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Abstract— This paper presents a nonlinear observer for the
range identification problem for a moving object, whose motion
is described by a known linear system with unknown coeffi-
cients. Convergent estimates of the unknown motion parameters
can be guaranteed under certain observability conditions.

I. INTRODUCTION

A variety of 3D motion estimation algorithms have been

developed since the 1970’s, inspired by such disparate appli-

cations as robot navigation, medical imaging, and video con-

ferencing. Even though motion estimation from imagery is

not a new topic, continual improvements in digital imaging,

computer processing capabilities, and nonlinear estimation

theory have helped to keep the topic current. Existing meth-

ods for 3D motion estimation include the nonlinear optimiza-

tion formulation [1]–[3], linear least-square algorithms [4],

the extended Kalman filter (EKF) [5], [6], and perspective

nonlinear observers [7]–[13]. Perspective nonlinear observers

refer to the class of observers that arise from a control point

of view in perspective dynamical systems (PDS) framework.

In general, a PDS is a linear system whose output is observed

up to a homogeneous line [9].

Among the aforementioned algorithms, the nonlinear opti-

mization formulation generally suffers from the initial value

selection problem, while the shortcoming of the (total)

least-square algorithms, which are SVD-based, is sensitivity

to noise [3]. Assuming the moving object follows certain

motion dynamics, extended Kalman filter (EKF) has been

used to estimate the states of a nonlinear system, where

the states can be chosen to include the motion parameters

and positions. The EKF is a recursive approach that usually

requires less computation time for each new set of data (each

new image, for example). State estimates are computed based

on all past data and can readily extrapolate the state estimates

ahead in time to aid in preprocessing the next set of data.

The EKF is based on the linearization about an estimated

trajectory. However, for the vision-based motion estimation

problem, geometric structure of a perspective system will be

lost if a linearization-based approach is taken. Moreover, the

EKF is more complicated since a priori knowledge of the

noise distribution is required. Due to the above mentioned

problems, efforts have been made towards other nonlinear
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observers for perspective dynamic systems that arise in

visual tracking problems. This class of nonlinear observers

is referred to as perspective nonlinear observer. This paper

presents one method for such an observer design.

Perspective nonlinear observers are used quite often for

determining the unknown states (i.e., the Euclidean coordi-

nates) of a moving object with known motion parameters.

For example, an identifier-based observer was proposed in

[7] to estimate a stationary point’s 3D position using a

moving camera. Another discontinuous observer, motivated

by sliding mode and adaptive methods, is developed in [9]

that renders the state observation error uniformly ultimately

bounded. A state estimation algorithm with a single ho-

mogeneous observation (i.e., a single image coordinate) is

presented in [12]. A reduced-order nonlinear observer is

described in [11] to provide asymptotic range estimates.

The above described observers are based on a conventional

planar imaging surface. In [14], [15], the state identification

problem is discussed for a paraboloid surface. All these

results are based on the assumption that the motion pa-

rameters are known. In this paper, we discuss a situation

when some of the motion parameters, more specifically, the

rotational parameters, are unknown constants. The objective

is to achieve state estimation and parameter convergence.

One model for the relative motion of a point in the

camera’s field of view is the following linear system:





Ẋ(t)

Ẏ (t)

Ż(t)



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33









X(t)
Y (t)
Z(t)



 +





b1

b2

b3



 , (1)

where the matrix [aij ] presents the rotational dynamics,

the vector [bi] corresponds to the translational motion,

while [X, Y, Z]⊤ are the coordinates of the point in the

camera frame. The affine motion dynamics introduced in

(1) describes an object motion that undergoes a rotation,

translation, and linear deformations [16]. From the 2D image

plane, the homogeneous output observations are given by

x1(t) = X(t)/Z(t), x2(t) = Y (t)/Z(t). (2)

These equations might model either a stationary point’s 3D

position as observed from a moving camera (assuming that

the moving camera’s velocities can be measured [7]) or a

moving point’s 3D position as observed from a stationary

camera [16]. In general, aij can be time-varying functions,

but in this paper we limit the discussion to constant aij’s.

Remark 1.1: Here, the bj’s are not constrained to be

constants since, as to be seen in Assumption 3.1, the bj’s
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need to satisfy certain observability conditions to estimate

the range information in the presence of unknown aij’s.

Let

x(t) = [x1(t), x2(t), x3(t)]
⊤

= [X(t)/Z(t), Y (t)/Z(t), 1/Z(t)]
⊤

.
(3)

The system (1) with output observations (3) is equivalent to

the system







[
ẋ1(t)
ẋ2(t)

]

=

[
b1 − b3x1

b2 − b3x2

]

x3 +

[
a13 + (a11 − a33)x1

a23 + a21x1

]

+

[
a12x2 − a31x

2
1 − a32x1x2

(a22 − a33)x2 − a31x1x2 − a32x
2
2

]

,

ẋ3(t) = −(a31x1 + a32x2 + a33)x3 − b3x
2
3,

(4)

with output y(t) = [x1(t), x2(t)]
⊤.

Practically, the outputs (x1(t), x2(t)) defined in (2) are

obtained through an inverse camera imaging process when

a pin-hole camera is used, as shown in Fig. 1, where

the camera’s focal length f is assumed to be 1 without

loss of generality. A 3D point [X, Y, Z]⊤ in the camera

frame goes through perspective projection and is observed

as [X/Z, Y/Z, 1]⊤. The 2D coordinates [X/Z, Y/Z]⊤ ex-

perience the camera’s imaging process and show on the

image plane as an image point with pixel-level coordinates

[u, v]⊤. [X/Z, Y/Z]⊤ can be calculated from the pixel-level

coordinate assuming an ideal one-to-one mapping including

camera modeling and calibration, Fig. 2. The calculated point

[X/Z, Y/Z]⊤, in the camera frame, serves as input to the

observer to estimate the 3D position [X, Y, Z]⊤.
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Fig. 1. Perspective projection

The range identification problem that has been discussed

in the literature involves estimating x3(t) from measurements

(x1(t), x2(t)) assuming that the motion parameters aij and

bi in (1) are known (where i, j ∈ {1, 2, 3}). Here, we assume

that some of the parameters aij are unknown. The objective,

then, is to estimate x3(t) as well as the unknown aij’s. This

problem can be formulated in a way such that an existing

identifier-based observer (IBO), described in [7], can be

applied. Under certain assumptions, the approach provides

exponential convergence of both the range and parameter

estimates. The IBO observer is motivated by adaptive fil-

tering theory, where the state and unknown parameters of a

dynamical system are estimated simultaneously. The general

approach of dynamic estimation appears often in machine

vision literature, including [7]–[13], to name just a few.

The paper is organized as follows. A brief review of the

IBO observer is given in Sec. II. In Sec. III, the range

identification problem with unknown motion parameters is

presented. Section IV presents simulation results. Section V

provides some summary conclusions.

II. REVIEW OF THE IBO OBSERVER

The IBO observer is designed for the following class of

nonlinear systems:






ẋ1 = w⊤(x1,u)x2 + φ(x1,u),

ẋ2 = g(x1,x2,u),

y = x1,

(5)

where x1(t) ∈ X1 ⊂ R
n1 ,x2(t) ∈ X2 ⊂ R

n2 and

u(t) ∈ U ⊂ R
k. The n1 × n2 matrix w⊤(x1,u) and the

vector g(x1,x2,u) are general nonlinear functions of their

parameters. Let x = [x⊤
1 ,x⊤

2 ]⊤ and n = n1 + n2 so that

x ∈ X ⊂ R
n where X = X1 ⊕ X2.

Following [7], we introduce the following assumptions:

Assumption 2.1:

1) Let x(t) be bounded ‖x(t)‖ < M, M > 0 for every

t ≥ 0. Let Ω = {x ∈ R
n : ‖x(t)‖ < M}. Further,

for some fixed constant γ > 1, let Ωγ = {x ∈
R

n : ‖x(t)‖ < γM}. Assume further that the function

g(x1,x2,u) is locally Lipschitz in Ωγ with respect to

x2, i.e., there exists a positive constant α such that

‖g(x1,x2,u) − g(x1,z2,u)‖ < α ‖x2 − z2‖, (6)

for all x2,z2 ∈ Ωγ ∩ X2, uniformly in x1 ∈ Ωγ ∩ X1

and u ∈ U.
2) Let the regressor matrix w⊤(x1,u) and its first

time derivative be piecewise smooth and uniformly
bounded. Further, assume that there exist positive
constants L1, L2, η and µ such that

‖w⊤(x1, u)‖ < L1,

‚

‚

‚

‚

dw⊤(x1, u)

dt

‚

‚

‚

‚

< L2, (7a)

Z t+µ

t

w (x1(τ), u(τ)) w⊤ (x1(τ), u(τ)) dτ > ηI, (7b)

for all t ≥ 0, for all trajectories that originate in X

and for all u ∈ U, while I denotes the identity matrix

of an appropriate dimension.

Letting x̂1 and x̂2 be the estimates of x1 and x2,

respectively, the IBO is introduced as:






˙̂x1 = GA(x̂1 − x1) + w⊤(x1,u)x̂2 + φ(x1,u),

˙̂x2 = −G2w(x1,u)P (x̂1 − x1) + g(x1, x̂2,u),

x̂(t+i ) = M
x̂(t−i )

‖x̂(t−i )‖
,

(8)

where G is a constant and A is an n1 × n1 Hurwitz matrix.

The matrix P is the positive definite solution of the Lyapunov

equation A⊤P + PA = −Q where Q is a positive-definite

symmetric matrix, and the sequence ti is defined as

ti = min {t : t > ti−1 and ‖x̂(t)‖ ≥ γM}, t0 = 0, (9)
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Fig. 2. Range identification with camera modeling

where γ is a fixed constant.

Remark 2.1: ti defined in (9) are the discontinuity points

of the system (8). It follows from (8) and (9) that x̂(t) is

bounded: ‖x̂(t)‖ ≤ γM . The state of the original nonlinear

system is assumed to be bounded as stated in Assump-

tion 2.1.

Remark 2.2: The IBO observer in (8) is a discontinuous

observer due to its third equation. Because the observer has

discontinuous right-hand side, its solution is interpreted in

Filippov’s sense [17]. A continuous observer can be obtained

by applying the projection operator [18]:

˙̂x(t) =

Proj

„»

GA(x̂1 − x1) + w⊤(x1, u)x̂2 + φ(x1, u)
−G2w(x1, u)P (x̂1 − x1) + g(x1, x̂2, u)

–

, x̂(t)

«

.

(10)

Theorem 2.1: [7] Subject to Assumption 2.1, there exists

a positive constant G0 such that the estimation errors e1 =
x1 − x̂1 and e2 = x2 − x̂2 converge to zero exponentially

if the constant G in (8) is chosen larger than G0.

In Ref. [7], the IBO has been applied to the range iden-

tification problem assuming that all the motion parameters

in (1) are known. In this paper, some of the aij’s in (1) are

assumed to be unknown constants. Under this assumption,

the unknown parameters can be treated as additional states

of a nonlinear system to which the IBO can be applied. This

is given in Sec. III.

III. RANGE IDENTIFICATION WITH UNKNOWN MOTION

PARAMETERS

In this section, we consider the state estimation problem

for the perspective dynamic system (4), where the motion

parameters aij for i, j = 1, 2, 3 (except for a33) are assumed

to be unknown constants. Here, a33 is assumed to be known

to satisfy the observability condition for estimating both

the state and the unknown motion parameters. This will be

elaborated in Remark 3.3.

Let θ be a vector of these unknown constants defined as

θ = [a11, a12, a13, a21, a22, a23, a31, a32]
⊤

. (11)

The system (4) can be rewritten as
[
ẋ1(t)
ẋ2(t)

]

= w⊤

s (x1, x2)

[
x3

θ

]

− a33

[
x1

x2

]

, (12a)

[
ẋ3(t)

θ̇

]

=






−(a31x1 + a32x2 + a33)x3 − b3x
2
3

︸ ︷︷ ︸

gs(x1,x2,x3,a3j)

08×1




 ,(12b)

with

w⊤

s (x1, x2) =

[
b1 − b3x1 x1 x2 1 0 0 0
b2 − b3x2 0 0 0 x1 x2 1

−x2
1 −x1x2

−x1x2 −x2
2

]

,

(13)

which fits into the form of the general nonlinear system

(5) to which IBO might be applicable, by regarding x1 =
[x1, x2]

⊤, x2 = [x3,θ
⊤]⊤, and φ(x1,u) = 0. To apply

the IBO observer, we need the following assumption for the

system in (12).

Assumption 3.1:

1) The motion parameters aij and bi(t) ∀i, j = 1, 2, 3
introduced in (1) are bounded functions of time.

2) Let x(t) =
[

x1(t), x2(t), x3(t),θ
⊤

]⊤

be bounded

‖x(t)‖ < M, M > 0 for every t ≥ 0. Let Ω =
{x ∈ R

11 : ‖x(t)‖ < M}. Further, for some fixed

constant γ > 1, let Ωγ = {x ∈ R
11 : ‖x(t)‖ < γM}.

3) There do not exist constants κi (for i = 1, 2, 3, 4) with
∑4

i=1 κ2
i 6= 0 such that

κ1x1(τ) + κ2x2(τ) + κ3 + κ4b3(τ) = 0, (14)

for all τ ∈ [t, t + µ], where µ is a very small positive

constant.

Remark 3.1: The first two statements in Assumption 3.1

are standard assumptions (see also [7], [8], [10]) that are

practically properties of the physical system rather than

assumptions.

Remark 3.2: The mathematical meaning of the observ-

ability condition in (14) is that all columns in ws(x1, x2)
need to be linearly independent at any time interval τ ∈
[t, t+µ]. The physical meaning is that the motion dynamics

should be sufficiently exciting for the state and the motion

parameters to be observable.

Remark 3.3: Assuming that the [aij ] (for i, j = 1, 2, 3)

are unknown constants, estimation of the state, along

with the unknown parameters, cannot be achieved. This

is elaborated in the next. Suppose that the [aij ] (for

i, j = 1, 2, 3) are unknown constants and let θ9×1

be a vector of these unknown constants as θ9×1 =
[a11, a12, a13, a21, a22, a23, a31, a32, a33]

⊤
. The system

(12a) can be written as
[
ẋ1(t)
ẋ2(t)

]

=

[

w⊤
s (x1, x2),

[
−x1

−x2

]]

︸ ︷︷ ︸

w⊤
a (x1,x2)

[
x3(t)
θ9×1

]

, (15)
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where w⊤
s (x1, x2) is given in (13). It is obvious that the

column vectors in w⊤
a (x1, x2) in (15) are linearly dependent.

More exactly, column10 can be written as column10 =
−column6 − column2. The observability condition in (7b)

is thus violated.
It is straightforward to verify that the system in (12)

satisfies Assumption 2.1. Indeed, for all x1 ∈ Ωγ ∩ X1 and
x2, x̄2 ∈ Ωγ ∩ X2, we have:

‖g(x1, x̄2) − g(x1, x2)‖

=

‚

‚

‚

‚

»

gs(x1, x2, x̄3, ā31, ā32, a33) − gs(x1, x2, x3, a3j)
08×1

–‚

‚

‚

‚

= ‖gs(x1, x2, x̄3, ā31, ā32, a33) − gs(x1, x2, x3, a3j)‖

= ‖(ā31x1 + ā32x2 + a33)x̄3 + b3x̄
2
3

−(a31x1 + a32x2 + a33)x3 − b3x
2
3‖

≤ (‖ā31‖‖x1‖ + ‖ā32‖‖x2‖ + ‖a33‖) ‖x̄3 − x3‖

+‖b3‖‖x̄3 + x3‖‖x̄3 − x3‖ + ‖x3‖ (‖x1‖‖ā31 − a31‖

+‖x2‖‖ā32 − a32‖)

≤ [‖ā31‖‖x1‖ + ‖ā32‖‖x2‖ + ‖a33‖ + ‖b3‖‖x̄3 + x3‖

+ ‖x3‖(‖x1‖ + ‖x2‖)] · ‖[x̄3, ā31, ā32]
⊤ − [x3, a31, a32]

⊤‖

≤ (4M2 + Ma + 2MMb)‖x̄2 − x2‖,

where it is assumed that a33 and b3(t) are bounded by Ma

and Mb, respectively. That is, ‖a33‖ ≤ Ma and ‖b3(t)‖ ≤
Mb,∀t ≥ 0 (Assumption 3.1). Hence the Lipschitz condition

(6) is satisfied with a Lipschitz constant 4M2+Ma+2MMb.

It is also straightforward to verify that ws(x1, x2) and

its first time derivative are piecewise smooth and uniformly

bounded. The persistency of excitation observability condi-

tion in (7b) can be proved using the condition in (14). Let

wi(t) be the ith column of w⊤
s in (12) (for i = 1, . . . , 9).

From Assumption 3.1, there do not exist constants ki (for

i = 1, . . . , 9) with
∑9

i=1 k2
i 6= 0 such that

∑9
i=1 ki wi(t) =

0. Therefore, for any nonzero 9 × 1 vector v with ‖v‖ = 1,

we have v⊤wsw
⊤
s v > ε‖v‖2 = ε. Thus wsw

⊤
s > εI and (7b)

is satisfied. Since Assumption 3.1 leads to Assumption 2.1,

state estimation of x3(t), together with the unknown motion

parameters θ, can be obtained via direct application of the

IBO observer.
Letting e1 = x̂1 − x1, e2 = x̂2 − x2, e3 = x̂3 − x3, the

following observer can be designed for the system in (12)
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

»

˙̂x1

˙̂x2

–

= GA

»

e1

e2

–

+ w⊤

s (x1, x2)

»

x̂3

θ̂

–

− a33

»

x1

x2

–

,

"

˙̂x3

˙̂
θ

#

= −G2 ws(x1, x2)P

»

e1

e2

–

+

»

gs(x1, x2, x̂3, â31, â32, a33)
08×1

–

,

x̂(t+i ) = M
x̂(t−i )

‖x̂(t−i )‖
,

(16)

where x denotes [x1, x2, x3,θ
⊤]⊤, θ̂ denotes the estimation

of θ, and the sequence of ti is defined as in (9). The closed-
loop error dynamics can be derived from (12) and (16) as
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

»

ė1

ė2

–

= GA

»

e1

e2

–

+ w⊤

s (x1, x2)

»

e3

θ̃

–

,

»

ė3

˙̃
θ

–

= −G2 ws(x1, x2)P

»

e1

e2

–

+

»

gs(x1, x2, x̂3, â31, â32, a33) − gs(x1, x2, x3, a3j)
08×1

–

,

(17)

where θ̃ = θ̂ − θ and
˙̃
θ =

˙̂
θ since θ is assumed to be a

constant vector.

According to Theorem 2.1, there exists a positive constant

G0, such that the estimation errors [e1, e2, e3, θ̃
⊤

]⊤ converge

to zero exponentially if the constant G in (16) is chosen to be

larger than G0. Proof of IBO estimation error convergence

is provided in [7].

IV. SIMULATION RESULTS

State estimation of [x3(t),θ
⊤]⊤ using the nonlinear ob-

server (16) is implemented in Matlab, where the motion
dynamics are selected to be

2

4

Ẋ(t)

Ẏ (t)

Ż(t)

3

5 =

2

4

0.1 −4 0.5
4 −0.1 0.4

−0.5 −0.4 0

3

5

2

4

X(t)
Y (t)
Z(t)

3

5 +

2

4

0
2π sin(2πt)
2π cos(2πt)

3

5 ,

(X0, Y0, Z0) = (1, 1.5, 2.5), x0 = (X0/Z0, Y0/Z0, 1/Z0).
(18)

In all the simulations, the output is corrupted with uni-

form noise bounded by ±10−2. The observer’s initial states

(x̂1(0), x̂2(0), x̂3(0)) are chosen to be (x1(0), x2(0), 1) and

θ̂(0) = 0. The observer parameters are chosen to be M =
10, A = I2, P = −1/2 × I2, G = 20, where I2 denotes the

2 × 2 identity matrix. State estimation of x3 and parameter

estimations of aij for i, j = 1, 2, 3 (except for a33) are shown

in Figs. 3∼6, respectively. It can be seen that good estimates

can be obtained. The 3D and 2D trajectories of the moving

point and their estimates are shown in Figs. 7 and 8, for

t ∈ [20, 25].
Figures 9∼12 show simulation results of the following

motion dynamics

2

4

Ẋ(t)

Ẏ (t)

Ż(t)

3

5 =

2

4

0.3 −4 0.3
4 −0.2 0.4

−0.6 −0.5 0.05

3

5

2

4

X(t)
Y (t)
Z(t)

3

5 +

2

4

0
2π sin(3πt)
2π cos(3πt)

3

5 ,

(X0, Y0, Z0) = (1, 1.5, 2.5), x0 = (X0/Z0, Y0/Z0, 1/Z0),
(19)

using the same design. It can be observed that both state

estimation of x3(t) and parameter estimation of the unknown

aij’s are obtained.

0 5 10 15 20 25
−5

−4

−3

−2

−1

0

1

2

3
estimation error

Fig. 3. State estimation error of x3 of (18)

WeB08.3

975

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on February 12, 2009 at 09:49 from IEEE Xplore.  Restrictions apply.



0 5 10 15 20 25
−1

0

1

a
11

0 5 10 15 20 25
−5

0

5

a
21

0 5 10 15 20 25
−2

0

2

a
31

Fig. 4. Parameter estimation of ai1 (for i = 1, 2, 3) of (18)
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Fig. 5. Parameter estimation of ai2 (for i = 1, 2, 3) of (18)

V. CONCLUSION

A nonlinear observer is designed to estimate the 3D posi-

tions and unknown motion parameters of a moving feature

point with partially-known motion dynamics. Specifically, an

affine motion with unknown constant rotational parameters

is considered. The objective is to achieve state estimation

(the unknown depth in the vision problem) along with

parameter convergence. An existing nonlinear observer, the

identifier-based observer, is utilized to achieve the objective.

Convergent estimates of the state and the unknown motion

parameters can be guaranteed under certain observability

conditions. The proposed method is motivated by adaptive

control techniques.
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Fig. 10. Parameter estimation of ai1 (for i = 1, 2, 3) of (19)
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Fig. 11. Parameter estimation of ai2 (for i = 1, 2, 3) of (19)
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