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Abstract— A generalization of the autocovariance least-
squares method for estimating noise covariances is presented.
The method can estimate mutually correlated system and sensor
noise and can be used with both the predicting and the filtering
form of the Kalman filter.

Index Terms— Covariance estimation, optimal estimation,
state estimation.

I. INTRODUCTION

The Kalman filter requires knowledge about the noise

statistics. In practical applications, however, the noise co-

variances are generally not known. The autocovariance least-

squares (ALS) method was presented by Odelson et al. [1]

as a technique for estimating the system and sensor noise

covariances from plant data. The technique was shown to

give unbiased estimates with smaller variance than previ-

ously proposed methods, such as the correlation method by

Mehra [2]. The objective of this paper is to demonstrate how

the method can be extended to systems where the system

noise and the sensor noise are mutually correlated. Moreover,

the generalized method works with both the predicting and

the filtering form of the Kalman filter.

II. GENERALIZED AUTOCOVARIANCE

LEAST-SQUARES ESTIMATION

Consider a linear time-invariant system in discrete-time,

xk+1 = Axk +Buk +Gwk

yk = Cxk + vk (1)

where A ∈ R
nx×nx , B ∈ R

nx×nu , G ∈ R
nx×nw and C ∈ R

ny×nx .

The process noise wk and the measurement noise vk are zero-

mean white noise processes according to
[

wk

vk

]

∼ N

([

0

0

]

,

[

Qw Swv

ST
wv Rv

])

. (2)

Assume that a suboptimal stationary Kalman filter is used

to estimate the state. The filter is based on initial guesses of

covariances Qw, Rv and Swv. The filter can be either in the

one-step predicting form,

x̂k+1|k = Ax̂k|k−1 +Buk +Kp(yk −Cx̂k|k−1), (3)

or in the filtering form,

x̂k|k = x̂k|k−1 +K f (yk −Cx̂k|k−1), (4)

TABLE I

DEFINITIONS OF SYMBOLS IN (8) FOR EACH KALMAN FILTER FORM

Symbol Predicting Form Filtering Form

ek yk −Cx̂k|k−1 yk −Cx̂k|k

Ā A−KpC A−KpC

Ḡ [G −Kp] [G −Kp]

C̄ C C−CK f C

H̄ I I −CK f

and the Kalman filter gains are defined as

Kp = (APpCT +GSwv)(CPpCT +Rv)
−1 (5)

K f = PpCT (CPpCT +Rv)
−1 (6)

and Pp is the covariance of the state prediction error, x̃k|k−1 =
xk − x̂k|k−1. The covariance Pp = E[x̃k|k−1x̃T

k|k−1
] is obtained

as the solution to the Riccati equation

Pp = APpAT +GQwGT

− (APpCT +GSwv)(CPpCT +Rv)
−1(CPpAT +ST

wvGT ).
(7)

A general state-space model of the measurement predic-

tion/estimate error can be defined,

x̃k+1|k = Āx̃k|k−1 + Ḡw̄k

ek = C̄x̃k|k−1 + H̄vk (8)

where ek and the system matrices have different definitions,

as shown in Table I, depending on which form of the filter

is used. The noise w̄k in (8) is defined as

w̄k =

[

wk

vk

]

with properties
[

w̄k

vk

]

∼ N

([

0

0

]

,

[

Q̄w S̄wv

S̄T
wv Rv

])

(9)

where

Q̄w = E[w̄kw̄T
k ] =

[

Qw Swv

ST
wv Rv

]

, S̄wv = E[w̄kvT
k ] =

[

Swv

Rv

]

.
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The autocovariance of the measurement prediction or

estimate error is given by

Re,0 = E[ekeT
k ] = C̄PpC̄T + H̄RvH̄T (10)

Re, j = E[ek+ je
T
k ] = C̄Ā jPpC̄T +C̄Ā j−1GSwvH̄T

−C̄Ā j−1KpRvH̄T
, j ≥ 1 (11)

The autocovariance matrix is defined as

Re(L) =











Re,0 RT
e,1 · · · RT

e,L−1

Re,1 Re,0 RT
e,L−2

...
. . .

...

Re,L−1 Re,L−2 · · · Re,0











(12)

and can be written as

Re(L) = OPpOT +Z

[

L
⊕

i=1

Qw

]

ZT

+Z

[

L
⊕

i=1

Swv

]

ΨT +Ψ

[

L
⊕

i=1

ST
wv

]

ZT

+Ψ

[

L
⊕

i=1

Rv

]

ΨT
, (13)

where

Z = Γ

[

L
⊕

i=1

G

]

, Ψ = Γ

[

L
⊕

i=1

(−Kp)

]

+
L
⊕

i=1

H̄

and

O =











C̄

C̄Ā
...

C̄ĀL−1











, Γ =















0 · · · 0 0 0

C̄ 0 0 0

C̄Ā 0 0 0
...

. . .
...

C̄ĀL−2 · · · C̄Ā C̄ 0















.

We apply the vec operator to (13) in order to state the

problem as a linear least-squares problem. The vec operator

performs stacking of the matrix columns to form a column

matrix [3]. By applying the rules for the vec operator, we

write the Lyapunov equation for Pp in stacked form, with

the subscript s used as shorthand for the vec operator, i.e.

vec(A) = As.

vec(Pp) = vec(ĀPpĀT )+vec(ḠQ̄wḠT )

= (In2
x
− Ā⊗ Ā)−1(ḠQ̄wḠT )s (14)

We introduce three permutation matrices. For an m× n

matrix A we define a permutation matrix Um,n,L, which is an

mnL2 ×mn matrix of zeros and ones satisfying

vec

(

L
⊕

i=1

A

)

= Um,n,Lvec(A) . (15)

For a square matrix of size p× p we have the permutation

matrix Up,L = Up,p,L. Finally, there is the vec-permutation

matrix (or commutation matrix) Tm,n, such that for an m×n

matrix A [3], [4],

vec
(

AT
)

= Tn,mvec(A) . (16)

Applying the vec operator to (13) yields

(Re(L))s =[(Z ⊗Z)Unw,L +D(G⊗G)](Qw)s

+[(Ψ⊗Ψ)Uny,L +D(Kp ⊗Kp)](Rv)s

+[(Ψ⊗Z)Unw,ny,L −D(In2
x
+Tnx,nx)(Kp ⊗G)

+(Z ⊗Ψ)Uny,nw,LTny,nw ](Swv)s (17)

in which

D = (O⊗O)(In2
x
− Ā⊗ Ā)−1

. (18)

Given a sequence of data {ei}
Nd
i=1, the estimate of the

autocovariance can be computed by

R̂e, j =
1

Nd − j

Nd− j

∑
i=1

ei+ je
T
i , (19)

where Nd is the length of the data sequence. The estimated

autocovariance matrix R̂e(L) can be formed analogously to

(12) using the estimates (19). Now (17) can be written in the

form of a linear least-squares problem

Φ = min
Qw,Swv,Rw

∥

∥

∥

∥

∥

∥

A





(Qw)s

(Swv)s

(Rv)s



− (R̂e(L))s

∥

∥

∥

∥

∥

∥

2

2

(20)

where additional constraints may be necessary in order to

ensure positive semidefiniteness of the covariance matrices.

As noted in [1], a short data sequence or significant model

error may result in covariance estimates that are not positive

definite. This problem can be remedied by stating (20) as a

convex semidefinite programming problem [1].

The optimal Kalman filter gain can then be computed

from the estimated covariances by (5) or (6) after solving

the Riccati equation (7).

Note that for the case with a predicting Kalman filter and

with Swv = 0, (17) takes the form presented in [1].

III. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A generalization of the autocovariance least-squares

method by Odelson et al. has been presented. The gener-

alization is applicable to systems with mutually correlated

disturbances and also works with data generated by the

filtering form of the Kalman filter.

B. Future Works

Solution methods for the constrained least-squares prob-

lem will be investigated. The estimation method will be

applied to realistic examples.
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