rotation etc. are therefore

topics for further research.

C. Implementation

The control law given by (59) contains the expression α̇1

that involves time derivatives of the states, and this should

be avoided when the control law is implemented. A possible

solution is to use the model equations as a sort of smooth

differentiators, instead of differentiating the measurements

directly. The time differentiation of (48) can be performed

as

α̇1 = K1

[

Ġ(q̃)z1 +G(q̃) ż1

]

(68)

where ż1 can be found from (40). Moreover, Ġ(q̃) can be

expressed as

Ġ(q̃) =
∂G

∂η̃
˙̃η+

∂G

∂ε̃
˙̃ε =





0 0

0 1
2

[

sgn(η̃) ˙̃ε⊤

˙̃ηI+S
(

˙̃ε
)

]T



 . (69)

The expressions for ˙̃η and ˙̃ε in (39) can now be inserted to

remove the time differentiated states in the controller.

IV. SIMULATIONS

In this section, simulation results for a leader-follower

spacecraft formation are presented to illustrate the perfor-

mance of the presented control law. In the first three simu-

lations, the orbital perturbations are assumed to be perfectly

known or estimated based on measurements. In the fourth

simulation, orbital perturbations are uncompensated. In all

simulations, we have included aerodynamic drag and J2

gravity perturbations based on standard models presented in

e.g. [23], [24]. Both the leader and the follower spacecraft

have masses 100 kg, and moments of inertia given as I =
diag

{

4.350 4.3370 3.6640
}

kgm2. The leader space-

craft is assumed to follow an equatorial orbit with a perigee

altitude of 250 km and eccentricity e = 0.3, and the leader

body and orbit coordinate frames are perfectly aligned at all

times. The follower spacecraft is assumed to have available
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Fig. 2. Relative position and velocity
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Fig. 3. Relative attitude and angular velocity

continuous actuation in/about all body axes, with a maximum

force and torque of 0.2 N and 0.1 Nm, respectively, and the

controller gains K1 = diag{0.5, 0.5, 0.5, 0.05, 0.05, 0.05}
and K2 = diag{1, 1, 1, 4, 4, 4} have been used.

The initial relative positions and attitudes are standstill

at [0, − 10, 0] m and [−75◦, − 175◦, 70◦], respectively.

The latter corresponds to the quaternion values [−0.3772, −
0.4329, 0.6645, 0.4783]. The follower spacecraft is com-

manded to follow smooth sinusoidal trajectories around the

origin with velocity and angular velocity profiles

v∗(t) =[10co sin(cot), 20co cos(2cot), −15co sin(3cot)]⊤

ω∗(t) =

[

−co sin(2cot),
8

5
co sin(4cot),

4

5
co sin(2cot)

]⊤

where co = π
To

is a leader orbital period constant. A possible

scenario for this motion is in-orbit inspection, where the

follower moves in orbit around the leader.

A. Results

The simulation results for relative translation and rotation

in the spacecraft formation are presented in Figs. 2 and 3,

respectively, and the corresponding error plots are presented

in Fig. 4. As shown, both relative translation and rotation

converge asymptotically to the reference, and proceed to

track the desired trajectories. Note especially that the relative

attitude converges to the negative quaternion −qd , which
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Fig. 4. Position and velocity errors (left), and attitude and angular velocity
errors (right)

from our definition in (38) is a valid equilibrium point.

So based on the initial and desired attitude, the controller

chooses the negative of the desired quaternion as its reference

point, since this corresponds to the shortest rotation path.

This is a result of our choice of backstepping variables,

as mentioned in Remark 1. Fig. 5 shows the state errors
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Fig. 5. State errors with uncompensated perturbations

when orbital perturbations are left uncompensated, and the

practical stability property mentioned in Remark 3 is easily

detected. However, note that even though we do not com-

pensate for aerodynamic drag and J2 gravity perturbations,

the position and attitude errors are still kept within 0.01 m

and 0.01◦, respectively.

V. CONCLUSION

In this paper we have presented a 6DOF Euler-Lagrange

model formulation of relative translation and rotation in

a leader-follower spacecraft formation. To show the ap-

plicability of the model, we also presented a solution to

the problem of relative translational and rotational tracking,

using the concept of vectorial integrator backstepping. The

controller solution presented utilizes the quaternion repre-

sentation to achieve a shorter rotation path on commanded

attitude changes, and the equilibrium points in the closed-

loop system were proved to be uniformly asymptotically

stable. Finally, simulation results were presented the illustrate

the performance of the derived control law.
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