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Abstract— This paper presents a decentralized feedback con- between the team members, is connected, then it remains
trol strategy that drives a system of multiple nonholonomic  connected throughout the closed loop system evolution. This
kinematic unicycles to agreement, maintaining at the same time is achieved via a control design that renders the set of

the connectivity properties of the initially formed communica- — L I,
tion graph. The communication graph is created based on the edges of the initially formed communication graph positively

initial relative distances between the team members. The pro- invariant for the trajectories of the closed loop system.
posed control law guarantees that if the communication graph Connectivity preserving algorithms for multi-agent systems
is initially connected, then it remains connected throughout the with linear models of motion have recently been dealt with
closed loop system evolution. This is achieved via a control in [13],[26],[20]. A comparison between the control design

design that renders the set of edges of the initially formed f th t d . K 16117 b
communication graph positively invariant for the trajectories of ~ ©f th€ current paper and our previous work [6],[7] can be

the closed loop system. The proposed nonholonomic control law found in [8].
is discontinuous and time-invariant and tools from nonsmooth The proposed nonholonomic feedback law is discontin-
stability theory and matrix theory are used to cheqk the stabil?ty uous and time invariant, something expected, as nonholo-
31]‘ the overall system. Th(_e convergence properties are verified nomic systems do not satisfy Brocketts necessary smooth
rough computer simulations. s o
feedback stabilization condition [2]. These controllers have
|. INTRODUCTION in general better convergence properties than time-varying
Navigation of multi-agent systems is a topic that hagnes. An experimental comparison between these two types
recently attracted researchers from both the robotics a®d controllers that supports our preference to time-invariant
the control communities, due to the need for autonomowrategies has appeared in [14], where the authors concluded
control of more than one mobile robotic agents in the sanifat time-varying controllers were too slow and oscillatory
workspace. While most approaches in the past focused far most practical cases. In contrast, time-invariant con-
centralized planning ([16]), specific real-world applicationgrollers achieved a significantly better performance. A time-
have lead researchers throughout the globe to turn thefarying control law for agreement of multiple unicycles was
attention to decentralized concepts. One such importaptesented in [17].
application is the field of micro robotics ([11]), where a team The rest of the paper is organized as follows: section Il
of a potentially large number of autonomous micro robotdescribes the system and the problem that is treated in this
must cooperate in the sub micron level. paper. Assumptions regarding the communication topology
In this paper, the problem of rendezvous convergence foietween the agents are presented and modelled in terms of an
a system of multiple nonholonomic unicycles in terms ofindirected graph. Section Il begins with some background
both position and orientation is considered. The rendezvoe®s matrix and graph theory and nonsmooth analysis that is
problem has been extensively approached recently, addreased in the sequel and proceeds with the introduction of
ing the control design issue from several perspectives. Recehe distributed nonsmooth time invariant feedback control
results include [21],[5],[25], [19],[15],[12]. In most cases,strategy that drives the multi-agent team to a common
linear models of motion are taken into account, while theonfiguration in the state space as well as the corresponding
information exchange topology is considered both static argtability analysis. Computer simulation results are included
dynamic, as well as bidirectional or unidirectional. A recenin section IV while a summary of the results of this paper
review of the various approaches of the rendezvous probleig provided in section V.
for linear models of motion is [23].
In previous work we proposed an agreement strategy for
multiple unicycles under static [6] and time-varying [7] Il. SYSTEM AND PROBLEM DEFINITION
communication topology. The assumption that the commu-
nication graph remained connected was a necessary conYVe consider a system @f nonholonomic kinematic point
dition for achieving agreement in [7]. An improved result2gents operating in the same workspdée C R*. Let
is obtained in the current paper. Specifically, we proposg = [z:,y:]" € R* denote the position of agentand ¢ =
a control strategy that guarantees that if the communicatidfii: - - -»¢n]" the stack vector of all agents positions. Each of

graph, which is formed based on the initial relative distance§€ N mobile agents has a specific orientatibmwith respect
to the global coordinate frame. The orientation vector of the
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kinematics: drives the team of agents from any initial configuration to a

iy = u; cos b, common configuration in the state space

yi;uisinei ,iGN:[17'~'aN] (1)

0. — I11. CONTROL DESIGN AND STABILITY ANALYSIS
1T K3

whereu;,w; denote the translational and rotational velocity®- Tools from Matrix Theory

of agenti, respectively. These are considered as the control |, this subsection we review some tools from graph theory
inputs of the multi-agent system. and matrix analysis that we shall use in the stability analysis
The design objective is to construct feedback controllergf the proposed control framework. The following analysis
that lead the multi-agent system to rendezvous, i.e. all agem§ graph theory can be found in [1], while the elements from
should converge to a common point in the state space. Eagfatrix analysis in [10],[18].
agent is assigned with a subs¥t of the rest of the team,  For an undirected grapg = (V, E) with n vertices we
called agent’s communication sethat includes the agents genote by its set of vertices and by its set of edges. If
with which it can communicate in order to achieve thgnere is an edge connecting two vertiges, i.e. (i,) € E,
desired agreement objective. Inter-agent communication Cgfen;, ; are calledadjacent A pathof lengthr from a vertex
be encoded in terms of @mmunication graph i to a vertex;j is a sequence of+1 distinct vertices starting
Definition 1: The communication graptg = {V, E} is  with ; and ending withj such that consecutive vertices are
an undirected graph that consists of a set of vertices:  agjacent. If there is a path between any two vertices of the
{1,.., N} indexed by the team members and (i) a set ofraphg, theng is called connected(otherwise it is called
edges,E = {(i,j) € V x V|i € N;} containing pairs gisconnectey
of nodes that represent inter-agent communication specifi- The yndirected graptg = (V, E) corresponding to a real
cations. symmetrica x n matrix M is a graph withn vertices indexed

Furthermore, each agent has limited sensing capabilitigg 1 ., such that there is an edge between verticgs:
which are bounded within a cyclic area of specific radius v/ it and only if M;; #0, i.e. (i,j) € E < M;; # 0.

around the agent. This cyclic area is called the sensing zone,y ,, « ,, real symmetric matrix with non-positive off-

while the parameted the sensing radius of each agent.  giagonal elements and zero row sums is calleymmetric

In [7], we considered the case of varying interconnectiofyetz|ermatrix. It is shown in [18] that all the eigenvalues of
topology between the members of the unicycle team, whilg oy mmetric Metzler matrix are non-negative and zero is a

the static case was dealt with in [6]. A necessary conditioyia| eigenvalue. The multiplicity of zero as an eigenvalue
for the validity of_the. agreement con_trol design of [7] WaSt 5 symmetric Metzler matrix is one (i.e. it is a simple

that the communication graph remained connected. In thiggenvalue) if and only if the corresponding undirected
paper, we modify that control design in order to guarant€g oy, s connected. The trivial corresponding eigenvector
that if the communication graph is initially connected,thenlS the vector of ones1. This result has been used in

remains connected unt_il_rendezvous is _reached. In particulgt,, proof of the consensus algorithm for single integrator
we show that the modified control design forces the agengs . \-+ic agents presented in [19]. Its usefulness in the

that are.|n|t|gll)_/ Iocgted within the.sensmg r_ad|us of an agegfresent framework is verified in the sequel.
to remain within this area for all time. In this way, no edge

are I(_)st and the initially c_onnected communication grapg. Tools from Nonsmooth Analysis
remains connected for all time.
Hence in this paper, the séf; is now defined as the set In this subsection, we review some elements from nons-

that agent can sense when it is located at its initial positionmooth analysis and Lyapunov theory for nonsmooth systems
:(0): that we use in the stability analysis of the next section.

For a differential equation with discontinuous right-hand
Ni={jeN,j#i:[a(0)—q0)<d} (2 side we have the following definition:

Each agent needs only knowledge of the state of agentsDefinition 2: [9] In the case when the state-space is finite
that belong to its communication set. Moreover, the conflimensional, the vector function(.) is called aFilippov
munication graph is undirected, in the sense thatN; < solutionof & = f(x) if it is absolutely continuous and €
j € Ni,Vi,j € N,i # j. It is obvious that(i, ) € E iff K[f](x) aimost everywhere where
i€ Nj &g € N;.

The control design is of the form K{f)(z) = @{ml,;iglmf(xi)‘xi £ N}
where N is a set of measure zero.
i = i (pi,p;) JEN,ieN 3) Lyapunov stability theorems have been extended for nons-
w; = w; (pi, pj) mooth systems in [24],[3]. The following chain rule provides

copying in this way with the limited communication capa-a calculus for the time derivative of the energy function in
bilities of each agent. The problem treated in this paper cdhe nonsmooth case:

now be stated as followsuhder the preceding assumptions, Theorem 1:[24] Let = be a Filippov solution ta: = f(x)
derive a set of distributed control laws of the form (3) thabn an interval containing andV : R" — R be a Lipschitz



and regular function. Thel (z(t)) is absolutely continuous, g 110
(d/dt)V(x(t)) exists almost everywhere and '

d -
2V (@(t) € V(z) := N €"K[f() 3s| 1
£edV (x(t)) sl |
where “a.e.” stands for “almost everywhere”.
In this theorempV is Clarke’s generalized gradienthe 251 ]
definition of the generalized gradient and of tiegularity ol ,

of a function can be found in [4]. In the case we encounter
in this paper, the candidate Lyapunov functignwe use is

smooth and hence regular, while its generalized gradient is 1l ,
a singleton which is equal to its usual gradient everywhere

15F 1

05} i

in the state spacéV (z) = {VV (z)}Vz € R™. d
We shall use the following nonsmooth version of LaSalle’s 05 n P L . = L 7
invariance principle to prove the convergence of the pre- <10
scribed system:
Theorem 2:[24] Let Q2 be a compact set such that Fig. 1. The function;; d* = 0.00067.

every Filippov solution to the autonomous system=

f(z),z(0) = z(tp) starting in{2 is unique and remains if2

for all t > #o. LetV : Q — R be a time independent regular and the matriced;;,(D;;);, for i < j, can be shown to be
function such thab < 0vv € V(if V' is the empty set then 91Ven by

this is trivially satisfied). Defines = {z € 2|0 € V'}. Then D;j =

every trajectory irf2 converges to the largest invariant 8ét, O(i—1)xN

in the closure ofS. Oix(i-1) 1 Oixg-i—1y —1 Oixn—j
OG—i—1)xN ® Io

C. Control Law and Stability Analysis Oix(i-1 —1 Oixg-i-n 1 Oix—y
O(n—j)xN

Existence of an edge between agentsnd j is now and
reflected in the following attractive potential:
(Dij); =
515 (Big) = { Fop; H < Bij < d? [ Oix@-1) 1 Oixg—ic1) —1 Oixin—j) | ® 1
a4f3i5,0 < By < p The definition of the matricedD;;,(D;;);, for i > j is
straightforward.

where 3; 2 llg: — qj||2 the squared norm of the Euclidean Define now

distance of agents j. The parameters af;; are chosen so

that it is continuously differentiable for afb;; < d2. It is = "0i=> > 6;(B)
easily derived that this is fulfilled provided that i i JEN;

Taking the gradient of with respect tog we get
d2 = 2“70‘3 = a4,U/2
: . . = =9 D, -
Figure 1 shows a plot of the functiai; with respect ta3;; Vo ;JEZ]:V Vi <Xl:]§v Pij ”) ¢
for d? = 0.00067. =4(P®l)q

The total attractive potential of agenis given b . . . .
P 9 g Y where theN x N matrix P is easily shown to be given by

5= 6i; (Bi) > pij.j =i
JEN; P. = JEN; . . .
o _p7j7.]€Nla7‘7é]
The gradient with respect tg and the partial derivative of 0,j ¢ Ni

0;j with respect tag; are computed by The previous result was derived based on the following

symmetry property:

006,
Véi; = 2pi;Dija, =% = 2pi; (Dij); q

0¢q; Pij = Pji> Y € N;
where We also have
a0 00; _ 5~ 00y
Pij = aﬂij 8%’ JEN; 8(]7?



and an easy calculation yields so that the generalized derivativeldf reduces to a singleton.

961, The last equation implies thal’ is non-increasing across
% jg;vl 01 the trajectories of the closed loop system, ¥E(q(t)) <
. _ : — 2(P®l)q W(q(o)? for all t > 0. ' . . .
o o _ _'I_'he first result of this paper involves the invariance of the
Ban > Dan initially formed communication graph:

JeNN Lemma 3:Consider the system of multiple kinematic

In the analysis that follows, we use the decoupling of thenicycles (1) driven by the control law (4),(5). The set
stack vector; = [, y]” into the coefficients that correspond 7(q) = {q| ||¢: — q;|| < d,¥ (i, ) € E} is invariant for the
to thex, y directions of the agents respectively. Furthermorerajectories of the closed loop system.

the notation(a); for a vectora, denotes its-th element. Proof: For every initial conditionq(0) € J(q), we have
We propose the following discontinuous time-invarianty (¢(t)) < W(q(0)) < oo for all t > 0. SinceW — oo
feedback control strategy for each agént when |¢; — ¢;|| — d for at least one paifi,j) € E, we

1/2 @ conclude thay(t) € J (¢), forall t > 0. &
This control law guarantees that the initial set of edges,
w; =—(0; —Opp,) (5) created under (2), remains invariant during the evolution of
the closed loop system. Hence no edges are lost and no new
ones are created, even when an agent, not initially located in
Ogi = gii = (2Pz); =2 GZJ:V pij (T — x5), the sensing zone of another, enters in this area at some time
. I t > 0. The setsN; initially formed remain constant as the
Oyi = gg: = (2Py), = 2j§vpij (yi —yj) system evolves. l Y
' We now state the main result of this paper:
Theorem 4:Assume that the communication graph
formed under the initial condition ruling (2) is connected.
We use the continuously differentiable positive definitelhen the discontinuous time-invariant feedback control strat-
function W = § as a candidate Lyapunov function. egy (4),(5) drives the agents to a common configuration in
Since the proposed control law is discontinuous we udfe state space.
the concept of Theorem 1 for the time derivative of thé’roof: The level sets ofif/ are compact and invariant
candidate Lyapunov function. Sind&® is smooth we have with respect to the relative positions of adjacent agents.

u; = —sgn {0 cos6; + 0,;sinb;} - (532” + 5;,)

where

and
O, = arctan 2 (8yi, 04;)

oW = {VW} = {Vd}, so that Specifically, the sef). = {¢ : W(q) < ¢} forc > 0'is
closed by the continuity ofV’. For all (i,j) € E we have
uq cos 01 . -
uy sin 6, W <ce= 65 <c=llg—ql <4/d; (c). Connectivity
o T ) of the initially formed communication graph guarantees that
W=<¢>(Vd) ;- K : C
7 ! : 0 every pairi, j of agents satisfieg; — ¢;|| < (N — 1) 6.2,
uN Costvn -1 A 1 .
wn sin O whered .. = (%??E’/dij (¢). Therefore, the sef). is
K [ui] cos 0 also bounded with respect to the relative positions of agents
K [uq] sin 6, in the group. Hence for all initial conditions satisfying
4g" (P& L) : c la: (0) = 4; (O)]| < d,¥(i,j) € E we can apply (the

nonsmooth version of) LaSalle’s invariance principle.

By the nonsmooth version of LaSalle’s invariance princi-
ple (Theorem 2), the trajectories of the system converge to
the largest invariant set contained in the set

S _ (511 = (5y1 = O) \Y (511 COS 91 =+ 53” sin 91 = O) ,
B Vie N

K [un] cosOn
K [un]sinfy
K [uq] cos 64
c4(Px)” ; +
K [un] cosOn
K [uq] sin 64

4 (Py)” : c However, for eachi € N, we have|w;| = 7 when-
. everd,; cos 0; + 6y, sin; = 0, due to the proposed angular
K [un]sinfn velocity control law. In particular, this choice of angular

C > {4K [ui] ((Px); cosb; + (Py), sinb;)} velocity renders the surfacé,; cosf; + d,;sin; = 0 non-

invariant for agent, whenever; is not located at the desired

where we used Theorem 1.3 in [22] to calculate the i”équilibrium, namely wherd,; = §,; = 0. Hence the largest
clusions of the Filippov set in the previous analysis. SiNCgyariant setS, contained inS is

K [sgn(z)]z = {|=|}([22],Theorem 1.7), the choice of
control laws (4),(5) results in 5D S, ={bs =0, =0,Vi e N'}

W= — Z {8 16,45 8 0; + 0, sin ;] (62, + 52,)1/2} <o In addition (¢,; = d,; = 0) Vi guarantees that the agents
e B converge to a common configuration. This is easily derived

g



by the fact that ‘
((5;”‘:5?”‘:O)Vii(P®IQ>q:O:>P$:Py:0 - ” '
where z,y the stack vectors of; in the z,y directions. , , ( -

Within S,, the closed loop equations for the orientations
have the forn¥; = —6; for all i, and hence the orientations
of all agents tend to zero. The symmetric mat#x has Lo 7 J
zero row sums and non-positive off-diagonal elements. Usinn ! n

the same arguments and terminology as in [19], the matri g !

002

P is a Metzler matrix. As mentioned in Section llIA, the
eigenvalues ofP are nonnegative and zero is the smalles * H
eigenvalue. Following [19], we deduce that since the initially -
formed communication graph is connected, zero is a simp ::ﬁ

eigenvalue ofP_}with trivial corresponding eigenvector the
vector of ones,1 . Hence equation®x = Py =0 guara_n)tee
that bothz, y are eigenvectors aP belonging to spafl }.
Hence allg; tend to the same value, implying that all agents
converge to a common configuration at steady state.
Remark It must be stressed out that the proposed feedback
control strategy (4),(5) is purelgecentralized since each
agent requires information only of the states of agents within
its initially formed communication se¥;. This control law
guarantees that the initial set of edges, created under (2),
remains invariant during the evolution of the closed loop B ot ot o jw one annam o
system. Hence no edges are lost and no new ones are created,
even when an agent, not initially located in the sensing zonérig. 2. Convergence to a common configuration for the six unicycles.
of another, enters in this area at some titrie 0. The sets
N; initially formed remain constant as the system evolves.

0.06 004 002 o 008 008 -007 006 005 004 003 002 -001
i v

IV. SIMULATIONS

To support the results of the previous paragraphs we
provide a computer simulation of the proposed control frame-
work (4),(5).

The simulation involves a team of six unicycles with
controller parametera, = 1,d?> = 7.5 - 10~2. The initial
conditions for the six unicycles are given by

Cost Functions

pr=[-005 005 7/3]",

pa=[-01 —0.05 7/3]" s e

ps = —0.08 006 —m/4]", Time

Py = [ —0.1 0 _377/8 ]T» Fig. 3. Cost Functions; for the six nonholonomic agents.
ps=[0 —005 37/8]",

pe=[01 012 —7r/8 1"

Please note that although the initially formed communication
graph is connected, connectivity is lost if we apply the We presented a decentralized feedback control strategy
control design of [7]. In this case however, agreement ithat drives a system of multiple nonholonomic kinematic
successfully achieved due to the connectivity invariance aficycles to agreement and maintains at the same time the
the initially formed communication graph, as imposed byonnectivity properties of the initially formed communica-
the control design of this paper. Screenshots |-V of Figurgon graph. The communication graph is created based on the
2 show the evolution in time of the six unicycles undeiinitial relative positions between the team members. The pro-
the proposed control strategy (4),(5). In the first screenshqipsed control law guarantees that if the communication graph
the agents are located at their initial positions. The pairs @ initially connected, then it remains connected throughout
agents that form edges in the initially formed communicatiothe closed loop system evolution. This is achieved via a con-
graph are connected with a black line. Agents reach tol design that renders the set of edges of the initially formed
rendezvous point in the last screenshot V. A plot of the costommunication graph positively invariant for the trajectories
functionsd; for each agent is shown in Figure 3. of the closed loop system. The proposed nonholonomic

V. CONCLUSIONS



control law is discontinuous and time-invariant and tool$20]
from nonsmooth stability theory and matrix theory are used
to check the stability of the overall system. The convergengg,;
properties are verified through computer simulations.

Current research aims at taking into account the case
directed graphs. In addition, although the proposed contr[?l
law is edge preserving, it does not take into account new
agents entering the sensing zone of an agent, i.e. it do%]
not allow for new edges to be created in the communicatio[n
graph. Although new edge addition does not alter the conver-
gence properties of the proposed scheme, it would improV&
the convergence rate and hence is a worthwhile researgh,
direction.
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