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Abstract— We consider decentralized control of a platoon
of N identical vehicles moving in a straight line following a
single lead vehicle moving at constant velocity. The control
objective is for each vehicle to maintain the velocity of the
leader and inter-vehicular separation using only the local
information from itself and its two nearest neighbors. Each
vehicle is modeled as a double integrator. To aid the analysis,
we derive a continuous partial differential equation (PDE)
approximation of the discrete platoon dynamics. The PDE
model is used to explain the progressive loss of closed-loop
stability with increasing number of vehicles, and to devise
ways to combat this loss of stability.

If every vehicle uses the same controller, we show that
the least stable closed-loop eigenvalue approaches zero as
O( 1

N2 ) in the limit of a large number (N ) of vehicles. We
then show how to ameliorate this loss of stability by small
amounts of “mistuning”, i.e., changing the controller gains
from their nominal values. We prove that with arbitrary
small amounts of mistuning, the asymptotic behavior of the
least stable closed loop eigenvalue can be improved toO( 1

N
).

These conclusions are validated for the discrete platoon via
numerical calculations.

I. I NTRODUCTION

We consider the problem of controlling a 1-dimensional
platoon ofN identical vehicles such that individual vehicles
move at a constant desired velocityVd with an inter-
vehicular spacing of∆; shown schematically in Figure 1(a).
Due to its relevance to an automated highway system, this
problem has been extensively studied in literature [1–3]. A
controlled vehicular platoon with a constant but small inter-
vehicular distance can improve the capacity of a highway.

In this paper, we consider adecentralized bidirectional
control architecture: the control action at a vehicle de-
pends upon its own velocity and the relative position
errors between itself and its nearest neighbors (the vehicles
immediately ahead and behind it). Decentralized refers to
the constraint that a vehicle is allowed to use only its
local information, and “bidirectional” refers to the fea-
ture whereby information from both the vehicles ahead
(predecessor) and behind (follower) is used. In contrast, a
centralized control architecture would require information
from all the vehicles to be transmitted to a central controller,
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making the communication overhead impractical for large
platoons. Since the vehicles are assumed to be identical,
one particularly important special case is the so-called
symmetric bidirectional control, where all vehicles use
identical controllers that are furthermore symmetric with
respect to the predecessor and the follower position errors.

Control of large vehicular platoons with a desired con-
stant inter-vehicular spacing is challenging due to “string
instability” or “slinky-type effects” referring to the am-
plification of disturbance as it propagates through the
platoon. Here, the effect of disturbance felt by one vehicle
gets amplified for vehicles both ahead and behind it, and
the amplification grows without bound as the number of
vehicles increases [2, 4–6].

These effects are essentially due to the progressive loss of
closed-loop damping as the number of vehicles increases.
Jovanovićet. al. have recently considered an LQR formu-
lation of the platoon problem [1]. They showed that the
eigenvalues of the closed-loop approach the imaginary axis
as the number of vehicles in the platoon increases without
bound. Note that an LQR formulation will in general lead
to a centralized control architecture.

This paper is concerned with the analysis of closed-
loop instabilities but more importantly with methods for
their amelioration while using decentralized bi-directional
architectures. There are three contributions of this work that
are summarized below. In order to facilitate the analysis,
we derive a linear partial differential equation (PDE) con-
tinuous model from the discrete platoon dynamics. Note
that “discrete” here refers to the spatial discreteness, the
time axis is continuous in both the platoon dynamics and
the PDE model. The results of this paper are obtained by
analyzing the PDE; they are then validated by numerical
computation of the closed loop platoon dynamic equations.
The PDE model is inspired by the extensive literature on
traffic dynamics; cf. [7] and references therein. In the limit
of large N , the vehicles moving in a straight line are
idealized as particles in a 1-dimensional flow.

The second contribution of this paper is to use the PDE
model to show that the least stable closed-loop eigen-
value of the discrete platoon dynamics approaches zero as
O( 1

N2 ), whereN is the number of vehicles. This conclusion
is independent to the choice of controller gains.

The third contribution and the most significant advantage
of using a PDE based analysis is that the PDE reveals, better
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Fig. 1. A platoon withN vehicles moving in one dimension.

than the discrete equations do, the reason for the loss of
stability and suggests “mistuning” to improve the stability
margin. In particular, assignment of controller gains such
that a vehicle utilizes information from the preceding
vehicle differently from the following vehicle is seen to
be beneficial. Our main result Corollary 2 shows how to
achieve the best improvement in closed-loop stability by
exploiting this asymmetry. In particular, we show that an
arbitrary small perturbation (asymmetry) in the controller
gains from their nominal (symmetric) value can improve the
closed-loop damping such that the least stable eigenvalue
now approaches0 only as O( 1

N
). Direct computation of

eigenvalues in discrete platoons is used to validate these
results. The mistuning profile is determined by optimizing
the smallest eigenvalue using a perturbation-based method
from [8]. We note that the mistuning based approaches
have been used for stability augmentation in many structural
applications; see [9] for a recent references.

The rest of the paper is organized as follows: section II
describes the platoon problem formulation; section III then
describes the derivation of the PDE model. In section IV
the PDE is analyzed to explain the loss of stability with
N , and section V describes how to ameliorate such loss of
stability by mistuning.

II. PROBLEM STATEMENT

Consider a platoon ofN identical vehicles moving in
a straight line as shown schematically in Figure 1(a).
Let Zi(t) and Vi(t) denote the position and the velocity,
respectively, of theith vehicle fori = 1, 2, . . . , N . Since the
inter-connected platoon dynamics are of primary interest,
a simple double integrator is used to model the essential
dynamics of an individual vehicle:

Z̈i = Ui,

whereUi is the control (engine torque) applied on theith

vehicle. Formally, such a model arises after the velocity
dependent drag and other non-linear terms have been elim-
inated by using feedback linearization [3, 6]. The control
objective is to maintain a constant inter-vehicular distance
∆ and a constant velocityVd for every vehicle. The control

architecture is required to bedecentralized, so that every
vehicle can use locally available measurements only.

Following [1], we introduce a fictitious lead vehicle
and a fictitious follow vehicle, indexed as0 and N + 1
respectively. Their behavior is specified by imposing con-
stant velocity trajectories asZ0(t) = Vdt and ZN+1 =
Vdt−(N+1)∆. Now every vehicle in the platoon, including
the 1st and theN th vehicle, has two neighbors and can
employ a decentralized bidirectional control architecture.

To facilitate the analysis, consider a coordinate change

yi = 2π(
Zi(t) − Vdt + L

L
), vi = 2π

Vi − Vd

L
, (1)

whereL denotes the platoon length, which equals(N+1)∆
in scenario I andN∆ in scenario II. Figure 1(b) depicts
the schematic of the platoon in the new coordinates. The
normalization ensures thaty0(t) ≡ 2π, yi(t) ∈ [0, 2π], and
yN+1(t) ≡ 0. Here, we have implicitly assumed that the
deviations of the vehicle positions and velocities from their
desired values are small.

In the normalized coordinates, the dynamics of theith

vehicle are described by

ÿi = ui,

whereui := 2πUi/L. The desired spacing and velocities
are

δ :=
∆

L/2π
, vd :=

Vd − Vd

L/2π
= 0,

and the desired position of theith vehicle is

yd
i (t) ≡ 2π − iδ. (2)

The position and velocity errors for theith vehicle in they
coordinate are:

ỹi(t) = yi(t) − yd
i (t), ṽi = vi − vd = vi.

We note thatṽ0 = ṽN+1 = 0 for the fictitious lead and
follow vehicles.

For the purposes of control, it is useful to introduce the
front and back relative (position) errors for theith vehicle:

e
(f)
i =

Zi−1 − Zi − ∆

L/2π
= yi−1 − yi − δ,

e
(b)
i =

Zi − Zi+1 − ∆

L/2π
= yi − yi+1 − δ,

for i = 1, . . . , N . The quantitye
(f)
i denotes thefront

relative position error between theith and its predecessor
(i − 1) vehicle, ande(b)

i denotes theback relative position
error between theith and its follower (i + 1) vehicle. The
relative errors, including the velocity error, can be obtained
by on-board devices such as radars, GPS and speed sensors.
Consistent with the decentralized bidirectional linear con-
trol architecture, the controlui for theith vehicle is assumed
to depend only on 1) its velocitỹvi, and 2) the relative
position errors between itself and its immediate neighbors.
That is,

ui = k
(f)
i e

(f)
i − k

(b)
i e

(b)
i − bi ṽi, (3)



wherek
(·)
i , bi are positive constants. The first two terms are

used to compensate for any deviation away from nominal
with the predecessor and the follower vehicles respectively.
The third term is used to obtain a zero steady-state error
in velocity. In principle, relative velocity errors between
neighboring vehicles can also be incorporated into the
control, but we do not examine this situation here.

To describe the closed-loop dynamics of the platoon,
define

ỹ := [ỹ1, ỹ2, . . . , ỹN ]T ,

ṽ := [ṽ1, . . . , ṽN ]T .

For scenario I with fictitious lead and follow vehicles, the
control law (3) yields the following closed loop dynamics.

[
˙̃y
˙̃v

]

=

[
0 I

−K
(f)
I MT − K

(b)
I M −B

]

︸ ︷︷ ︸

AL−F

[
ỹ

ṽ

]

(4)

where K
(f)
I = diag(k

(f)
1 , k

(f)
2 , . . . , k

(f)
N ), K

(b)
I =

diag(k
(b)
1 , k

(b)
2 , . . . , k

(b)
N ), B = diag(b1, b2, . . . , bN ) and

M =






1 −1 0 ...
0 1 −1

...
... 0

1 −1
... 0 1




 .

Our goal is to understand the progressive loss of closed loop
stability with increasingN and to devise ways to amelio-
rate such a loss by appropriately choosing the controller
gains. While in principle this can be done by analyzing
the eigenvalues of the matrixAL−F , we approximate the
dynamics of the discrete platoon by a partial differential
equation (PDE) which we then use for analysis and control
design.

III. C ONTINUOUS MODEL OF VEHICLE PLATOON

In this section, we develop a continuous PDE approxima-
tion of the (spatially) discrete platoon dynamics. The PDE
is derived with respect to a normalized spatial coordinate
x ∈ [0, 2π]. We recall that the normalized location of the
ith vehicle (denoted asyi) too was defined with respect
to this coordinate system. In effect, the two symbolsx
andy correspond to the same coordinate representation but
are used here to distinguish the continuous and discrete
formulations.

With respect to the normalized coordinate, every car is
nominally assumed to lie within an interval of lengthδ (see
Fig. 1(b)). For the purpose of a continuous approximation,
we smear each vehicle over its interval to get a constant
mean density

ρ0 ≈ N

2π
=

1

δ
(5)

for N vehicles in the platoon. The dynamics of the indi-
vidual vehicles in the platoon create perturbations in the
density, with the local densityρ(x, t) increasing (decreas-
ing) as the cars move closer (apart). The starting point
of macroscopic continuous models of traffic flow thus is

the continuity equation, which relates the densityρ(x, t)
(vehicles per unit characteristic length) at spatial coordinate
x ∈ [0, 2π] and timet ∈ [0,∞) with the velocityv(x, t):

∂ρ

∂t
+

∂(ρv)

∂x
= 0.

In order to analyze small perturbations about the mean,
we define the perturbed quantitiesρ̃, ṽ by the relations

ρ(x, t) = ρ0 + ρ̃(x, t), v(x, t) = 0 + ṽ(x, t),

where the mean velocity is zero because of our choice of
the coordinate system (see (1)). Even thoughv and ṽ are
the same, we usẽv to draw attention to the fact that the
velocity is a small perturbation of the mean value. For such
perturbations, the linearized continuity equation is given by

∂ρ̃

∂t
+ ρ0

∂ṽ

∂x
= 0 ⇒ ∂ṽ

∂x
= − 1

ρ0

∂ρ̃

∂t
(6)

This equation is consistent with the physical intuition
whereby a positive gradient in velocity (due to say the
predecessor speeding up or the follower slowing down) will
cause the local density to decrease. In order to study density
perturbations, one thus needs to specify the velocity which
arises due to the linearized momentum balance:

∂v

∂t
= F (x, t) ⇒ ∂ṽ

∂t
= u(x, t), (7)

whereF (x, t) is the acceleration due to the controlu(x, t)
and possible disturbances. Here, we focus only on the
control. Using (3), the control for theith vehicle in the
platoon is of the form:

ui(t) = u
(pf)
i (t) − u

(pb)
i (t)

︸ ︷︷ ︸

u
(p)
i

(t)

+u
(v)
i (t), where

u
(pf)
i (t) := k

(f)
i (yi−1(t) − yi(t) − δ),

u
(pb)
i (t) := k

(b)
i (yi(t) − yi+1(t) − δ),

u
(v)
i (t) := −bṽi(t).

whereu
(pf)
i , u

(pb)
i are theposition dependentf ront andback

control terms. Corresponding to this discrete control law,
we derive a continuous approximation

u(x, t) = u(pf)(x, t) − u(pb)(x, t)
︸ ︷︷ ︸

u(p)(x,t)

+u(v)(x, t), (8)

such thatu(pf)(yi, t) = u
(pf)
i (t), u(pb)(yi, t) = u

(pb)
i (t),

andu(v)(yi, t) = u
(v)
i (t). Now,

u
(pf)
i =k

(f)
i (yi−1− yi − δ)= k

(f)
i (1− δ

yi−1 − yi

)(yi−1 − yi)

≈
∫ yi−1

yi

kpf (x)(1 − ρ(x)

ρ0
)dx,

where the approximation is obtained by smearing the con-
trol action over the interval[yi, yi−1] and substitutingkf (x)

for the discrete control gaink(f)
i . Sinceρ = ρ0+ρ̃, we have

u
(pf)
i (t)≈ − 1

ρ0

∫ yi−1

yi

kf (x)ρ̃(x, t)dx=− 1

ρ0
[kf ρ̃](x+, t)δ,



by the Mean Value Theorem, wherex+ ∈ [yi, yi−1]. Since
u

(pf)
i (t) = u(pf)(yi, t) andδ = 1/ρ0 (see (5)), we take

u(pf)(x, t) = − 1

ρ2
0

[kf ρ̃](x+, t),

u(pb)(x, t) = − 1

ρ2
0

[kb ρ̃](x−, t),

wherex+ ∈ [yi, yi−1] andx− ∈ [yi+1, yi]. Using (8),

u(p)(x, t) = u(pf)(x, t) − u(pb)(x, t)

= − 1

ρ2
0

(
[kf ρ̃](x+, t) − [kb ρ̃](x−, t)

)
.

In order to specify the control, one thus needs to approxi-
mate the terms on the right hand side as functions of(x, t).
For a small perturbation about a nominally symmetric bi-
directional architecture, a valid approximation is obtained
by takingx+ − x− ≈ δ which yields

u(p)(x, t) ≈ − 1

ρ2
0

[

[k(−)
p ρ̃](x, t) +

δ

2

∂[k(+)ρ̃]

∂x
(x, t)

]

= − 1

ρ2
0

k(−)ρ̃ − 1

2ρ3
0

∂

∂x
(k(+)ρ̃), (9)

where

k(+) := kf (x) + kb(x), k(−) := kf (x) − kb(x). (10)

The velocity feedback termu(v)
i has a continuous counter-

part u(v)(x, t) = −b(x)ṽ(x, t). With the feedback control
u(x, t) = u(p)(x, t) + u(v)(x, t), whereu(p)(x, t) is given
by (9), the linearized momentum equation (7) becomes

∂ṽ

∂t
= −

[
1

ρ2
0

k(−)ρ̃ +
1

2ρ3
0

∂

∂x
(ρ̃k(+)) + bṽ

]

.

Upon differentiating both sides with respect tot and using
the continuity equation (6) we obtain the PDE that describes
small velocity perturbations̃v(x, t) of the platoon:

(
∂2

∂t2
+ b

∂

∂t

)

ṽ =
1

ρ0
(k(−)

p

∂ṽ

∂x
) +

1

2ρ2
0

∂

∂x
(k(+)

p

∂ṽ

∂x
)

(11)

Because of the fictitious lead and follow vehicles, the
appropriate boundary conditions are of the Dirichlet type:

ṽ(0, t) = ṽ(2π, t) = 0. ∀t ∈ [0,∞) (12)

IV. A NALYSIS OF LOSS OF STABILITY

In this section we analyze how the least stable eigenvalue
of the PDE model of the vehicular platoon depends onN .
We explain the loss of closed loop stability of the platoon
as N → ∞ by showing that the least stable eigenvalue
of the PDE approaches0 as O( 1

N2 ) no matter how the
controller gains are chosen as long as they are the same
for all the vehicles. These predictions are later validatedby
direct computation of eigenvalues ofAL−F . To this end, we
consider the case when all the control gains are constant:
kpf (x) = kpb(x) ≡ k0 and b(x) ≡ b0. The governing
PDE (11) simplifies to

(
∂2

∂t2
+ b0

∂

∂t
− a2

0

∂2

∂x2

)

ṽ = 0, a2
0 :=

k0

ρ2
0

, (13)

which is a damped wave equation, witha0 being thewave
speed. In order to compute the eigenvalues of the PDE, we
take the Laplace transform of (13) w.r.t. to timet:

s2q(x, s) + b0 s q(x, s) − a2
0

d2

dx2
q(x, s) = 0, (14)

whereq(x, s) denotes the Laplace transform ofṽ(x, t). This
equation can be written as

d2q

dx2
= λq(x), λ :=

s2 + b0 s

a2
0

, (15)

which is an eigenvalue problem involving the Laplacian.
The next lemma summarizes how the eigenvalues of the
PDE depend of the parameters of the problem. The lemma
can be verified by using the fact thatsin( lx

2 ) is an eigen-
function of the Laplacian in (15) and thatλl = − l2

4 is the
corresponding eigenvalue, for every positive integerl.

Lemma 1:Consider the eigenvalue problem (15) for
the linear partial differential equation (13) with Dirichlet
boundary conditions. Thelth eigenvalue pair,l = 1, 2, . . . ,
is given the analytical formula

s±l =
−b0 ±

√

b2
0 − a2

0l
2

2
. �

For large values ofN , ρ0 ≈ N
2π

, thereforea2
0l

2 ≈
4π2k0

l2

N2 . We look for l such thata2
0l

2 < b2
0, i.e.,

l <
b0N

2π
√

k0

=: lc, (16)

which makes the discriminant(b2
0 − a2

0l
2) > 0, and

correspondingly, the eigenvaluess±l real. Whens±l are real,
the eigenvalues+

l is closer to the origin thans−l ; so we call
s+

l the less stablelth eigenvalue. The following corollary
to Lemma 1, which is straightforward to prove, shows the
dependence of the less stablelth eigenvalue onN .

Corollary 1: Consider the eigenvalue problem for the
linear partial differential equation (13) with Dirichlet
boundary conditions. Thelth less stable eigenvalues+

l

depends onN as

s+
l = −π2k0

b0

l2

N2
+ O(

1

N4
), ∀l << lc,

wherelc is defined in (16). �

The corollary shows that theleast stable eigenvalueis

s+
1 ≈ −π2k0

b0

1

N2
(17)

for large values ofN . Therefore, to keep the least stable
eigenvalue bounded away from0 using a constant position
feedback gaink0, one has to increase the control gain
k0 as N2. Jovanovićet. al. studied the LQR control of
a platoon on a circle [1] and showed that to keep the
closed loop eigenvalues bounded away from zero, one
has to increase the control gains asN2. Although the
LQR solution in general may not lead to a decentralized
architecture, both formulations seem to suffer from similar
fundamental limitations. validation of prediction in (17)is
provided in the next section – together with a way to combat
this loss of stability.



V. REDUCING LOSS OF STABILITY BY MISTUNING

In this section we study how to increase the damping of
the least stable eigenvalue, i.e., increase the magnitude of its
real part, by making the front and back position feedback
gains kf and kb suitable functions ofx. We will add a
small perturbation, or “mistuning”, on top of the nominal
values of the control gains, and study the effect of this
mistuning on the eigenvalues of the linearized PDE (11).
The mistuning profile is determined by optimizing the
smallest eigenvalue using a perturbation based method
from [8].

Consider the position feedback gain profiles:

kf (x) = k0 + ǫka
f (x), kf (x) = k0 + ǫka

b (x), (18)

whereǫ > 0 is a small number andka
f (x), ka

b (x) ∈ L2 are
functions that determine the mistuning of the gains. Define

ks := ka
f (x) + ka

b (x), km := ka
f (x) − ka

b (x), (19)

so that

k(+)
p (x) = 2k0 + ǫks(x), k(−)

p (x) = ǫkm(x).

The mistuned version of the PDE (11) becomes

∂2ṽ

∂t2
+ b0

∂ṽ

∂t
− a2

0

∂2ṽ

∂x2
= ǫ

[
1

2ρ2
0

∂2(ksṽ)

∂x2
+

1

ρ0

∂(kmṽ)

∂x

]

.

(20)
Our interest is in designing themistuning profilesks(x)
and km(x) to reduce the movement of the least stable
eigenvalue towards0 with increasingN , and in achieving
this with small mistuning amplitudeǫ. It turns out that a
vast improvement in the closed loop damping is possible by
vanishingly small amounts of mistuningwhen the mistuning
profile km(x) is chosen appropriately;ks does not play
as important a role askm does. The following theorem
provides analytical expressions on thekth less stable eigen-
values of the governing PDE with mistuning.

Theorem 1:Consider the mistuning gain profiles (18)
with k0f = k0b = k0 so that the governing PDE is given
by (20). The less stablelth eigenvalue of the mistuned
PDE (20) with Dirichlet boundary conditions is given by:

s+
l (ǫ) =

ǫl

2b0N

∫ 2π

0

km(x) sin(lx)dx + O(ǫ2) + O(
1

N2
),

which is valid for eachl as ǫ → 0 andN → ∞. �

The usefulness of this result arises because it provides
a means to add damping to thelth less stable eigenvalue
s+

l by suitably choosing the mistuning profilekm(x).
The following corollary, which follows from Theorem 1
trivially, shows how the least stable eigenvalue depends
on N when the “optimal” mistuning pattern is applied, no
matter how small the mistuning amplitudeǫ is.

Corollary 2: Consider the problem of minimizing the
least-stable eigenvalue of the PDE (20) with Dirichlet
boundary condition (12) by choosing a functionkm(x) ∈
L2([0, 2π]) such that

∫ 2π

0 |km(x)|2dx = 1. In the limit as
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Fig. 2. The least stable eigenvalue of the closed loop platoon (i.e., of
AL−F in (4)) and of the PDE (20) with Dirichlet boundary conditions,
with and without mistuning, for a range of values ofN . The nominal gains
are k0 = 1 and b0 = 0.5. In the mistuned case, forward and backward
controller gains are chosen askf = k0−0.1 sin(x), kb = k0+0.1 sin(x)
(i.e., km(x) = − sin(x)/

√
π, ks(x) ≡ 0 and ǫ = 0.2

√
π). For the

platoon, controller gains are chosen by sampling the gains for the PDE as
k
(f)
i = 1−0.1 sin(yd

i ), k
(b)
i = 1+0.1 sin(yd

i ), whereyd
i defined in (2)

is the desired position of theith vehicle. The legend “Corollary 2” refers
to the prediction by Corollary 2. Note that the prediction ofCorollary 2
is plotted only forN > 16 to ensure that1 << lc (see (16)).

ǫ → 0, the optimal mistuning profile is given byk∗
m(x) =

− sin(x)√
π

. With this profile, the least stable eigenvalue is

s+
1 (ǫ) = − ǫ

√
π

2b0

1

N

in the limit asǫ → 0 andN → ∞. �

This corollary shows that even anarbitrarily small per-
turbation ǫ on the mean gaink0 can greatly increase the
closed loop platoon stability margin: with mistuning the
least stable eigenvalue decays only asO( 1

N
) instead of as

O( 1
N2 ), as it does without mistuning.

Figure 2 presents numerical validation of this prediction
as well as the 1

N2 decay predicted for the nominal case
in (17). The figure shows that

1) the platoon eigenvalues match the PDE eigenvalues
accurately over a range ofN , in both the nominal
and mistuned cases, and

2) the mistuned eigenvalues show an order of magnitude
improvement over the nominal case even though the
controller gains differ from their nominal values only
by ±10%.

For comparison, the figure also depicts the asymptotic
eigenvalue formula given in Corollary 2.

Proof of Theorem 1.In order to compute the eigenvalues,
we take a Laplace transform and consider a boundary value
problem along the coordinatex:

−a2
0

∂2q

∂x2
+ s2q + b0sq = ǫ

[
1

2ρ2
0

∂2(ksq)

∂x2
+

1

ρ0

∂(kmq)

∂x

]

.

(21)
Hereq(x) is the Laplace transform of̃ρ(x, t) which satisfies
Dirichlet boundary conditions:q(0) = q(2π) = 0. We are



interested in eigenvalues of this boundary value problem,
i.e., values ofs for which a solution to the homogeneous
pde (21) exists with Dirichlet boundary conditions. To
compute these, we use a perturbation method expressing
the eigenfunction and eigenvalue in a series form:

q(x) = p0(x) + ǫp1(x) + o(ǫ), (22)

s = r0 + ǫr1 + o(ǫ). (23)

We note thatǫ r1 denotes the perturbation to the nominal
eigenvaluer0 as a result of the mistuning. Substituting
Eq. (23) in Eq. (21) and doing anO(1) balance, we get

O(1) : −a2
0(p0)xx + r2

0p0 + br0p0 = 0,

whose eigen-solution is given byp0 = dl sin( lx
2 ), r0 = s±l ,

wherel is an integer anddl is arbitrary real constant. Next,

O(ǫ) : −a2
0(p1)xx + (r2

0 + br0)p1 =

km

ρ0

∂p0

∂x
+

1

2ρ2
0

∂(ks
∂p0

∂x
)

∂x
− (2r0r1 + b0r1)p0 := R

Substitutingr0 = s±l (from Lemma 1) andp0 = sin( lx
2 )

on the left hand side leads to a resonance condition for
the right hand side term, denoted byR. In particular for a
solution p1 to exist,R must lie in the range space of the
linear operator

(

−a2
0

∂2

∂x2
+ (r2

0 + b0r0)

)

. (24)

For this self-adjoint operator, the range space is the com-
plement of its null space{sin( lx

2 )}. This gives a resonance
condition 1

π
< R, sin( lx

2 ) >= 0, where< ·, · > denotes
the standard inner product inL2(0, 2π). Explicitly,

(2r0 + b0)r1 =
l

4πρ0

∫ 2π

0

km(x) sin(lx)dx

− l2

8πρ2
0

∫ 2π

0

ks(x) cos2(
lx

2
)dx.

For values of r0 = s±l , this leads to an expression
for perturbation in the two eigenvalues. We denote these
perturbations asr±1 . For r0 = s+

l , we haveb0 >> |2r0|, so
that

r+
1 =

l

4πρ0b0

∫ 2π

0

km(x) sin(lx)dx + O(
1

N2
). (25)

Notice that in arriving at (25), we have dropped the integral
involving 1

ρ2
0
, since 1

ρ2
0

= O( 1
N2 ). Putting the formulas for

eigenvalue perturbation (25) in (23), we get

s+
l (ǫ) ≈ s+

l (0) + ǫ
l

4πb0ρ0

∫ 2π

0

km(x) sin(lx)dx

+ O(ǫ2) + O(
1

N2
).

Sinces+
l (0) = O( 1

N2 ) for l < lc (Corollary 1) andρ0 ≈
N
2π

, we get the result. Although the perturbationr−1 will
be positive and subtract damping, it does so to the more
stable eigenvaluer−0 , so the less stable eigenvalues are not
affected by it.

VI. CONCLUSION

We developed a PDE model of a controlled vehicular
platoon by modeling the motion of vehicles in a highway as
fluid flow in a channel. By analyzing this PDE we explained
the progressive loss of closed loop stability with increasing
number of vehicles, when all vehicles use identical con-
trollers. Further analysis showed how to improve closed
loop stability by small amounts of mistuning. We proved
and numerically validated that with arbitrary small amounts
of mistuning, closed loop stability can be vastly improved.

The PDE developed in the paper can serve as a useful tool
for further analysis and control-design for large platoons.
We believe that similar PDEs can be developed and fruit-
fully exploited for a large number of problems involving
multi-agent systems, not just vehicular platoons.
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[1] M. R. Jovanović and B. Bamieh, “On the ill-posedness
of certain vehicular platoon control problems,”IEEE
Transactions on Automatic Control, vol. 50, no. 9, pp.
1307 – 1321, September 2005.

[2] P. Seiler, A. Pant, and K. Hedrick, “Disturbance propa-
gation in vehicle strings,”IEEE Transactions on Auto-
matic Control, vol. 49, pp. 1835–1841, October 2004.

[3] S. S. Stankovic, M. J. Stanojevic, and D. D. Siljak,
“Decentralized overlapping control of a platoon of
vehicles,”IEEE Transactions on Control Systems Tech-
nology, vol. 8, pp. 816–832, September 2000.

[4] P. Barooah and J. P. Hespanha, “Error amplification
and distrubance propagation in vehicle strings,” in
Proceedings of the 44th IEEE conference on Decision
and Control, December 2005.

[5] S. K. Yadlapalli, S. Darbha, and K. R. Rajagopal,
“Information flow and its relation to the stability of the
motion of vehicles in a rigid formation,” inProceedings
of the 2005 American Control Conference, June 2005,
pp. 1853–1858.

[6] S. Darbha, K. Hedrick, C. C. Chien, and P. Ioannou,
“A comparison of spacing and headway control laws
for automatically controlled vehicles,”Vehicle System
Dynamics, vol. 23, pp. 597–625, 1994.

[7] D. Helbing, “Traffic and related self-driven many-
particle systems,”Review of Modern Physics, vol. 73,
pp. 1067–1141, 2001.

[8] P. G. Mehta, G. Hagen, and A. Banaszuk, “Symmetry
and symmetry-breaking in wave equation with feed-
back,” SIAM Journal of Applied Dynamical Systems
(accepted for publication), 2006.

[9] A. J. Rivas-Guerra and M. P. Mignolet, “Local/global
effects of mistuning on the forced response of bladed
disks,” Journal of Engineering for Gas Turbines and
Power, vol. 125, pp. 1–11, 2003.


