
Connectivity Preserving State Agreement for Multiple Unicycles

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos

Abstract— This paper presents a decentralized feedback con-
trol strategy that drives a system of multiple nonholonomic
kinematic unicycles to agreement, maintaining at the same time
the connectivity properties of the initially formed communica-
tion graph. The communication graph is created based on the
initial relative distances between the team members. The pro-
posed control law guarantees that if the communication graph
is initially connected, then it remains connected throughout the
closed loop system evolution. This is achieved via a control
design that renders the set of edges of the initially formed
communication graph positively invariant for the trajectories of
the closed loop system. The proposed nonholonomic control law
is discontinuous and time-invariant and tools from nonsmooth
stability theory and matrix theory are used to check the stability
of the overall system. The convergence properties are verified
through computer simulations.

I. I NTRODUCTION

Navigation of multi-agent systems is a topic that has
recently attracted researchers from both the robotics and
the control communities, due to the need for autonomous
control of more than one mobile robotic agents in the same
workspace. While most approaches in the past focused at
centralized planning ([16]), specific real-world applications
have lead researchers throughout the globe to turn their
attention to decentralized concepts. One such important
application is the field of micro robotics ([11]), where a team
of a potentially large number of autonomous micro robots
must cooperate in the sub micron level.

In this paper, the problem of rendezvous convergence for
a system of multiple nonholonomic unicycles in terms of
both position and orientation is considered. The rendezvous
problem has been extensively approached recently, address-
ing the control design issue from several perspectives. Recent
results include [21],[5],[25], [19],[15],[12]. In most cases,
linear models of motion are taken into account, while the
information exchange topology is considered both static and
dynamic, as well as bidirectional or unidirectional. A recent
review of the various approaches of the rendezvous problem
for linear models of motion is [23].

In previous work we proposed an agreement strategy for
multiple unicycles under static [6] and time-varying [7]
communication topology. The assumption that the commu-
nication graph remained connected was a necessary con-
dition for achieving agreement in [7]. An improved result
is obtained in the current paper. Specifically, we propose
a control strategy that guarantees that if the communication
graph, which is formed based on the initial relative distances
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between the team members, is connected, then it remains
connected throughout the closed loop system evolution. This
is achieved via a control design that renders the set of
edges of the initially formed communication graph positively
invariant for the trajectories of the closed loop system.
Connectivity preserving algorithms for multi-agent systems
with linear models of motion have recently been dealt with
in [13],[26],[20]. A comparison between the control design
of the current paper and our previous work [6],[7] can be
found in [8].

The proposed nonholonomic feedback law is discontin-
uous and time invariant, something expected, as nonholo-
nomic systems do not satisfy Brocketts necessary smooth
feedback stabilization condition [2]. These controllers have
in general better convergence properties than time-varying
ones. An experimental comparison between these two types
of controllers that supports our preference to time-invariant
strategies has appeared in [14], where the authors concluded
that time-varying controllers were too slow and oscillatory
for most practical cases. In contrast, time-invariant con-
trollers achieved a significantly better performance. A time-
varying control law for agreement of multiple unicycles was
presented in [17].

The rest of the paper is organized as follows: section II
describes the system and the problem that is treated in this
paper. Assumptions regarding the communication topology
between the agents are presented and modelled in terms of an
undirected graph. Section III begins with some background
on matrix and graph theory and nonsmooth analysis that is
used in the sequel and proceeds with the introduction of
the distributed nonsmooth time invariant feedback control
strategy that drives the multi-agent team to a common
configuration in the state space as well as the corresponding
stability analysis. Computer simulation results are included
in section IV while a summary of the results of this paper
is provided in section V.

II. SYSTEM AND PROBLEM DEFINITION

We consider a system ofN nonholonomic kinematic point
agents operating in the same workspaceW ⊂ R2. Let
qi = [xi, yi]T ∈ R2 denote the position of agenti and q =
[q1, . . . , qN ]T the stack vector of all agents positions. Each of
theN mobile agents has a specific orientationθi with respect
to the global coordinate frame. The orientation vector of the
agents is represented byθ = [θ1 . . . θN ]. The configuration of
each agent is represented bypi =

[
qi θi

] ∈ R2×(−π, π].
Agent motion is described by the following nonholonomic



kinematics:

ẋi = ui cos θi

ẏi = ui sin θi

θ̇i = ωi

, i ∈ N = [1, . . . , N ] (1)

whereui, ωi denote the translational and rotational velocity
of agenti, respectively. These are considered as the control
inputs of the multi-agent system.

The design objective is to construct feedback controllers
that lead the multi-agent system to rendezvous, i.e. all agents
should converge to a common point in the state space. Each
agent is assigned with a subsetNi of the rest of the team,
called agenti’s communication set, that includes the agents
with which it can communicate in order to achieve the
desired agreement objective. Inter-agent communication can
be encoded in terms of acommunication graph:

Definition 1: The communication graphG = {V, E} is
an undirected graph that consists of a set of verticesV =
{1, ..., N} indexed by the team members and (ii) a set of
edges,E = {(i, j) ∈ V × V |i ∈ Nj} containing pairs
of nodes that represent inter-agent communication specifi-
cations.

Furthermore, each agent has limited sensing capabilities
which are bounded within a cyclic area of specific radiusd
around the agent. This cyclic area is called the sensing zone,
while the parameterd the sensing radius of each agent.

In [7], we considered the case of varying interconnection
topology between the members of the unicycle team, while
the static case was dealt with in [6]. A necessary condition
for the validity of the agreement control design of [7] was
that the communication graph remained connected. In this
paper, we modify that control design in order to guarantee
that if the communication graph is initially connected, then it
remains connected until rendezvous is reached. In particular,
we show that the modified control design forces the agents
that are initially located within the sensing radius of an agent
to remain within this area for all time. In this way, no edges
are lost and the initially connected communication graph
remains connected for all time.

Hence in this paper, the setNi is now defined as the set
that agenti can sense when it is located at its initial position,
qi(0):

Ni = {j ∈ N , j 6= i : ‖qi(0)− qj(0)‖ < d} (2)

Each agent needs only knowledge of the state of agents
that belong to its communication set. Moreover, the com-
munication graph is undirected, in the sense thati ∈ Nj ⇔
j ∈ Ni, ∀i, j ∈ N , i 6= j. It is obvious that(i, j) ∈ E iff
i ∈ Nj ⇔ j ∈ Ni.

The control design is of the form

ui = ui (pi, pj)
ωi = ωi (pi, pj)

, j ∈ Ni, i ∈ N (3)

copying in this way with the limited communication capa-
bilities of each agent. The problem treated in this paper can
now be stated as follows: “under the preceding assumptions,
derive a set of distributed control laws of the form (3) that

drives the team of agents from any initial configuration to a
common configuration in the state space”.

III. C ONTROL DESIGN AND STABILITY ANALYSIS

A. Tools from Matrix Theory

In this subsection we review some tools from graph theory
and matrix analysis that we shall use in the stability analysis
of the proposed control framework. The following analysis
on graph theory can be found in [1], while the elements from
matrix analysis in [10],[18].

For an undirected graphG = (V, E) with n vertices we
denote byV its set of vertices and byE its set of edges. If
there is an edge connecting two verticesi, j, i.e. (i, j) ∈ E,
theni, j are calledadjacent. A pathof lengthr from a vertex
i to a vertexj is a sequence ofr+1 distinct vertices starting
with i and ending withj such that consecutive vertices are
adjacent. If there is a path between any two vertices of the
graphG, thenG is calledconnected(otherwise it is called
disconnected).

Theundirected graphG = (V, E) corresponding to a real
symmetricn×n matrix M is a graph withn vertices indexed
by 1, . . . , n such that there is an edge between verticesi, j ∈
V if and only if Mij 6= 0, i.e. (i, j) ∈ E ⇔ Mij 6= 0.

A n × n real symmetric matrix with non-positive off-
diagonal elements and zero row sums is called asymmetric
Metzlermatrix. It is shown in [18] that all the eigenvalues of
a symmetric Metzler matrix are non-negative and zero is a
trivial eigenvalue. The multiplicity of zero as an eigenvalue
of a symmetric Metzler matrix is one (i.e. it is a simple
eigenvalue) if and only if the corresponding undirected
graph is connected. The trivial corresponding eigenvector
is the vector of ones,

−→
1 . This result has been used in

the proof of the consensus algorithm for single integrator
kinematic agents presented in [19]. Its usefulness in the
present framework is verified in the sequel.

B. Tools from Nonsmooth Analysis

In this subsection, we review some elements from nons-
mooth analysis and Lyapunov theory for nonsmooth systems
that we use in the stability analysis of the next section.

For a differential equation with discontinuous right-hand
side we have the following definition:

Definition 2: [9] In the case when the state-space is finite
dimensional, the vector functionx(.) is called aFilippov
solution of ẋ = f(x) if it is absolutely continuous anḋx ∈
K[f ](x) almost everywhere where

K[f ](x) ≡ co{ lim
xi→x

f(xi)|xi /∈ N}
whereN is a set of measure zero.

Lyapunov stability theorems have been extended for nons-
mooth systems in [24],[3]. The following chain rule provides
a calculus for the time derivative of the energy function in
the nonsmooth case:

Theorem 1:[24] Let x be a Filippov solution tȯx = f(x)
on an interval containingt andV : Rn → R be a Lipschitz



and regular function. ThenV (x(t)) is absolutely continuous,
(d/dt)V (x(t)) exists almost everywhere and

d

dt
V (x(t)) ∈a.e. ˙̃

V (x) :=
⋂

ξ∈∂V (x(t))

ξT K[f ](x(t))

where “a.e.” stands for “almost everywhere”.
In this theorem,∂V is Clarke’s generalized gradient. The

definition of the generalized gradient and of theregularity
of a function can be found in [4]. In the case we encounter
in this paper, the candidate Lyapunov functionV we use is
smooth and hence regular, while its generalized gradient is
a singleton which is equal to its usual gradient everywhere
in the state space:∂V (x) = {∇V (x)}∀x ∈ Rn.

We shall use the following nonsmooth version of LaSalle’s
invariance principle to prove the convergence of the pre-
scribed system:

Theorem 2:[24] Let Ω be a compact set such that
every Filippov solution to the autonomous systeṁx =
f(x), x(0) = x(t0) starting inΩ is unique and remains inΩ
for all t ≥ t0. Let V : Ω → R be a time independent regular

function such thatv ≤ 0∀v ∈ ˙̃
V (if ˙̃

V is the empty set then

this is trivially satisfied). DefineS = {x ∈ Ω|0 ∈ ˙̃
V }. Then

every trajectory inΩ converges to the largest invariant set,M ,
in the closure ofS.

C. Control Law and Stability Analysis

Existence of an edge between agentsi and j is now
reflected in the following attractive potential:

δij (βij) =
{ a3

d2−βij
, µ < βij < d2

a4βij , 0 ≤ βij ≤ µ

whereβij
∆= ‖qi − qj‖2 the squared norm of the Euclidean

distance of agentsi, j. The parameters ofδij are chosen so
that it is continuously differentiable for allβij < d2. It is
easily derived that this is fulfilled provided that

d2 = 2µ, a3 = a4µ
2

Figure 1 shows a plot of the functionδij with respect toβij

for d2 = 0.00067.
The total attractive potential of agenti is given by

δi =
∑

j∈Ni

δij (βij)

The gradient with respect toq and the partial derivative of
δij with respect toqi are computed by

∇δij = 2pijDijq,
∂δij

∂qi
= 2pij (Dij)i q

where

pij
∆=

∂δij

∂βij
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Fig. 1. The functionδij d2 = 0.00067.

and the matricesDij ,(Dij)i, for i < j, can be shown to be
given by

Dij =


O(i−1)×N

O1×(i−1) 1 O1×(j−i−1) −1 O1×(N−j)

O(j−i−1)×N

O1×(i−1) −1 O1×(j−i−1) 1 O1×(N−j)

O(N−j)×N



⊗ I2

and

(Dij)i =[
O1×(i−1) 1 O1×(j−i−1) −1 O1×(N−j)

]⊗ I2

The definition of the matricesDij ,(Dij)i, for i > j is
straightforward.

Define now

δ =
∑

i

δi =
∑

i

∑

j∈Ni

δij (βij)

Taking the gradient ofδ with respect toq we get

∇δ =
∑
i

∑
j∈Ni

∇δij = 2

(
∑
i

∑
j∈Ni

pijDij

)
q =

= 4 (P ⊗ I2) q

where theN ×N matrix P is easily shown to be given by

Pij =





∑
j∈Ni

pij , j = i

−pij , j ∈ Ni, i 6= j
0, j /∈ Ni

The previous result was derived based on the following
symmetry property:

pij = pji, ∀j ∈ Ni

We also have
∂δi

∂qi
=

∑

j∈Ni

∂δij

∂qi
,



and an easy calculation yields




∂δ1
∂q1
...

∂δN

∂qN


 =




∑
j∈N1

∂δ1j

∂q1

...∑
j∈NN

∂δNj

∂qN




= −2 (P ⊗ I2) q

In the analysis that follows, we use the decoupling of the
stack vectorq = [x, y]T into the coefficients that correspond
to thex, y directions of the agents respectively. Furthermore,
the notation(a)i for a vectora, denotes itsi-th element.

We propose the following discontinuous time-invariant
feedback control strategy for each agenti:

ui = −sgn {δxi cos θi + δyi sin θi} ·
(
δ2
xi + δ2

yi

)1/2
(4)

ωi = − (θi − θnhi
) (5)

where

δxi = ∂δi

∂xi
= (2Px)i = 2

∑
j∈Ni

pij (xi − xj),

δyi = ∂δi

∂yi
= (2Py)i = 2

∑
j∈Ni

pij (yi − yj)

and
θnhi = arctan 2 (δyi, δxi)

We use the continuously differentiable positive definite
function W = δ as a candidate Lyapunov function.

Since the proposed control law is discontinuous we use
the concept of Theorem 1 for the time derivative of the
candidate Lyapunov function. SinceW is smooth we have
∂W = {∇W} = {∇δ}, so that

˙̃
W =

{∑
i

(∇δi)
T

}
·K




u1 cos θ1

u1 sin θ1

...
uN cos θN

uN sin θN



⊂

4qT (P ⊗ I2)




K [u1] cos θ1

K [u1] sin θ1

...
K [uN ] cos θN

K [uN ] sin θN



⊂

⊂ 4 (Px)T




K [u1] cos θ1

...
K [uN ] cos θN


 +

+4 (Py)T




K [u1] sin θ1

...
K [uN ] sin θN


 ⊂

⊂ ∑
i

{4K [ui] ((Px)i cos θi + (Py)i sin θi)}

where we used Theorem 1.3 in [22] to calculate the in-
clusions of the Filippov set in the previous analysis. Since
K [sgn(x)] x = {|x|}([22],Theorem 1.7), the choice of
control laws (4),(5) results in

˙̃
W = −

∑

i

{
8 |δxi cos θi + δyi sin θi|

(
δ2
xi + δ2

yi

)1/2
}
≤ 0

so that the generalized derivative ofW reduces to a singleton.
The last equation implies thatW is non-increasing across
the trajectories of the closed loop system, i.e.W (q(t)) ≤
W (q(0)) for all t ≥ 0.

The first result of this paper involves the invariance of the
initially formed communication graph:

Lemma 3:Consider the system of multiple kinematic
unicycles (1) driven by the control law (4),(5). The set
J (q) = {q| ‖qi − qj‖ ≤ d,∀ (i, j) ∈ E} is invariant for the
trajectories of the closed loop system.
Proof: For every initial conditionq(0) ∈ J (q), we have
W (q(t)) ≤ W (q(0)) < ∞ for all t ≥ 0. SinceW → ∞
when ‖qi − qj‖ → d for at least one pair(i, j) ∈ E, we
conclude thatq(t) ∈ J (q), for all t ≥ 0. ♦

This control law guarantees that the initial set of edges,
created under (2), remains invariant during the evolution of
the closed loop system. Hence no edges are lost and no new
ones are created, even when an agent, not initially located in
the sensing zone of another, enters in this area at some time
t > 0. The setsNi initially formed remain constant as the
system evolves.

We now state the main result of this paper:
Theorem 4:Assume that the communication graph

formed under the initial condition ruling (2) is connected.
Then the discontinuous time-invariant feedback control strat-
egy (4),(5) drives the agents to a common configuration in
the state space.
Proof: The level sets ofW are compact and invariant
with respect to the relative positions of adjacent agents.
Specifically, the setΩc = {q : W (q) ≤ c} for c > 0 is
closed by the continuity ofW . For all (i, j) ∈ E we have

W ≤ c ⇒ δij ≤ c ⇒ ‖qi − qj‖ ≤
√

δ−1
ij (c). Connectivity

of the initially formed communication graph guarantees that
every pairi, j of agents satisfies‖qi − qj‖ ≤ (N − 1) δ−1

max,

where δ−1
max

∆= max
(i,j)∈E

√
δ−1
ij (c). Therefore, the setΩc is

also bounded with respect to the relative positions of agents
in the group. Hence for all initial conditions satisfying
‖qi (0)− qj (0)‖ < d, ∀ (i, j) ∈ E we can apply (the
nonsmooth version of) LaSalle’s invariance principle.

By the nonsmooth version of LaSalle’s invariance princi-
ple (Theorem 2), the trajectories of the system converge to
the largest invariant set contained in the set

S =
{

(δxi = δyi = 0) ∨ (δxi cos θi + δyi sin θi = 0) ,
∀i ∈ N

}

However, for eachi ∈ N , we have |ωi| = π
2 when-

ever δxi cos θi + δyi sin θi = 0, due to the proposed angular
velocity control law. In particular, this choice of angular
velocity renders the surfaceδxi cos θi + δyi sin θi = 0 non-
invariant for agenti, wheneveri is not located at the desired
equilibrium, namely whenδxi = δyi = 0. Hence the largest
invariant setSo contained inS is

S ⊃ So = {δxi = δyi = 0, ∀i ∈ N}
In addition (δxi = δyi = 0) ∀i guarantees that the agents
converge to a common configuration. This is easily derived



by the fact that

(δxi = δyi = 0) ∀i ⇒ (P ⊗ I2) q = 0 ⇒ Px = Py = 0

where x, y the stack vectors ofq in the x, y directions.
Within So, the closed loop equations for the orientations
have the formθ̇i = −θi for all i, and hence the orientations
of all agents tend to zero. The symmetric matrixP has
zero row sums and non-positive off-diagonal elements. Using
the same arguments and terminology as in [19], the matrix
P is a Metzler matrix. As mentioned in Section IIIA, the
eigenvalues ofP are nonnegative and zero is the smallest
eigenvalue. Following [19], we deduce that since the initially
formed communication graph is connected, zero is a simple
eigenvalue ofP with trivial corresponding eigenvector the
vector of ones,

−→
1 . Hence equationsPx = Py = 0 guarantee

that bothx, y are eigenvectors ofP belonging to span{−→1 }.
Hence allqi tend to the same value, implying that all agents
converge to a common configuration at steady state.♦

Remark: It must be stressed out that the proposed feedback
control strategy (4),(5) is purelydecentralized, since each
agent requires information only of the states of agents within
its initially formed communication setNi. This control law
guarantees that the initial set of edges, created under (2),
remains invariant during the evolution of the closed loop
system. Hence no edges are lost and no new ones are created,
even when an agent, not initially located in the sensing zone
of another, enters in this area at some timet > 0. The sets
Ni initially formed remain constant as the system evolves.

IV. SIMULATIONS

To support the results of the previous paragraphs we
provide a computer simulation of the proposed control frame-
work (4),(5).

The simulation involves a team of six unicycles with
controller parametersa4 = 1, d2 = 7.5 · 10−3. The initial
conditions for the six unicycles are given by

p1 =
[ −0.05 0.05 π/3

]T
,

p2 =
[ −0.1 −0.05 π/3

]T
,

p3 =
[ −0.08 0.06 −π/4

]T
,

p4 =
[ −0.1 0 −3π/8

]T
,

p5 =
[

0 −0.05 3π/8
]T

,

p6 =
[

0.1 0.12 −7π/8
]T

Please note that although the initially formed communication
graph is connected, connectivity is lost if we apply the
control design of [7]. In this case however, agreement is
successfully achieved due to the connectivity invariance of
the initially formed communication graph, as imposed by
the control design of this paper. Screenshots I-V of Figure
2 show the evolution in time of the six unicycles under
the proposed control strategy (4),(5). In the first screenshot,
the agents are located at their initial positions. The pairs of
agents that form edges in the initially formed communication
graph are connected with a black line. Agents reach a
rendezvous point in the last screenshot V. A plot of the cost
functionsδi for each agent is shown in Figure 3.
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Fig. 2. Convergence to a common configuration for the six unicycles.
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Fig. 3. Cost Functionsδi for the six nonholonomic agents.

V. CONCLUSIONS

We presented a decentralized feedback control strategy
that drives a system of multiple nonholonomic kinematic
unicycles to agreement and maintains at the same time the
connectivity properties of the initially formed communica-
tion graph. The communication graph is created based on the
initial relative positions between the team members. The pro-
posed control law guarantees that if the communication graph
is initially connected, then it remains connected throughout
the closed loop system evolution. This is achieved via a con-
trol design that renders the set of edges of the initially formed
communication graph positively invariant for the trajectories
of the closed loop system. The proposed nonholonomic



control law is discontinuous and time-invariant and tools
from nonsmooth stability theory and matrix theory are used
to check the stability of the overall system. The convergence
properties are verified through computer simulations.

Current research aims at taking into account the case of
directed graphs. In addition, although the proposed control
law is edge preserving, it does not take into account new
agents entering the sensing zone of an agent, i.e. it does
not allow for new edges to be created in the communication
graph. Although new edge addition does not alter the conver-
gence properties of the proposed scheme, it would improve
the convergence rate and hence is a worthwhile research
direction.
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