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Abstract— We present an innovative hybrid control strat-
egy for contact detection and force regulation of robotic
manipulators. This hybrid architecture controls the robotic
manipulator during the following stages of interaction with the
work environment: the free motion, the transition phase, and
the constrained motion. The proposed control strategy is to
switch between a position and a force controller with hysteresis
relying only on contact force measurements. We implement this
strategy in a hybrid controller and provide a design procedure
which depends on the viscoelastic parameters of the work
environment. Our controller guarantees contact detection and
force regulation without bounce-off effects between the robotic
manipulator and the work environment from compact sets of
initial conditions. Additionally, the resulting closed-loop system
is robust to measurement noise. We include simulations that
show how the proposed hybrid control strategy guarantees
good performance in the cases of stiff and compliant work
environments, and in the presence of measurement noise.

I. INTRODUCTION

Several complex robotic systems, such as grasping and
locomotion devices, involve the interaction between a robotic
manipulator and its work environment. The control issue of
such type of tasks is the regulation of the transition phase, in
which the dynamic of the system is switching from the free to
the constrained motion. In particular, the crucial point of the
control is in the detection of contact/non-contact states since,
when the manipulator gets in contact with the environment,
large impulsive forces can cause the manipulator to bounce
off and to become unstable.

In the literature, the control of the dynamical behavior of
the manipulator in interaction tasks has been a research topic
for many years and several control synthesis schemes, both
continuous and discontinuous, have been proposed. In the
continuous case, the impedance control scheme is used to
establish a desired dynamic relationship between the robotic
manipulator position and the force it applies on the work
environment [6], [7]. In the discontinuous case, the control
scheme consists of a switching law in which a position
controller is applied during non-contact motion while a posi-
tion/force controller is applied during the transition phase and
the contact stage [11], [8], [15], [10], [2]. Control algorithms
that combine continuous and discontinuous features have
been also proposed in the literature; in [13] an impedance
control is used jointly with a hybrid system for the detection
of the contact.
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In most cases, the contact/non-contact detection between
the manipulator and the work environment is done on a
surface which depends on position and velocity measure-
ments. In the presence of measurement noise, such strategy
can fail to detect the state of contact and, potentially, cause
“chattering” in the controller. To avoid these issues, we
propose a hybrid control strategy that switches between a
position and a force controller with hysteresis. The position
controller steers the manipulator to a target point in the
workspace and the force controller regulates the force to a
desired set-point. The detection of contact is accomplished
with force information only. The proposed hybrid controller
ensures regulation and stability of the force set-point and mit-
igates bouncing-off effects by limiting the impact velocity.
Moreover, our control strategy confers a margin of robustness
with respect to measurement noise in the position and force.

II. GENERAL MODEL

In this section, we present a dynamical model of a generic
manipulator and a model of the reaction forces due to the
interaction between the manipulator and the environment.

A. General Robotic Manipulator Model

The dynamic of the robotic manipulator in joint space is:

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ, θ̇) = τ − J(θ)T fc, (1)

where M(θ) ∈ R
n×n is the manipulator inertia matrix,

C(θ, θ̇) ∈ R
n×n is the Coriolis matrix, N(θ, θ̇) ∈ R

n

includes gravity terms and other forces that act at the joints,
τ ∈ R

n is the vector of the actuators torques, J(θ) ∈ R
m×n

is the Jacobian matrix relating the joint space velocity to the
workspace velocity, and fc ∈ Rm is the vector of the contact
forces due to the interaction between the manipulator and the
environment. Since we are interested in the interactions, we
rewrite the dynamic equation (1) in workspace coordinates
x after a coordinate transformation from θ to x

M̃(θ)ẍ + C̃(θ, θ̇)ẋ + Ñ(θ, θ̇) = F − fc,

where M̃, C̃, Ñ derive from M,C,N , and F is the vector of
forces/torques applied at the end-effector of the manipulator.

B. Compliant Contact Force Model

Let s : R
m → R be a continuous function such that S =

{x ∈ R
m | s(x) = 0} defines the surface of the environment

without external interactions and W = {x ∈ R
m | s(x) ≤ 0}

defines the environment. Note that s(x) ≤ 0 if x is a point
in the environment and s(x) > 0 otherwise.

We consider the linear contact model of Kelvin-Voigt to
characterize the relationship between the bodies’ penetration
and the reaction force [3]. In this model, the viscoelastic
material of the environment is described as the mechanical
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parallel of a linear spring and a damper which are repre-
sented, respectively, by a stiffness matrix Kc ∈ R

m×m and
a damper matrix Bc ∈ R

m×m. The contact force is given by

fc =

{

Kcx + Bcẋ if s(x) ≤ 0
0 if s(x) > 0.

(2)

Figure 1 depicts this scenario and illustrates the compliant
interaction between the robotic manipulator and the work
environment. Due to the compliance there is compression
of the bodies when the manipulator comes in contact with
the environment. As in [8], [9], [10], [3], the compliance is
modeled as part of the work environment, but our results
are also applicable to scenarios with both compliance in the
work environment and robotic manipulator.

work
environment

robotic
manipulator

S

Fig. 1. The compliant contact force model is described by the mechanical
parallel of a linear spring Kc and a damper Bc. S is the uncompressed
work environment surface.

C. Model Reduction

With the knowledge of some of the parameters and state
of the manipulator, it is possible to design an inner feedback
loop that stabilizes some of the internal and external forces
of the manipulator. Such technique is commonly used in
robotic manipulator control literature, see e.g. [7], [15], [2].
Proceeding in this way, let u be the input control force in
the workspace coordinates and let the inner feedback law

F = u + C̃(θ, θ̇)ẋ + Ñ(θ, θ̇) .

This feedback law is basically a state feedback linearization
law that reduces the dynamics of the manipulator to

M̃(θ)ẍ = u − fc. (3)

As further described in [15], it is possible to distin-
guish between constrained and unconstrained direction of
the motion of a manipulator interacting with an environment.
Following [15], without loss of generality, we consider the
case in which the interaction between the manipulator and
its environment occurs along a normal direction. In this
way, the manipulator consists simply of a mass with motion
constrained to a straight line. The interaction with the work
environment occurs at some point on that line. We further
assume that the mass is unitary. Then, the dynamic of the
manipulator gets reduced to the second-order system

ẍ = u − fc (4)

where x := [x1 x2] ∈ R
2, x1 being the position and x2 the

velocity of the manipulator, and fc is the contact force

fc =

{

kcx1 + bcx2 if x1 ≥ 0
0 if x1 < 0,

(5)

where kc, bc ∈ (0,+∞) are the elastic and the viscous
parameters of the contact. Note that in the one-dimension
case considered, the work environment gets reduced to W =
{x1 ∈ R | x1 ≥ 0} with surface S = {x1 ∈ R | x1 = 0}.

III. MAIN IDEA: HYSTERESIS CONTROL BASED ON

FORCE MEASUREMENT

As discussed in the Introduction, the problem of contact
detection and force regulation for robotic manipulators has
previously been addressed in the literature. Perhaps the
simplest strategy to accomplish the task described above
is (whether contact/non-contact has been detected between
the manipulator and the environment) to switch between a
position controller, which steers the manipulator close to the
environment, and a force controller, which regulates the force
to a desired value. For example, when the position of the
manipulator is x1 < 0, the strategy is to use the position
controller to steer the manipulator to a point in the interior
of W and, when the position of the manipulator reaches
S, the strategy is to use the force controller to regulate the
contact force.

Figure 2 depicts a typical trajectory resulting from this
switching logic. Note that several bounces and switches
between the two controllers are present before the manipula-
tor reaches the desired position/contact force configuration.
Clearly, there exists a compact set of initial conditions for
which there is no bounce-off effect (in Figure 2, such a
compact set is a subset of a small enough neighborhood of
the origin). However, in practice, this set is usually relatively
small, as we will illustrate in Section VII. Moreover, with
such control strategy, arbitrarily fast switching between the
controllers can arise in the presence of measurement noise
since, when the manipulator is in a neighborhood of the
contact surface, even small measurement noise can indicate
a false contact/non-contact condition.
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Fig. 2. Switching strategy based on position: the manipulator establishes
and loses the contact in A and B, respectively. Several bounces (and
switches between the position and force controllers) are present before the
manipulator reaches the desired position and force configuration. x0 is the
initial condition.

We propose a control strategy that minimizes such issues.
Let 0 < γ1 < γ2,

1) with the manipulator starting away from the environ-
ment, apply a position controller until the contact force
reaches a specified threshold γ2;

2) with the manipulator in contact with the environment,
maintain the force controller until the contact force is
below a certain threshold γ1.

This mechanism introduces hysteresis in the switches be-
tween the two controllers and, for this reason, it corresponds
to a hybrid strategy.
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The basic idea is illustrated in Figure 3. With the contact
model (5), the contact force fc is a linear combination of the
two state variables x1, x2. Then, the conditions fc ≥ γ2 and
fc ≤ γ1 for switching between the controllers correspond
to half planes in the phase diagram. In particular these half
planes have the lines ℓγ1

: {(x1, x2) | x2 = −kc

bc
x1 + γ1

bc
}

and ℓγ2
: {(x1, x2) | x2 = −kc

bc
x1 + γ2

bc
} as their boundaries.

(Note that these lines have fixed slope given by −kc

bc
.) The

sample trajectory in Figure 3 shows that the decision whether
to apply the position controller is not on a single boundary
line as in Figure 2, but on boundary lines ℓγ1

, ℓγ2
that do not

overlap. This separation between the switching lines makes
the decision robust to small perturbations.
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Fig. 3. Example of switching strategy based on hysteresis. ℓγ1
and ℓγ2

define the sets for the switches based on force. x0 is the initial condition.

IV. HYBRID CONTROLLER

FOR ROBUST CONTACT DETECTION

Now, we present the hybrid control strategy outlined in
Section III. We follow the framework for hybrid systems in
[4], [5] where solutions are given on hybrid time domains 1.

A. Position Controller

We consider a position controller for set-point stabilization
of the position x1 of the manipulator in (4) that relies on
position and velocity measurements of the manipulator and
is given by the proportional/derivative control law

κP (x, xd
1) = −kp(x1 − xd

1) − kdx2 (6)

where xd
1 > 0 is the position set-point and kp, kd ∈ R are

constants to be designed. Proportional/derivative controllers
have been previously used in the literature for set-point
stabilization of manipulators, e.g. [7], [8], [15].

B. Force Controller

Let fd
c , 0 < fd

c < f̂c, be the desired set-point for

the contact force where f̂c is the maximum allowed force.
We consider a force controller that only relies on mea-
surements of the contact force and that is given by the
proportional/feedforward control law

κF (fc, f
d
c ) = fc + kf (fd

c − fc) (7)

where kf ∈ R is a constant to be designed. Similar force
control strategies have been considered in [8], [9].

1In this framework, a solution x to a hybrid system on a hybrid time
domain dom x is parameterized by a continuous variable t which keeps
track of the continuous dynamics and a discrete variable j which keeps
track of the discrete dynamics. Then, x(t, j) is the value of the solution at
time (t, j) ∈ dom x. For more details, see [4], [5].

C. Control Strategy

The main idea of the control strategy for contact detection
outlined in Section III is to switch from position to force
controller (and vice versa) relying only on information of
measurements of the contact force. We consider the simple
controllers in IV-A, IV-B, but the strategy is applicable to
more sophisticated controllers. The key feature of this strat-
egy is that the controller selection depends on the memory of
the controller; hence, it is a (logic-based) hybrid controller.

We implement the control strategy in a hybrid controller
which we denote by Hc. The state of the controller is given
by the logic variable q ∈ Q := {0, 1}. Let the constants
threshold levels γ1, γ2 ∈ R>0 be parameters of Hc.

As depicted in Figure 4, the update law for the logic
variable q is so that it switches between 0 and 1 based on
the value of fc with hysteresis levels defined by γ1, γ2. Two
different transitions are possible:

• q = 0 → 1 (path: 0 → A → B → C): The logic
variable q can only be mapped to 1 when the measured
contact force reaches the threshold γ2 (when fc ≥ γ2).

• q = 1 → 0 (path: C → B → D → 0): The logic
variable q can only be mapped to 0 when the measured
contact force is below the threshold γ1 (when fc ≤ γ1).

apply κP

apply κF

A

B
C

D

0

1

q

fcγ1 γ2 f̂c

Fig. 4. Contact detection strategy with hysteresis. Constants γ1, γ2 define
the thresholds for change from mode q = 0 to mode q = 1 (and vice versa).

The dynamics of the hybrid controller Hc are as follows.
Jumps:
• From q = 0 to q = 1 (i.e. q+ = 1): when q = 0 and

fc ≥ γ2, the logic variable q is mapped to 1.
• From q = 1 to q = 0 (i.e. q+ = 0): when q = 1 and

fc ≤ γ1, the logic variable q is mapped to 0.
Flows:
• q̇ = 0: when q = 0 and fc ≤ γ2, or when q = 1 and

fc ≥ γ1, the logic variable remains constant.
The output of the controller is given by

u := κ(x, fc, x
d
1, f

d
c , q) :=

{

κP (x, xd
1) if q = 0

κF (fc, f
d
c ) if q = 1 .

Remark 4.1: The logic variable q indicates whether it is
“safe” or not to switch from the position controller κP to
the force controller κF . The switches between position/force
controllers occur when bounces off the work environment
are not possible: when a certain level of contact force has
been achieved, switching from the position controller to the
force controller is enabled. Note that the hybrid controller
Hc switches from κP to κF if the logic variable q makes
a transition 0 → 1. This is possible only if the position
controller is able to generate a contact force that is larger
than γ2 and if the measurement of fc experiences an increase
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of at least γ2 − γ1 > 0. Vice versa, the hybrid controller Hc

switches from κF to κP if the logic variable q makes a
transition 1 → 0. This is possible only if the measurement
of fc experiences a decrease of at least γ2 − γ1 > 0. �

D. Closed-loop System

The closed-loop system, denoted by Hcl and depicted
in Figure 5, resulting of controlling (4) with the hybrid
controller Hc, has continuous dynamics given by

ẋ1 = x2

ẋ2 = κ(x, fc, x
d
1, f

d
c , q) − fc

q̇ = 0







(x, q) ∈ C

where C := C0 ∪C1 ⊂ R
2 ×Q defines the flow set, where:

C0 := {(x, q) ∈ R
2 × Q | q = 0 and fc ≤ γ2}

C1 := {(x, q) ∈ R
2 × Q | q = 1 and fc ≥ γ1}.

The closed-loop system Hcl has jump dynamics given by

x+

1 = x1, x+

2 = x2, q+ = 1, (x, q) ∈ D0

x+

1 = x1, x+

2 = x2, q+ = 0, (x, q) ∈ D1

D0 := {(x, q) ∈ R
2 × Q | q = 0 and fc ≥ γ2}

D1 := {(x, q) ∈ R
2 × Q | q = 1 and fc ≤ γ1}

and the jump set is D := D0 ∪ D1 ⊂ R
2 × Q.

κ

κP , κF

fd
c

xd
1

fc

x

kp kd kf

Position/Force

Generator

Controller Robot
and

Sensor

Fig. 5. Hybrid control scheme. A position/force block generates the set-
points fd

c and xd
1 . The controller has as input the position of the manipulator

x in the workspace coordinates and the measured contact force fc.

V. CONTROLLER DESIGN

We now design the hybrid controller, for given parameters
kc, bc of the work environment and desired contact force fd

c .
The parameters to design for are kf , kp, kd, γ1, γ2 and xd

1.
We state the following results that are used in the design.

Lemma 5.1: For every given parameters kc, bc ∈ (0,+∞)
of the work environment and desired contact force 0 < fd

c <
f̂c, there exist kf ∈ R, Pf , Qf ∈ R

2×2, Pf = PT
f > 0,

Qf = QT
f > 0, such that

〈∇VF (z), f(z)〉 = −zT Qfz ∀z ∈ R
2, (8)

[1/kc − 1/bc]
T
∈ eigv{Pf}, (9)

where VF (z) = zT Pfz and

f(z) :=

[

z2

−kfkc

(

z1 +
fd

c

kc

)

− kfbcz2 + kffd
c

]

.

Furthermore, Pf , Qf , and kf are given by

Pf :=

[

a c
c b

]

= R

[

p1 0
0 p2

]

RT , (10)

Qf =

[

2ckckf (bkc + cbc)kf − a
(bkc + cbc)kf − a 2(bbckf − c)

]

, (11)

kf ∈

(

0,
−2c2kc + abkc + acbc

(bkc − cbc)2

)

, (12)

with R :=

[

− sin β − cos β
cos β − sin β

]

and p1, p2 > 0 satisfying

p2 < p1,
p1 sin2 β + p2 cos2

(p2 − p1) sin β cos β
< 2

kc

bc

. (13)

Let xF
1 :=

fd
c

kc
. Lemma 5.1 states that, given parameters

kc, bc of the work environment and a desired contact force

0 < fd
c < f̂c, there exists a positive definite matrix Pf

such that VF (x) := a(x1 − xF
1 )2 + bx2

2 + 2c(x1 − xF
1 )x2

is a Lyapunov function for the system (4) controlled by
κF . We use this Lyapunov function to design the hysteresis
thresholds γ1 and γ2. Note that Pf is the clockwise rotation
of a positive definite diagonal matrix.

Figure 6 depicts these two lines and a level set of VF .
These lines are parallel and are parameterized by γ1 and γ2,
respectively. The design of γ1, γ2 and xd

1 is as follows.

a) γ1 min value: γ1min
= 0.

b) γ1 max value: γ1max
= xF

1

(

kc −
√

k2
cb−2ckcbc+ab2c

b

)

c) xd
1 min value: xd

1min
= xF

1 bc
c
b

kp+kc

kpkc

d) γ2 min value: γ2min
= bc

c
b
xF

1

e) γ2 max value: γ2max
= kc min{

kp

kp+kc
xd

1min
, xF

1 }

Then, by considering γ1 ∈ [γ1min
, γ1max

] , γ2 ∈
[γ2min

, γ2max
] , xd

1 ∈
[

xd
1min

,+∞ ), kf given by Lemma 5.1
and with kp, kd > 0, the design of Hc is completed.
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ℓγ2

LVF
(rmax)

(xP
1 , 0)

(xF
1 , 0)

x1

x
2

(0, c
b
xF

1 )

Fig. 6. Design of the hybrid controller Hc. Lines ℓγ1
, ℓγ1

, ℓγ2
, ℓγ2

are

the upper/lower bound for the design of ℓγ1
and ℓγ2

, respectively. xP
1 =

kp

kp+kc
xd
1 . (xP

1 , 0), (xF
1 , 0) are the equilibrium points of the system with

the position and force controller, respectively. LVF
(rmax) is the maximum

level set of VF such that
˘

x ∈ R
2 : VF (x) ≤ rmax

¯

⊂ R≥0.

Remark 5.2: The threshold γ2 is designed so to guarantee
that the manipulator does not bounce off the surface of the
environment and so that the trajectory of the system remains
all contained in the right half plane, after the hit with the
environment. This means that the switch has to occur once
the trajectory of the system is already inside the basin of
attraction LVF

(rmax)
1 of the system controlled in force. In

order to grant that, at least, there is one switch between the
position and the force controllers, the trajectory has to hit
the threshold line ℓγ2

before reaching the equilibrium point

1LVF (rmax) is the maximum level set of the Lyapunov function VF such

that
˘

x ∈ R
2 : VF (x) ≤ rmax

¯

⊂ R≥0.
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(xP
1 , 0), xP

1 :=
kp

kp+kc
xd

1. Moreover, the line ℓγ2
has also to

be on the right of the equilibrium point (xF
1 , 0).

For the design of the threshold γ1, the lower bound for
ℓγ1

is given by zero. Moreover, we design the line ℓγ1

so that it does not intersect the level set LVF
(rmax). The

second condition in (13) implies that γ1min
< γ1max

. The
parameters kp, kd > 0 are not constrained in principle, but
they determine the size of the region of attraction of Hcl. �

VI. MAIN RESULTS

The main stability and robustness properties of the closed-
loop system Hcl are stated below. The following two results
guarantee that the position controller κP steers the trajecto-
ries to a point in the interior of the work environment.

Lemma 6.1: For every given parameters kc, bc ∈ (0,+∞)
of the work environment, controller parameters kp, kd, xd

1,
γ1, γ2 given from the design in Section V, the equilibrium
point (xd

1, 0) to

ẋ1 = x2, ẋ2 = −kp x1 − kd x2 + kp xd
1 (14)

is globally asymptotically stable. Moreover, every solution
to (14) starting from x0 ∈ R

2 reaches the set S1 :=
{

x ∈ R
2 | x1 ≥ 0

}

in finite time. In particular, for every

initial condition x0 ∈ Sc
1 := (R2\S1)∩

{

x ∈ R
2 | x2 ≥ 0

}

,
every solution is such that x2(T ) > 0, where T > 0, is the
time to reach S1.

Lemma 6.2: For every given parameters kc, bc ∈ (0,+∞)
of the work environment, controller parameters kp, kd, xd

1,
γ1, γ2 given from the design in Section V, the equilibrium

point
(

kp

kp+kc
xd

1, 0
)

to

ẋ1 = x2, ẋ2 = −(kp + kc) x1 − (kd + bc) x2 + kp xd
1 (15)

is globally asymptotically stable. Moreover, every solution
to (15) starting from x0 ∈ R

2 reaches the set S2 :=
{

x ∈ R
2 | kcx1 + bcx2 ≥ γ2, x1 ≥ 0

}

in finite time. In par-

ticular, for every initial condition x0 ∈ Sc
2 := (R2 \ S2) ∩

{

x ∈ R
2 | x2 ≥ 0

}

, every solution is such that x2(T ) ≥ 0,
where T ≥ 0, is the time to reach S2.

The proof of Lemmas 6.1 and 6.2 follow by simple Lya-
punov and invariance arguments. In particular, it is easy to
find quadratic Lyapunov functions that show global asymp-
totic stability of the origin in both lemmas. Combining these
Lyapunov functions, the set of initial conditions for contact
detection and contact force regulation can be computed.
The following result establishes that those sets are “subsets”
of the basin of attraction of the closed-loop system. Let
A := {(xF

1 , 0)}.

Theorem 6.3: Given parameters kc, bc ∈ (0,+∞) of the

work environment and desired contact force 0 < fd
c < f̂c,

there exist

1) Compact sets K0,K1 ⊂ R
2,

2) Parameters kf , kp, kd, γ1, γ2, x
d
1 of the hybrid controller

such that A×{1} is locally asymptotically stable with basin
of attraction containing (K0×{0})∪ (K1×{1})∩ (C ∪D).

The set of initial conditions K0 is such that, for every
initial condition x0 ∈ K0 of the manipulator and for
given parameters of the position controller, the manipulator
reaches the surface of the work environment with a bounded
value of the impact velocity, denoted by x∗

2. As mentioned

above, it can be explicitly computed combining the Lyapunov
functions in Lemma 6.1 and Lemma 6.2. The set of initial
conditions K1 can be estimated with the maximum level set
of VF that is contained in x1 ≥ 0, that is, LVF

(rmax).
In the presence of measurement noise in both position and

force, the asymptotic stability property above is preserved in
a practical sense.

Theorem 6.4: There exists β ∈ KL, for each ε > 0 and
each compact set K0,K1 ⊂ R

2 such that (K0×{0})∪(K1×
{1}) is a subset of the basin of attraction of Hcl, there exists
δ∗ > 0, such that for each position and force measurement
noise e : R≥0 → δ∗B, solutions (x, q) to Hcl exist, are
complete, and for initial conditions (x0, q0) ∈ (K0 ×{0})∪
(K1 × {1}) the x component of the solutions satisfies 2

|x(t, j)|A ≤ β(|x0|A, t + j) + ε ∀(t, j) ∈ dom(x, q) .

Note that the constraint on impact velocity in our control
algorithm implies that the compact set of initial conditions
guaranteed to exist by Theorem 6.4 is no larger than the one
in Theorem 6.3. The proof of Theorem 6.4 follows by the
properties of the closed-loop system Hcl and the results for
perturbed hybrid systems in [5]. Due to space limitations, we
do not discuss the concept/issues on existence of solutions
with measurement noise; see [12] for more details.

VII. SIMULATIONS

In this section, we provide simulation results of the closed-
loop system in the nominal case and in the presence of noise
in the measurements of fc. We illustrate the design of the hy-
brid controller for a set of parameters kc, bc, f

d
c , and present

simulations for different materials of the environment.
Nominal case. Let the work environment be given by

W = {x1 ∈ R | x1 ≥ 0} and be characterized by a soft
material with stiffness kc = 10 N/mm and damping coeffi-
cient bc = 0.3 Ns/mm. Let the desired force be fd

c = 5 N.
From these parameters, we compute β = arctan(−kc/bc)
and xF

1 = fd
c /kc = 0.5 mm. By Lemma 5.1, we construct

Pf = [a c; c b] where a = 2, b = 0.01 and c = 0.06
satisfying (10) and we choose kf = 40 which satisfies (12).
Performing the computations in a)-e) in Section V we obtain:
γ1min

= 0 N, γ1max
= 0.71 N, xd

1min
= 0.79 mm, γ2min

=
1.32 N, γ2max

= 2.64 N. Then, we pick γ1 = 0.61 N,
γ2 = 1.98 N and xd

1 = 1.58 mm which satisfy the respective
bounds. To complete the design, we follow Lemmas 6.1
and 6.2 and choose kp = 2 and kd = 0.5. Figure 7
illustrates a closed-loop trajectory. The position control steers
the manipulator to the work environment until the measured
contact force is equal to the threshold line denoted ℓγ2

.
At this point, the hybrid controller switches to the force
controller and the contact force is regulated to fd

c . To
accomplish this force level, the state of the manipulator is
regulated to (xd

1, 0). Notice that no bounces off the work
environment occur. This is accomplished by the controller
logic which is such that, as long as the impact velocity is no
larger than x∗

2 = 4.4 mm/s, switches to the force controller
are enabled only when the manipulator state is in LVF

(rmax)
with rmax = 0.18, contained in the right-half plane.

In Figure 8, we show closed-loop trajectories resulting
from controllers designed for soft, stiff, and very stiff mate-
rials; i.e. for kc increasing. As summarized in Table I, note

2Given a set U ⊂ R
n and a point x ∈ R

n, |x|U = infy∈U |x − y|.
Recall that dom(x, q) denotes the domain of the solution (x, q).
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Fig. 7. Phase diagram of the switching strategy. The plot depicts the
Lyapunov functions level sets of position/force controller, the ℓγ1

and ℓγ2

lines, and the trajectory of the system. The initial condition is x0
1 = −1 mm,

x0
2 = 0 mm/s, and q0 = 0. Maximum impact velocity is x∗

2 = 4.4 mm/s.

that to avoid bounces, as the stiffness of the environment is
increasing, the maximum allowed impact velocity decreases.
The parameter xd

1 also decreases in order to satisfy the set-
point fd

c = 5N. This shows that our algorithm guarantees
performance by constraining the maximum velocity of im-
pact. Moreover, for fixed kc, bc, there is a trade-off between
the maximum admitted impact velocity and the gain kf of the
force controller: in particular, in order to have a large impact
velocity, a large gain is required. In addition, the data in the
last two columns are an indicator of the improvement of
our hybrid control strategy upon the discontinuous control
law in Section III. By simulation, we compute the value
of x0

1 < 0 (given in millimeters) farthest away from the
work environment such that solutions to Hcl from (x0

1, 0),
x0

1 given by column (Hcl), and solutions to the closed-loop
system with the discontinuous law from (x0

1, 0), x0
1 given

by column (disc.), do not bounce off. The controllers and
parameters used for the simulations are fixed for each row.

Measurement noise case. Figure 9 depicts in dashed line
the trajectory of the system without noise, and in continuous
the trajectories of the system with different values of noise
in the measurement of fc: we have added a Gaussian noise
with zero mean and variation of σ = 0.01, 0.5, 1, 2. Note
that the hybrid controller is still able to steer trajectories to
xF

1 without bounces.

TABLE I

CONTROLLER DESIGN PARAMETERS FOR VARIABLE kc , FIXED bc .

kc(N/mm) xd
1(mm) x∗

2(mm/s) kf (Hcl) (disc.)
1 14.5581 16.1757 430 −4.526 −0.6
5 4.1208 9.8115 80 −4.13 −0.1

10 1.5843 4.4007 16 −2.44 −0.08
20 0.4530 1.3727 20 −0.83 −0.06
50 0.0736 0.2360 8 −0.32 −0.055

100 0.0182 0.0596 4 −0.11 −0.051
200 0.0045 0.0149 2 −0.05 −0.03
500 0.0007 0.0024 0.8 −0.03 −0.02
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