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Abstract— We solve the problem of steering a three-level
quantum system from one eigen-state to another in minimum
time and study its possible extension to the time-optimal control
problem for a general n-level quantum system. For the three-
level system we find all optimal controls by finding two types of
symmetry in the problem: Z2 × S3 discrete symmetry and S

1

continuous symmetry, and exploiting them to solve the problem
through discrete reduction and symplectic reduction. We then
study the geometry, in the same framework, which occurs in
the time-optimal control of a general n-level quantum system.

I. THE STATEMENT OF THE PROBLEM

In this paper we study the time-optimal control problem

for the following 3-level system:






ẋ1 = −ω3x2

ẋ2 = ω3x1 − ω1x3

ẋ3 = ω1x2

(1)

with the initial and final conditions

x(0) = (1, 0, 0), x(Tmin) = (0, 0, 1) (2)

and the control constraints

|ω1| ≤ 1, |ω3| ≤ 1. (3)

We show that there are exactly two optimal control laws:

(ω1, ω3) = ±(1, 1)

and the minimum time cost is π√
2

. Furthermore, we show

how the same technique can be extended to understanding

the geometry in the time-optimal control problem for the

general n-level system:


























ẋ1 = −u1x2

ẋ2 = u1x1 − u2x3

...

ẋn−1 = un−2xn−2 − un−1xn

ẋn = un−1xn−1

(4)

with the initial and final conditions

x(0) = (1, 0, · · · , 0), x(Tmin) = (0, · · · , 0, 1) (5)

and the control constraints

|ui| ≤ 1, i = 1, . . . , n − 1. (6)
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In the context of quantum mechanics, the model considered

in this paper is a finite-dimensional low-energy approxima-

tion of a Schrödinger equation driven by rotating fields and

averaged over a time interval longer than the inverse energy

splittings, where each xi corresponds to the coefficient of the

eigen wave function of the i-th energy level, and controls ui’s

correspond to the amplitudes of lasers [11], [5].

Various open-loop control problems for quantum systems

have been already studied. In particular, the energy-optimal

control problem for the dynamics in (4) without any mag-

nitude constraints on control was studied at the level of

Lie groups in [7], [4]. For that problem, the author in [7]

combined Lie-Poisson reduction theory with the Pontryagin

Maximum Principle (PMP), and the authors in [4] utilized

sub-Riemannian geometry with the PMP. In [11], the tra-

jectory generation problem for the dynamics was studied

via flatness theory. In [3] the time-optimal control problem

for the dynamics in (1)–(3) using sub-Riemmanian geometry

with the PMP. The same problem and its generalization are

studied in this article using a different approach. Our main

tool, distinct from those in [3], [4], [6], [7], [11], is the

detection and exploitation of both continuous and discrete

symmetry in the problem. An example of this is an S1

continuous symmetry and a Z2 × S3 discrete symmetry in

the dynamics (1)–(3). We employ discrete reduction and

symplectic reduction theory to remove those symmetries and

simplify the dynamics. This technique can also be effectively

generalized to the time-optimal control of a general n-level

quantum system.

II. PONTRYAGIN MAXIMUM PRINCIPLE

We review the Pontryagin Maximum Principle for time-

optimal control problems. Consider a control system

ẋ = f(x, u), (x, u) ∈ R
n × U (7)

where U is a compact subset of R
k. Define a Hamiltonian

function on R
n × R

n × U

H(x, p, u) = 〈p, f(x, u)〉 (8)

where p ∈ R
n is a covector. Then the following holds:

Theorem II.1. ([9]) Let u(t) be a time-optimal control on

[0, Tmin] for the system (7) with the boundary conditions

x(0) ∈ N0, x(Tmin) ∈ N1 (9)

where N0 and N1 are regular submanifolds of R
n. Let x(t)

be the corresponding optimal trajectory. Then, there exists
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a nonzero continuous covector function p(t) ∈ R
n such that

(x(t), p(t), u(t)) satisfies

ẋ =
∂H

∂p
, ṗ = −∂H

∂x

with H in (8), where

1. u(t) = arg supv∈U H(x(t), p(t), v) ∀ t ∈ [0, Tmin].
2. H(x(t), p(t), u(t)) = M(x(t), p(t)) almost everywhere

in [0, tf ] where M(x, p) = supv∈U H(x, p, v).
3. M(x(t), p(t)) = constant on [0, Tmin].
4. 〈p(0), Tx(0)N0〉 = 0, 〈p(Tmin), Tx(Tmin)N1〉 = 0.

Corollary II.2. Suppose that the boundary conditions in (9)

are fixed points as follows: x(0) = x0, x(Tmin) = x1, and

that there exists a regular submanifold L ⊂ R
n containing

all trajectories of (7) reaching x1. Then, p(0) ∈ Tx0
L ⊂ R

n.

III. TIME-OPTIMAL CONTROL OF THE THREE-LEVEL

QUANTUM SYSTEM

It is straightforward to see that our optimal control prob-

lem satisfies the conditions in Theorem 4 in § 4.4 of [8].

Hence, there exist time-optimal trajectories for our system

with the minimum time cost Tmin.

a) Discrete Symmetry: We study the discrete symmetry

in the system. For brevity, we write (1) in compact form as

follows:

ẋ = A(ω1, ω3)x (10)

where

A(ω1, ω3) =





0 −ω3 0
ω3 0 −ω1

0 ω1 0



 . (11)

Let g1, g2 and g3 respectively, be the reflection in the plane

P1 = {x1 = 0}, P2 = {x2 = 0} and P3 = {x3 = 0}
respectively. They are given in matrix form by

g1 = diag(−1, 1, 1), g2 = diag(1,−1, 1), g3 = diag(1, 1,−1).

We claim that the system in (1) with (3) is invariant under

g1, g2 and g3. For example, notice that

(g2)
−1A(ω1, ω3)g2 = A(−ω1,−ω3).

Suppose that there is a control (ω1(t), ω3(t)) on the time

interval [0, T ] and there exists a sub-interval [t1, t2] ⊂ [0, T ]
such that the trajectory x(t) = (x1(t), x2(t), x3(t)) driven

by the control satisfies

x2(t1) = x2(t2) = 0, and x2(t) < 0 for t ∈ (t1, t2).

If the following control

(ω̃1(t), ω̃3(t)) =







(ω1(t), ω3(t)) for 0 ≤ t ≤ t1,
(−ω1(t),−ω3(t)) for t1 < t < t2,
(ω1(t), ω3(t)) for t2 ≤ t ≤ T

is used, then the associated trajectory x̃(t) =
(x̃1(t), x̃2(t), x̃3(t)) will satisfy

x̃(t) =







(x1(t), x2(t), x3(t)) for 0 ≤ t ≤ t1,
(x1(t),−x2(t), x3(t)) for t1 < t < t2,
(x1(t), x2(t), x3(t)) for t2 ≤ t ≤ T .

In particular,

x̃2(t1) = x̃2(t2) = 0 and x̃2(t) > 0 for t ∈ (t1, t2).

Notice that x(0) = x̃(0), x(T ) = x̃(T ), and that the

trajectory x̃(t) has the same time cost T . Hence, there

always exists a time-optimal trajectory contained in the set

{x2 ≥ 0}. By applying similar arguments to g1 and g3, the

following lemma can be deduced:

Lemma III.1. There exists a time-optimal trajectory con-

tained in the closure O1 of the first (open) octant

O1 = {(x1, x2, x3) ∈ R
3 | x1 > 0, x2 > 0, x3 > 0}.

We now consider the reflection g4 in the plane

Π = {x1 = x3},

where g4 is given in matrix form by

g4 =





0 0 1
0 1 0
1 0 0



 .

Notice that

(g4)
−1A(ω1, ω3)g4 = A(ω3,−ω1) (12)

Since the hyperplane Π divides R
3 into two regions such

that x(0) = (1, 0, 0) and x(Tmin) = (0, 0, 1) belong in

distinct regions, every trajectory from (1, 0, 0) to (0, 0, 1)
must intersect with Π. Suppose that there is a control

(ω1, ω3) : [0, T ] → [− 1, 1]2 for (1) such that the associ-

ated trajectory (x1(t), x2(t), x3(t)) with the initial condition

(1, 0, 0) reaches Π at t = T for the first time. We extend the

control to the time interval [0, 2T ] as follows:

ω1(T + s) = ω3(T − s), ω3(T + s) = ω1(T − s) (13)

for s ∈ [0, T ]. By (12) and the consideration of time-reversal,

x(t) on [0, 2T ] satisfies

g4(x(T − s)) = x(T + s), s ∈ [0, T ].

Hence, the trajectory x(t) for t ∈ [0, 2T ] is invariant under

the reflection with respect to the plane Π, and thus x(2T ) =
(0, 0, 1). This observation leads us to the following lemma:

Lemma III.2. Consider the time-optimal control problem for

the system (1) with (2) and (3). Then the following holds.

1. There exists a time-optimal trajectory which is symmet-

ric with respect to the plane Π.

2. Every time-optimal trajectory reaches Π in minimum

time, which is half of the total minimum time cost.

3. Every time-optimal trajectory intersects with Π only

once. As a result, there is no segment in any optimal

trajectory which totally lies in Π.

Lemma III.3. Consider the time-optimal control problems

for the system (1) with the constraint (3) and the following

eight distinct initial and final conditions:
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x0 x1

(1, 0, 0) (0, 0, 1)
(1, 0, 0) (0, 0,−1)

(−1, 0, 0) (0, 0, 1)
(−1, 0, 0) (0, 0,−1)

x0 x1

(0, 0, 1) (1, 0, 0)
(0, 0, 1) (−1, 0, 0)

(0, 0,−1) (1, 0, 0)
(0, 0,−1) (−1, 0, 0)

Then, they all have the same minimum time costs.

We note that the group generated by {gi | i = 1, 2, 3, 4}
is isomorphic to Z2 × S3 where S3 is the symmetric group

on 3 letters.

b) Maximum Principle: By Lemma III.1 we will ini-

tially look for all time-optimal trajectories which are con-

tained in O1, i.e.,

x([0, Tmin]) ⊂ O1. (14)

However, it is important to notice that this does not impose

any state constraints on our optimal control problem. Hence,

we can apply the ordinary Pontryagin Maximum Principle,

which does not take into account any state constraints, to the

system (1) – (3) satisfying (14).

Following (8), we construct the Hamiltonian

H = ω1(x2p3 − x3p2) + ω3(x1p2 − x2p1), (15)

where p = (p1, p2, p3) is a nonzero covector satisfying

ṗ = A(ω1, ω3)p (16)

with A(ω1, ω3) in (11). The optimal control satisfies
{

ω1(t) = sign(x2(t)p3(t) − x3(t)p2(t)),
ω3(t) = sign(x1(t)p2(t) − x2(t)p1(t))

(17)

where it is assumed that the sign function at 0 can take an

arbitrary value between −1 and 1. By the third statement of

Theorem II.1, we have

M(x,p) = |x2p3 − x3p2| + |x1p2 − x2p1| (18)

and

M(x(t),p(t)) = M(x(0),p(0)) (19)

for t ∈ [0, Tmin] along each optimal trajectory (x(t),p(t)).
Since the vector field (10) at x ∈ R

3 is orthogonal to

x and the initial and final points in (2) belong to the unit

2-sphere

S2 = {x ∈ R
3 | ‖x‖ = 1},

the time-optimal control problem is essentially defined on

S2. By Corollary II.2 we have the following transversality

condition at t = 0:

p1(0) = 0. (20)

Since p(0) 6= 0 by the Maximum Principle and ‖p(t)‖ =
‖p(0)‖ 6= 0 by (16), the p-dynamics is defined on R

3 −
{(0, 0, 0)}. From (10) and (16), it follows that d

dt
〈x,p〉 = 0.

Hence,

〈x(t),p(t)〉 = 〈x(0),p(0)〉 = 0 (21)

where (2) and (20) were used. Therefore, the (x,p)-
dynamics in (10) and (16) are defined on

P ={(x,p) ∈ R
3×R

3 | ‖x‖ = 1, 〈x,p〉 = 0,p 6= 0}. (22)

The manifold P is equipped with the symplectic form

which is the restriction of the canonical symplectic form
∑3

i=1 dxi ∧ dpi on T ∗
R

3 = R
3 × R

3 to P .

Lemma III.4. The manifold P in (22) is diffeomorphic to

SO(3) × (0,∞).

c) Symplectic Reduction: We will find an S1 symmetry

in our time-optimal control problem and perform a sym-

plectic reduction of the problem by this symmetry. Refer

to [1] for the symplectic reduction theory and to [2] for its

application to optimal control.

Define an S1-action on P in (22) as follows:

eiθ · (x,p) = (Rx×p

θ · x, Rx×p

θ · p) (23)

for eiθ ∈ S1, and (x,p) ∈ P where Rx×p

θ is the 3 × 3
rotational matrix by angle θ with the axis in the direction of

x × p. One can check that this action is symplectic and its

momentum map J : P → R is given by

J(x,p) = ‖x × p‖.
Refer to [1], [10] for this computation. Notice that every

(nonzero) value of J on P is a regular value. From the vector

identity ‖x×p‖2 = ‖x‖2‖p‖2−|〈x,p〉|2 and Lemma III.4,

it follows that each level set J−1(µ) with µ ∈ (0,∞) = ImJ
is diffeomorphic to SO(3). For our purpose of solving the

time-optimal control problem (1)–(3), it suffices to consider

the case µ = 1 since other cases are diffeomorphic to this

case.

Lemma III.5. In this symplectic reduction picture, the

canonical projection π : J−1(1) → J−1(1)/S1 is isomor-

phic to π : SO(3) ⊂ P → S2 ⊂ R
3 where

π : (x,p) 7→ L = x× p ∈ R
3.

The symplectic structure on S2 comes from the canonical

Poisson structure on R
3. Moreover, the Hamiltonian in (15)

is invariant under the S1-action in (23), and its reduced

Hamiltonian on S2 × [−1, 1]2 is given by

H(L; ω1, ω3) = ω1L1 + ω3L3. (24)

In this symplectic reduction, we regard ω1 and ω3 as param-

eters.

Along each optimal trajectory, the function M in (18) and

(19) satisfies

|L1(t)| + |L3(t)| = |L1(0)| + |L3(0)| (25)

for t ∈ [0, Tmin]. The reduced dynamics of the Hamiltonian

H on S2 ⊂ R
3 is given by

L̇ = A(ω1, ω3)L (26)

where A(ω1, ω3) is given in (11). The dynamics in (26) can

be derived by L̇i = {Li, H}, i = 1, 2, 3. By the definition of

L, we have

〈x(t),L(t)〉 = 0, ∀t. (27)

Notice that the optimal control in (17) depends on the

reduced dynamics as follows:

ω1(t) = sign(L1(t)), ω3(t) = sign(L3(t)). (28)
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d) Switching Law: We now study the switching law

in (28). Recall that we seek an optimal trajectory satisfying

(14). For convenience, we visualize both x and L in the

same R
3-space. It is useful to notice from (10) and (26)

that if (ω1, ω3) is constant in a time interval [a, b], then for

t ∈ [a, b]

x(t) = etA(ω1,ω3)x(a), L(t) = etA(ω1,ω3)L(a) (29)

where

etA(ω1,ω3) (30)

=







(ω1)
2+(ω3)2 cos(ωt)

ω2 −ω3 sin(ωt)
ω

ω1ω3(1−cos(ωt))
ω2

ω3 sin(ωt)
ω

cos(ωt) −ω1 sin(ωt)
ω

ω1ω3(1−cos(ωt))
ω2

ω1 sin(ωt)
ω

(ω3)
2+(ω1)

2 cos(ωt)
ω2







with ω =
√

(ω1)2 + (ω3)2.
From (27) and (2), it follows that L(0) lies on the unit

circle in the x2-x3 plane and L(Tmin) lies on the unit circle

in the x1-x2 plane. We now consider the three cases:

L(0) ∈ R1, L(0) ∈ R2, and L(0) /∈ R1 ∪ R2,

where

R1 = {(0,±1, 0)}, R2 = {(0, 0,±1)}.
First, we consider the case of L(0) ∈ R1 = {(0,±1, 0)}.

Suppose there exists an optimal trajectory with L(0) =
(0, 1, 0) (the case of L(0) = (0,−1, 0) can be handled

similarly). By (25), |L1(t)| + |L3(t)| = 0 for all t, thus

L(t) = (0, 1, 0) ∀t. (31)

due to continuity of L(t) = x(t) × p(t) in t. As the x-

trajectory moves from (1, 0, 0) to (0, 0, 1), it is impossible

to have (ω1(t), ω3(t)) = (0, 0) almost everywhere. Hence,

there exists t1 < Tmin such that
∫ t1

0

ω1(s)ds 6= 0 or

∫ t1

0

ω3(s)ds 6= 0.

Let us consider the former case since the latter can be

handled similarly. We have

L3(t1) =

∫ t1

0

ω1(s)L2(s)ds =

∫ t1

0

ω1(s)ds 6= 0

which is a contradiction to (31). Hence, L(0) ∈ R1 =
{(0,±1, 0)} cannot generate optimal trajectories.

We now consider the second case, L(0) = (0, 0, 1). By

(25),

|L1(t)| + |L3(t)| = 1 ∀t. (32)

By (32) and the orthogonality of L(Tmin) to x(Tmin) =
(0, 0, 1), it is necessary that L(Tmin) = (1, 0, 0) or

(−1, 0, 0). Take an arbitrary positive δ ≤ Tmin such that

L3(t) > 0 ∀ t ∈ [0, δ], (33)

which is possible by the continuity of L3(t). If there is t̄ ∈
(0, δ] such that L1(t̄) = 0, then L(t̄) = (0, 0, 1) by (32) and

(33). This implies that point (0, 0, 1) = L(t̄) is transferred

to point ±(1, 0, 0) = L(Tmin) with time cost (Tmin − t̄).

It follows that the minimum time cost for x(t) should be

at most (Tmin − t̄) by Lemma III.3, which contradicts the

definition of Tmin. Therefore, L1(t) never vanishes on (0, δ].
Hence, either L1(t) < 0 for all t ∈ (0, δ] or L1(t) > 0 for

all t ∈ (0, δ].

A

B

C

D

E
F

G

H
x1, L1

x2, L2

x3, L3

(a)

x2, L2

x3, L3

(1, 1) (−1, 1)

(−1,−1) (1,-1)

(b)

Fig. 1. (a) The initial value L(0) must lie on the unit circle on the x2−x3

plane. The final value L(Tmin) must lie on the unit circle on the x1 − x2

plane. (b) The initial value of the control (ω1(0), ω3(0)) corresponding to
L(0) on the unit circle on the x2−x3 plane minus {(0, 0,±1), (0,±1, 0)}.

Suppose that L1(t) < 0 for all t ∈ (0, δ]. Then,

(ω1(t), ω3(t)) = (−1, 1) on (0, δ]. Using (29) and (30),

we get x3(t) = − 1
2 (1 − cos(

√
2t)) for t ∈ (0, δ]. For a

sufficiently small t, we get x3(t) < 0. Hence, x3([0, δ])
is not contained in O1, which contradicts (14). Therefore,

L1(t) > 0 for all t ∈ (0, δ] where δ is an arbitrary positive

number less than or equal to Tmin such that (33) holds.

Simple integration of (10) and (26) with (29) and (30) yields

the following: for all t ∈ (0, π√
2
)

ω1(t) = 1, ω3(t) = 1,

x(t) =

(

1 + cos(
√

2t)

2
,
sin(

√
2t)√

2
,
1 − cos(

√
2t)

2

)

∈ int(O1), (34)

L(t) =

(

1 − cos(
√

2t)

2
,− sin(

√
2t)√

2
,
1 + cos(

√
2t)

2

)

,

where in particular, L1(t) > 0 and L3(t) > 0. It is easy to

see that

x

(

π√
2

)

= (0, 0, 1), L

(

π√
2

)

= (1, 0, 0).
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Thus, the trajectory in (34) is a candidate for an optimal

trajectory with time cost Tmin = π√
2

.

Next, we consider the case L(0) = (0, 0,−1). By the

continuity of L(t), there is 0 < δ < min{Tmin,
1

100} such

that L3(t) < 0 and ω3(t) = sign(L3(t)) = −1 on [0, δ].
Using (29) and (30) , we get x2(t) = − 1

ω
sin(ωt) < 0

on (0, δ]. Hence, x((0, δ]) ∩ O1 = ∅, which contradicts

the assumption in (14). Thus, we exclude the case L(0) =
(0, 0,−1).

Lastly, we consider the case where L(0) /∈ R1 ∪ R2. The

unit circle minus R1∪R2 in the x2-x3 plane consists of four

open arcs; see Figure 1.(b). It is not hard to see that the initial

value of optimal control (ω1, ω3) should be given as in Fig-

ure 1.(b) depending on the initial value (L2(0), L3(0)). For

example, suppose that (L2(0), L3(0)) = A in Figure 1.(a),

i.e., L1(0) = 0, L2(0) < 0, L3(0) > 0. Then, there is t1 > 0
such that L2(t) < 0, L3(t) > 0 on [0, t1]. It follows that

L1(t) =
∫ t

0 −ω3(s)L2(s)ds =
∫ t

0 −L2(s)ds > 0 for all

t ∈ (0, t1]. Hence, ω1(t) = 1 for all t ∈ (0, t1]. Hence,

we may set ω1(0) = 1 since t = 0 is a measure-zero

set. This explains the choice (ω1(0), ω3(0)) = (1, 1) in

Figure 1.(b). The argument made so far also implies that

L(t) starts to enter the first octant of R
3 and remains there

with (ω1(t), ω3(t)) = (1, 1) until it hits the switching plane

L3 = 0. The switching order is summarized in Figure 2.

Recall from (25) that L(t) on the unit sphere satisfies

|L1(t)| + |L3(t)| = |L1(0)| + |L3(0)| > 0.

It is straightforward to check that switching is periodic by

symmetry, which also can be seen directly from the dotted

line in Figure 1.(a).

We claim that L(0) lies on the open arc in the second

quadrant of the x2-x3 plane. Suppose that L(0) lies on the

open arc in the first quadrant of the x2-x3 plane such as point

E in Figure 1.(a). Then, there is a sufficiently small positive

ǫ < min{Tmin,
1

100} such that (ω1(t), ω3(t)) = (−1, 1) for

t ∈ [0, ǫ], which by (30) implies x3(t) = − (1−cos(
√

2t))
2 < 0

on (0, ǫ]. Therefore, x((0, ǫ]) ∩ O1 = ∅, which contradicts

the assumption in (14). Hence, we exclude this case. In a

similar manner, we can exclude the case of L(0) being on

the other two open arcs in the third and fourth quadrants of

the x2-x3 plane. Therefore, L(0) must lie on the open arc

in the second quadrant of the x2-x3 plane.

Let A = L(0) as in Figure 1.(a). Since L(Tmin) should be

orthogonal to x(Tmin) = (0, 0, 1), L(Tmin) must lie in the

plane L3 = 0. Hence, L(Tmin) must be either point B or

point D in Figures 1.(a) and 2. We claim that L(Tmin) = B,

that is, L(Tmin) 6= D. Suppose that L(Tmin) = D. Then,

according to the scheme in Figure 2, the middle part of the

corresponding trajectory x(t) is in the middle of the time

interval on which (ω1, ω3) = ±(1,−1), so the trajectory

remains on plane Π = {x1 = x3} for a time interval of

non-zero length since x(Tmin

2 ) ∈ Π, which can be easily

checked using (29) and (30). Hence, by the third statement

in Lemma III.2, it cannot be an optimal trajectory. From this

observation, we arrive at:

Lemma III.6. If there is an optimal trajectory with L(0) =
A in the open arc in the second quadrant of the x2-x3 plane,

then L(Tmin) = B. Consequently, the number of switchings

is 0, 4, 8, . . ..

A

B

C

D

E

F

G

H

(1, 1)(1, 1)

(1,−1)(1,−1) (−1,−1)
(−1,−1)

(−1, 1)(−1, 1)

Fig. 2. The switching scheme of the extremal control (ω1(t), ω3(t)) where
the points A,B,C,D,E,F ,G and H correspond to those in Figure 1.(a).

We now claim that the number of switchings is 0. Suppose

that there is an optimal trajectory with L(0) = A with the

number of switchings greater than or equal to 4. Let Ts be

the switching period. It follows that Tmin > 2Ts. Since we

have found a trajectory in (34) with time cost π√
2

, we have

2Ts < Tmin ≤ π√
2

. On [0, 2Ts] the control law is given by

(ω1(t), ω3(t)) =

{

(1, 1) for 0 ≤ t ≤ Ts

(1,−1) for Ts < t ≤ 2Ts

and by (29) and (30), we get x(2Ts) =
eTsA(1,−1) · eTsA(1,1)x(0), which implies x2(2Ts) =
1√
2

sin(
√

2Ts)(cos(
√

2Ts) − 1) < 0 since 0 <
√

2Ts < π
2 .

We exclude this trajectory since it is not contained in O1 as

assumed in (14). Hence, the only possible optimal control

would be (ω1, ω3) = (1, 1) without switchings, which we

have already studied and have found the trajectory in (34).

We have so far proved the following:

Claim III.7. There is only one optimal trajectory contained

in the first closed octant O1. It is given by

x(t) =

(

1 + cos(
√

2t)

2
,

sin(
√

2t)√
2

,
1 − cos(

√
2t)

2

)

(35)

with the control (ω1(t), ω3(t)) = (1, 1) and the time cost

Tmin = π√
2

. Moreover, it is g4-invariant.

Theorem III.8. There are only two optimal trajectories, and

the minimum time cost is π√
2

. One is given in (35) with the

control (ω1, ω3) = (1, 1) and the other is given by

g2(x(t)) =

(

1 + cos(
√

2t)

2
, − sin(

√
2t)√

2
,

1 − cos(
√

2t)

2

)

with the control (ω1, ω3) = (−1,−1).

IV. GENERALIZATION

We now show to what extent the techniques used for the

3-level system can be applied to the general n-level system

in (4)–(6), and leave some comments for the readers. The

dynamics have symmetry G = 〈gi | i = 1, . . . , n〉 where
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each gi is the reflection in the plane {xi = 0}. Hence, there

is an optimal trajectory in {xi ≥ 0, i = 1, . . . , n}.

There is an additional discrete symmetry. For n = 2k,

if there is a trajectory x(t), 0 ≤ t ≤ T , connecting the

initial point to the final point, then one can construct a

trajectory y(t), 0 ≤ t ≤ T , connecting the initial point

to the final point such that y(t) = S(x(T − t)) where

S = (1, 2k)(2, 2k − 1) · · · (k, k + 1) is a permutation on

the index set {1, 2, . . . , 2k}. For n = 2k+1, the same holds

with S = (1, 2k + 1)(2, 2k) · · · (k − 1, k + 1). However, the

existence of an optimal trajectory which is invariant under

S is in general unknown for n > 3.

Following the Pontryagin Maximum Principle, we first set

up the Hamiltonian

H(x,p; u) = u1(x1p2−x2p1)+· · ·+un−1(xn−1pn−xnpn−1)

where the covector p obeys the same dynamics as those in

(4). The optimal control satisfies

ui(t) = sign(xi(t)pi+1(t) − xi+1(t)pi(t)), (36)

and along each optimal trajectory

M(t) =

n−1
∑

i=1

|xi(t)pi+1(t) − xi+1(t)pi(t)| = constant.

By Corollary II.2 and the fact that ‖x(t)‖ = 1, we have the

transversality condition

p1(0) = 0.

Since x(t) is perpendicular to p(t) for all t, we may regard

the Hamiltonian H as a function defined on

P = {(x,p) ∈ R
n × R

n | ‖x‖ = 1, 〈x,p〉 = 0,p 6= 0}
where p 6= 0 comes from the Pontryagin Maximum Princi-

ple. Here, the manifold P has the symplec structure induced

from the canonical form Ω =
∑n

i=1 dxi ∧ dpi. It is easy

to see that P is diffeomorphic to T1S
n−1 × (0,∞) where

T1S
n−1 is the unit tangent space of the (n − 1)-sphere.

We now detect continuous symmetry in the Hamiltonian

and perform symplectic reduction. Consider the function

J(x,p) = ‖x‖2‖p‖2 − |〈x,p〉|2.
We denote the Hamiltonian vector field of J by XJ . On the

manifold P , the vector field XJ is given by

XJ |P = (2‖x‖2p + 2〈x,p〉x,−2‖p‖2x − 2〈x,p〉p)|P
= (2p,−2‖p‖2x).

One can verify that XJ is tangent to P at each point of P ,

so P is an invariant manifold of XJ . The flow ϕXJ

t of XJ

on P is given by

ϕXJ

t (x,p) =

[

cos(2µt)In
1
µ

sin(2µt)In

−µ sin(2µt)In cos(2µt)In

]

·
[

x

p

]

where In is the n×n identity matrix and µ = ‖p‖. Here, it

is understood that ‖p‖ is constant along the flow of XJ on

P , which can be easily verified by computing XJ · ‖p‖ = 0

on P . Since each flow ϕXJ

t (x,p) is periodic with period
π

‖p‖ , we can define a S1-action on P by

eiθ · (x,p) = ϕXJ

θ

2‖p‖

(x,p), θ ∈ [0, 2π].

This action is symplectic since it is the Hamiltonian flow

ϕXJ

t . Since {H, J}R4×R4 = 0, H is constant under this

action.

For the purpose of finding optimal trajectories, we fix the

level of the momentum map J at µ = 1 since other level

sets of J on P are diffeomorphic to J−1(1). We note that

J−1(1)={(x,p) ∈ R
n × R

n | ‖x‖ = ‖p‖ = 1, 〈x,p〉 = 0}
= T1S

n−1.

By the symplectic reduction theory, there is a projection π :
J−1(1) → J−1(1)/S1 and a reduced Hamiltonian h(r; u)
on J−1(1)/S1 such that

H(x,p; u) = h(r; u), r = π(x,p)

where the control u = (u1, · · · , un−1) is regarded as a

parameter in this reduction process. Moreover, there is a

symplectic form ω on J−1(1)/S1 such that Ω |J−1(1)= π∗ω.

By the Pontryagin Maximum Principle, optimal control

maximizes H(x,p, u), but through the symplectic reduction

it is equivalent to maximizing the reduced Hamiltonian

h(r, u) for r ∈ J−1(1)/S1. Thus, the switching of ui in

(36) depends on the Hamiltonian dynamics of h(r; u) on the

(2n − 4) dimensional space J−1(1)/S1, rather than on the

(2n−3) dimensional space J−1(1), which would be hard to

detect without symplectic reduction. The reduction process

will be illustrated with the 4-level system in a forthcoming

paper.
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