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Abstract— We consider decentralized control of a platoon making the communication overhead impractical for large
of N identical vehicles moving in a straight line following a  platoons. Since the vehicles are assumed to be identical,
single lead vehicle moving at constant velocity. The contio  5ne particularly important special case is the so-called
objective is for each vehicle to maintain the velocity of the tric bidirecti | trol h I hicl
leader and inter-vehicular separation using only the local §ymme rc bidirectional control, where all vehic e_s us_e
information from itself and its two nearest neighbors. Each identical controllers that are furthermore symmetric with

vehicle is modeled as a double integrator. To aid the analysi respect to the predecessor and the follower position errors
we derive a continuous partial differential equation (PDE) ) ] ]
approximation of the discrete platoon dynamics. The PDE Control of large vehicular platoons with a desired con-

model is used to explain the progressive loss of closed-loop stant inter-vehicular spacing is challenging due to “strin
stability with increasing number of vehicles, and to devise instability” or “slinky-type effects” referring to the am-
ways to combat this loss of stability. plification of disturbance as it propagates through the
If every vehicle uses the same controller, we show that platoon. Here, the effect of disturbance felt by one vehicle
the least stable closed-loop eigenvalue approaches zero asgets amplified for vehicles both ahead and behind it, and
O(x) in the limit of a large number (N) of vehicles. We  ha ampification grows without bound as the number of

N2
then show how to ameliorate this loss of stability by small . .
e vehicles increases [2, 4-6].

amounts of “mistuning”, i.e., changing the controller gairs

from their nominal values. We prove that with arbitrary . .
small amounts of mistuning, the asymptotic behavior of the These effects are essentially due to the progressive loss of

least stable closed loop eigenvalue can be improved (). ~ closed-loop damping as the number of vehicles increases.
These conclusions are validated for the discrete platoon & Jovanovicet. al. have recently considered an LQR formu-
numerical calculations. lation of the platoon problem [1]. They showed that the
eigenvalues of the closed-loop approach the imaginary axis
as the number of vehicles in the platoon increases without
bound. Note that an LQR formulation will in general lead
We consider the problem of controlling a 1-dimensionalo a centralized control architecture.
platoon of N identical vehicles such that individual vehicles
move at a constant desired velocily; with an inter-

|. INTRODUCTION

This paper is concerned with the analysis of closed-

vehicular spacing of\; shown schematically in Figure 1(a). Ioo_p insta_bilitigs but _more_importantly \.Nith m_ethods_ for
Due to its relevance to an automated highway system, thti e amelioration while using decgntrgllzed bl-gllren'acb
problem has been extensively studied in literature [1-3]. &rch|tecture§. There are three contnbunqns of this whek t .
controlled vehicular platoon with a constant but smallinte are summarized below. In order to facilitate the analysis,

vehicular distance can improve the capacity of a highwa ve derive a linear partial Qiﬁerential equation (PI.DE) con-
inuous model from the discrete platoon dynamics. Note

In this paper, we consider decentralized bidirectional that “discrete” here refers to the spatial discreteness, th
control architecture: the control action at a vehicle detime axis is continuous in both the platoon dynamics and
pends upon its own velocity and the relative positiorthe PDE model. The results of this paper are obtained by
errors between itself and its nearest neighbors (the \ashiclanalyzing the PDE; they are then validated by numerical
immediately ahead and behind it). Decentralized refers womputation of the closed loop platoon dynamic equations.
the constraint that a vehicle is allowed to use only itghe PDE model is inspired by the extensive literature on
local information, and “bidirectional” refers to the fea-traffic dynamics; cf. [7] and references therein. In the timi
ture whereby information from both the vehicles aheadf large IV, the vehicles moving in a straight line are
(predecessor) and behind (follower) is used. In contrast,idealized as particles in a 1-dimensional flow.
centralized control architecture would require inforroati

from all the vehicles to be transmitted to a central congroll The second contribution of this paper is to use the PDE

model to show that the least stable closed-loop eigen-
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7 7 2 (1) 320(15) architecture is required to baecentralizedso that every
P Ngl( .). e vehicle can use locally available measurements only.
N T T Following [1], we introduce a fictitious lead vehicle
and a fictitious follow vehicle, indexed asand N + 1
(a) A platoon with fictitious lead and follow respectively. Their behavior is specified by imposing con-
vehicles. ” stant velocity trajectories agy(t) = Vyt and Zy 1 =
yi+1yi ot Vat—(N+1)A. Now every vehicle in the platoon, including

the 15t and the N™ vehicle, has two neighbors and can
: - o employ a decentralized bidirectional control architeetur
e(b*é?@;j To facilitate the analysis, consider a coordinate change
E]t;)tez.ame platoon iny coordi- yi = 27T(Zl(t) Lth + L)7 v = 27TVZ - Vul7 (1)
whereL denotes the platoon length, which equa&+1)A
in scenario | andVA in scenario Il. Figure 1(b) depicts
the schematic of the platoon in the new coordinates. The
%?rmalization ensures thagt(t) = 27, y;(¢t) € [0, 27, and
yn+1(t) = 0. Here, we have implicitly assumed that the
eviations of the vehicle positions and velocities fromithe
esired values are small.

Sl ... Q@ Gl (;;) R ]

Fig. 1. A platoon withN vehicles moving in one dimension.

than the discrete equations do, the reason for the loss
stability and suggests “mistuning” to improve the stapilit
margin. In particular, assignment of controller gains sucﬂ
that a vehicle utilizes information from the preceding
vehicle differently from the following vehicle is seen to In the normalized coordinates, the dynamics of tfe
be beneficial. Our main result Corollary 2 shows how toehicle are described by

achieve the best improvement in closed-loop stability by L

exploiting this asymmetry. In particular, we show that an Yi =t

arbitrary small perturbation (asymmetry) in the contnollewherew; := 2xU;/L. The desired spacing and velocities
gains from their nominal (symmetric) value can improve thare

closed-loop damping such that the least stable eigenvalue A Vy—Vy

now approache$ only as O(+). Direct computation of §:= .20 YT TLjar 0,

eigenvalues in discrete platoons is used to validate these ) - _ o

results. The mistuning profile is determined by optimizingtnd the desired position of thé& vehicle is

the smallest eigenvalue using a perturbation-based method yl(t) = 21 — ié. 2)
from [8]. We note that the mistuning based approaches N ] o

have been used for stability augmentation in many structur&he position and velocity errors for th¥ vehicle in they
applications; see [9] for a recent references. coordinate are:

The rest of the paper is organized as follows: section Il 9i(t) = vi(t) — (1), U = v; — Vg = v;.
describes the platoon problem formulation; section Ilinthe\we note thatiy = oy41 = 0 for the fictitious lead and
describes the derivation of the PDE model. In section Iy 0w vehicles.
the PDE is analyzed to explain the loss of stability with o ]

N, and section V describes how to ameliorate such loss of For the purposes of control, it is useful to introduce the

stability by mistuning. front and back relative (position) errors for tife vehicle:
BT s
Il. PROBLEM STATEMENT ‘ L/2m o L
Consider a platoon ofV identical vehicles moving in RON Zi = Zita — A i — i1 — 6
a straight line as shown schematically in Figure 1(a). g L/27 s ’

Let Z,;(t) and V;(t) denote the position and the velocity, ) L
respectively, of the" vehicle fori = 1,2, ..., N. Since the folr tZ N 1".t'."N' Thi Ct'uant'tﬁi@ dgn?tes tgefront
inter-connected platoon dynamics are of primary interes'ifea Ve posttion errc(>£) etween and Its predecessor
a simple double integrator is used to model the essentigi— 1) Vehicle, ande;” denotes thébackrelative position

dynamics of an individual vehicle: error between theé" and its follower { + 1) vehicle. The
B relative errors, including the velocity error, can be ofbéai
Z; = Uy, by on-board devices such as radars, GPS and speed sensors.

wherel; is the control (engine torque) applied on e Consistent with the decentralized bidirectional linean-co
g 9 9 PP trol architecture, the contral; for the:™ vehicle is assumed

vehicle. Formally, such a model arises after the velocit{/0 depend only on 1) its velocity;, and 2) the relative

_dependent d_rag and other r_10n-I|_nea_r terms have been el sition errors between itself and its immediate neighbors
inated by using feedback linearization [3, 6]. The contr hat is

objective is to maintain a constant inter-vehicular dis&n
A and a constant velocity,; for every vehicle. The control u; = kff) e _ 1 ® e§b> —b; ;, 3)



Wherekf),bi are positive constants. The first two terms ar¢he continuity equation, which relates the density, ¢)
used to compensate for any deviation away from nomingbehicles per unit characteristic length) at spatial cowat
with the predecessor and the follower vehicles respegtivelx € [0, 27] and timet € [0, co) with the velocityv(x, t):

The third term is used to obtain a zero steady-state error dp  (pv)
in velocity. In principle, relative velocity errors betwee -

=0.

neighboring vehicles can also be incorporated into the ot Oz
control, but we do not examine this situation here. In order to analyze small perturbations about the mean,
To describe the closed-loop dynamics of the platoorwe define the perturbed quantitigss by the relations
define - ~
p(xvt) :p0+p(x7t)a U(.I,t) :O+U(.§C,t),

5’ [ﬁlvﬂ?a"'aﬁN]Tv H H H

” 7 R where the mean velocity is zero because of our choice of

v o= [01,...,0n] . the coordinate system (see (1)). Even thowgand v are

For scenario | with fictitious lead and follow vehicles, thelN® Same, we usé to draw attention to the fact that the

control law (3) yields the following closed loop dynamics.VelOCity is a small perturbation of the mean value. For such
perturbations, the linearized continuity equation is giby

Lo ][] g 0 100

= Dyt ®a nl | (4) or 9 _y ov__10op 6

L, KPMT - KM -BJ |V 5t T P05, o oo (6)
AL—r This equation is consistent with the physical intuition
where K —  dia (k:(f) 5ey k(f)) K® whereby a positive gradient in velocity (due to say the
) ®L® o BURT 5 g % - BN A predecessor speeding up or the follower slowing down) will
diag(ky” koo ky'), B = diag(bi, b, ..., by) and cause the local density to decrease. In order to study gensit
PR perturbations, one thus needs to specify the velocity which

M- B arises due to the linearized momentum balance:
B oo | A G0
1 -1 — = —_— =
i3 Er F(x,t) = Er u(z,t), @)

Our goal is to understand the progressive loss of closed |0WhereF(x, t) is the acceleration due to the contid(lz, t)
stability with increasingV and to devise ways to amelio- and possible disturbances. Here, we focus only on the

rate such a loss by appropriately choosing the controlleiontrol. Using (3), the control for thé" vehicle in the
gains. While in principle this can be done by analyzinglatoon is of the form:

the eigenvalues of the matriA;_r, we approximate the

g b v
dynamics of the discrete platoon by a partial differential ui(t) = uP (1) — ui™ () +ul” (1),  where
equation (PDE) which we then use for analysis and control uP (1)
design. (rf) (f) i
w7 (t) = Ky (yiea (t) — wa(t) = 9),
[1l. CONTINUOUS MODEL OF VEHICLE PLATOON P () = kP (i (t) — yiga (t) — 6),
In this section, we develop a continuous PDE approxima- ,(v) (t) = —bij (t).

tion of the (spatially) discrete platoon dynamics. The PDE
is derived with respect to a normalized spatial coordinamhereugpf),ugpb) are theposition dependeritont andback
x € [0,27]. We recall that the normalized location of thecontrol terms. Corresponding to this discrete control law,
i™ vehicle (denoted ag;) too was defined with respect we derive a continuous approximation
to this coordinate system. In effect, the two symbals o wf) (pb) ()
andy correspond to the same coordinate representation but u(z,t) = wP(@,8) —u (@, 1) (@, 1), (8)
are used here to distinguish the continuous and discrete ul®) (z,t)
formulations. »
_ . (®f) b) (). _ , (pb)

With respect to the normalized coordinate, every car €4ch that“(pf)(yi’(i) = w7 (1), ulP (y;, 1) = " (1),

nominally assumed to lie within an interval of lengttisee andu)(y;,t) = ;"' (t). Now,

Fig. 1(b)). For the purpose of a continuous approximation, ¢ ¢ n 5
we smear each vehicle over its interval to get a constafi =k (yir— ys — 8)= kD (1 - m)(yifl — i)
mean density via o(2) ! !
N 1 ~ kpg(2)(1 — —=)dz,
Po
po N — = = (5) Yi
2r 0

) ) ) __where the approximation is obtained by smearing the con-
fqr N vehlf:les in the platoon. The dynamics of the.|nd|-tr0| action over the interval;, y;_1] and substituting; ; (z)
vidual vehicles in the platoon create perturbations in thﬁ)r the discrete control gaihff) Sincep — po-+j, we have
density, with the local density(z, ¢) increasing (decreas- » ' '
ing) as the cars move closer (apart). The starting poir?}(_pf)(t)% _i/yﬂ b (@)@ t)dx:—i[k (et )3
of macroscopic continuous models of traffic flow thus is* po Jy, f ’ 00 ! N



by the Mean Value Theorem, wheig™ € [y;,y;_1]. Since which is a damped wave equation, with being thewave
uz(.pf) (t) = u®(y;,t) andd = 1/p, (see (5)), we take speedIn order to compute the eigenvalues of the PDE, we
' 1 take the Laplace transform of (13) w.r.t. to tinte
u® (a,t) = = [ky (™, 8), 2
o s2q(x,8) + bo s q(x, s) — agﬁq(x, s) =0, (14)
X

1
(1) = _p_g[kb A1), whereq(z, s) denotes the Laplace transformigfz, t). This
wherez™ € [ys,y;1] anda~ € [yis1,v]. Using (8), equation can be written as
u® (z,t) = u(pf)(x,t) _ b (z,1) @ =N(z), A= Mj (15)
1 dx? a2
= —p—% (ks Al 1) — [ko p(27, 1)) - which is an eigenvalue problem involving the Laplacian.

The next lemma summarizes how the eigenvalues of the

In order to specify the control, one thus needs to approxjs
; . ; DE depend of the parameters of the problem. The lemma
mate the terms on the right hand side as functions:of). can be verified by using the fact thﬁh(%) is an eigen-

For a small perturbation about a nominally symmetric bi . o 2
directional architecture, a valid approximation is obéain function of the Laplacian in (15) and thai = —7 is the

by takingz+ — 2~ ~ & which yields corresponding eigenvalue, for every positive integger
Lemma 1:Consider the eigenvalue problem (15) for
u® (z,t) ~ 1 k)5 (2, t) + éa[k(+)ﬁ] (.t the linear partial differential equation (13) with Diriel
’ p2 P ’ 2 Oz ’ boundary conditions. Th&" eigenvalue pairf = 1,2,.. .,

is given the analytical formula

=——k5 - — — (kDp), 9
P6 250: " 7 © L —byt BE a2
where ST 2 . - =
+) (=) o pfon For large values ofN, py ~ 3-, thereforeasl® ~
B = ky(z) + ko(z), k7= ky(z) — kp(x).  (10) 471'2/{0]{[—22. We look for/ such thata3i? < b3, i.e.,
The velocity feedback terml(.”) has a continuous counter- boN
part u(”) (z,t) = —b(x)d(x,t). With the feedback control < 2 =, (16)
u(z,t) = u®(z,t) + u® (x,t), whereu® (z,t) is given 2mvko
by (9), the linearized momentum equation (7) becomes which makes the discriminantb3 — «3i®*) > 0, and
o 1 1 0 correspondingly, the eigenvaluq% real. Whensli are real,
Tl [p_g p+ 2—p8%(ﬁk(+)) + b0 . the eigenvalue;” is closer to the origin thas; ; so we call

_ +r _ _ _ s; the less stable™ eigenvalue. The following corollary
Upon differentiating both sides with respectitand using to Lemma 1, which is straightforward to prove, shows the
the continuity equation (6) we obtain the PDE that describefependence of the less stalfeeigenvalue onv.

small velocity perturbations(z, ¢) of the platoon: Corollary 1: Consider the eigenvalue problem for the
92 O\ . 1,00 19, )00 linear partial d_il_‘ferential equation (13) v_vith Dirichlet
(@ +b§) v= %( D 8_x) sz%( D 8_:0) boundary conditions. Thé'" less stable eigenvalug;”
0 (1) depends onV as
Because of the fictitious lead and follow vehicles, the st — _@ﬁ O(i) Vi <<
appropriate boundary conditions are of the Dirichlet type: ! by N? N47 “
5(0,t) = #(2m,t) = 0. VYt € [0,00) (12) wherel, is defined in (16). . . O
The corollary shows that thieast stable eigenvaluie
IV. ANALYSIS OF LOSS OF STABILITY N ko 1
In this section we analyze how the least stable eigenvalue 1%~ by N2 (17)

of the PDE model of the vehicular platoon dependshon
We explain the loss of closed loop stability of the platoo
as N — oo by showing that the least stable eigenvalu
of the PDE approaches as O(5) no matter how the
controller gains are chosen as long as they are the sa
for all the vehicles. These predictions are later validdigd
direct computation of eigenvalues df, . To this end, we
consider the case when all the control gains are consta

for large values ofN. Therefore, to keep the least stable
réigenvalue bounded away frobnusing a constant position
feedback gainky, one has to increase the control gain
kg as N2. Jovanovicet. al. studied the LQR control of
Ierlatoon on a circle [1] and showed that to keep the
closed loop eigenvalues bounded away from zero, one
E%s to increase the control gains A8. Although the
- - . R solution in general may not lead to a decentralized
]éplgl(zlel:) sifri(cfiz‘iez t/;o and b(x) = bo. The governing , chitecture, both formulations seem to suffer from simila
P fundamental limitations. validation of prediction in (1i8)
( 2 o 0 5 02 ) 5= 0 9 ko (13) provided in the next section — together with a way to combat

o2 ot M.2) 0T T R this loss of stability.



0
V. REDUCING LOSS OF STABILITY BY MISTUNING 10

. , hominal
In this section we study how to increase the damping of S e 0 B§ O,OW'S,}g,Qﬁga,
the least stable eigenvalue, i.e., increase the magnifiitte o R e @oroﬁar‘y E‘)tuned
real part, by making the front and back position feedback ° . ey s
gains k; and k; suitable functions ofz. We will add a :;10'2* ° e e o, R
small perturbation, or “mistuning”, on top of the nominal = ° e Co,
values of the control gains, and study the effect of this & 10, o N
mistuning on the eigenvalues of the linearized PDE (11). ! °
The mistuning profile is determined by optimizing the 10-L °
smallest eigenvalue using a perturbation based method ° e
from [8]. . °
107°F 1
Consider the position feedback gain profiles: 10 20 50 11%0 200 500 1000

ky(z) = ko + ek?(:z:), k¢(z) = ko + eky(z), (18)
9 Fig. 2. The least stable eigenvalue of the closed loop pfafae., of
wheree > 0 is a small number anﬁa( ), kif(x) € L2 are A, _p in (4)) and of the PDE (20) with Dirichlet boundary condition

functions that determine the mlstunlng of the gains. Definwith and without mistuning, for a range of values/¥f The nominal gains
areko = 1 and by = 0.5. In the mistuned case, forward and backward

. 0 a . L0 _1a controller gains are chosen &g = ko—0.1sin(x), ky, = ko+0.1sin(x)

ks = kj(2) + ky (), km = kj(2) = kj(2),  (19) (e, km(z) = —sin(z)//7, ks(z) = 0 ande = 0.2y/7). For the
platoon, controller gains are chosen by sampling the gainthe PDE as

kl(f) 1—0.1sin(yd), k (b) = 1+0.1sin(y¢), wherey¢ defined in (2)
_ is the desired position of théh vehicle. The legend “Corollary 2" refers

k;()+)($) = 2ko + eks(z), k1(7 )(55) = ek (). to the prediction by Corollary 2. Note that the predictionQdrollary 2

is plotted only for/V > 16 to ensure that << [. (see (16)).

so that

The mistuned version of the PDE (11) becomes
%, 00 0% 1 8(ksd) 1 O(kmd)
— 0o — 0 =€|s3 — .

ot ot a2 205 Ox? po  Ox 20) =" With this profile, the least stable eigenvalue is
Our interest is in designing thmistuning profilesk,(z) N 6\/— 1

and k,,(z) to reduce the movement of the least stable 51 (€) = oy N

eigenvalue toward8 with increasingN, and in achieving . he limi dN 0
this with small mistuning amplitude. It turns out that a ™ the limitase — 0 .and N —oco.

vast improvement in the closed loop damping is possible by This corollary shows that even ambitrarily small per-
vanishingly small amounts of mistunindnen the mistuning turbation e on the mean gairk, can greatly increase the
profile k,,(x) is chosen appropriatelyk, does not play closed loop platoon stability margin: with mistuning the

as important a role a%,, does. The following theorem least stable eigenvalue decays only(s;;) instead of as

provides analytical expressions on tkt less stable eigen- O(x= i), as it does without mistuning.

values of the governing PDE with mistuning. Figure 2 presents numerical validation of this prediction
Theorem 1:Consider the mistuning gain profiles (18)as well as they; decay predicted for the nominal case

with ko = ko, = ko so that the governing PDE is givenin (17). The figure shows that

by (20). The less stablé" eigenvalue of the mistuned 1) the platoon eigenvalues match the PDE eigenvalues

e — 0, the optimal mistuning profile is given by, () =

sm(m)

PDE (20) with Dirichlet boundary conditions is given by: accurately over a range d¥, in both the nominal
on 1 and mistuned cases, and
s (€) / Ysin(lz)dz + O(e?) + O(== ), 2) the mistuned eigenvalues show an order of magnitude
2b0N N? improvement over the nominal case even though the
which is valid for each ase — 0 and N — oo. 0 controller gains differ from their nominal values only
by £10%.

The usefulness of this result arises because it provid
a means to add damping to ti€ less stable eigenvalue
s;” by suitably choosing the mistuning profile,,(z).
The following corollary, which follows from Theorem 1 Proof of Theorem 1in order to compute the eigenvalues,
trivially, shows how the least stable eigenvalue dependse take a Laplace transform and consider a boundary value

on N when the “optimal” mistuning pattern is applied, noproblem along the coordinate

ﬁ)r comparison, the figure also depicts the asymptotic
eigenvalue formula given in Corollary 2.

matter how small the mistuning amplitudes. 2 2
5 0%q 1 9%*(ksq) 1 9(kmq)
Corollary 2: Consider the problem of minimizing the —%5% 3+ 5%+ bosqg = c 22 02 T or
. . 2. 0 Po xz
least-stable eigenvalue of the PDE (20) with Dirichlet (21)

boundary condition (12) by choosing a functiép,(z) €  Hereq(z) is the Laplace transform @f(z, t) which satisfies
L?([0,27]) such thatfoz’T |km (2)|?dx = 1. In the limit as  Dirichlet boundary conditionsg(0) = ¢(27) = 0. We are



interested in eigenvalues of this boundary value problem, VI. CONCLUSION

i.e., values ofs for which a solution to the homogeneous e developed a PDE model of a controlled vehicular
pde (21) exists with Dirichlet boundary conditions. Topjatoon by modeling the motion of vehicles in a highway as
compute these, we use a perturbation method expressifigq flow in a channel. By analyzing this PDE we explained
the eigenfunction and eigenvalue in a series form: the progressive loss of closed loop stability with incragsi

a(@) = po(x)+ epi(z) + ole), (22) number of vehicles, when all vehicles use identical con-
s = 1o+ ert+ole) (23) trollers. Further analysis showed how to improve closed

0 ! ' loop stability by small amounts of mistuning. We proved

We note thater; denotes the perturbation to the nominaland numerically validated that with arbitrary small amaunt
eigenvaluery, as a result of the mistuning. Substitutingof mistuning, closed loop stability can be vastly improved.

Eq. (23) in Eq. (21) and doing ad(1) balance, we get The PDE developed in the paper can serve as a useful tool
0(1) : —a%(po)m + T(Q)po + bropg = 0, for further analysis and control-design for large plataons

whose eigen-solution is diven b — dr sin( 1+ We believe that similar PDEs can be developed and fruit-
9 given by = d sin(3), o = 5", fully exploited for a large number of problems involving

. . . . 2
wherel is an integer and, is arbitrary real constant. Next, multi-agent systems, not just vehicular platoons.
O(e) 1 —ag(p1)ax + (1§ + bro)pr =
ki Opo | 1 O(ks52)

po Ox | 202 Oz
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