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Abstract— We develop a regularized l2 finite impulse re-
sponse (FIR) predictive controller with input and input-rate
constraints. Feedback is based on a simple constant output
disturbance filter. The performance of the predictive controller
in the face of plant-model mismatch is investigated by simu-
lations and related to the uncertainty of the impulse response
coefficients. The simulations can be used to benchmark l2 MPC
against FIR based robust MPC as well as to estimate the
maximum performance improvements by robust MPC.

I. INTRODUCTION

We investigate the effect of uncertain models on the

performance of a regularized l2 model predictive controller

with input and input-rate constraints [1]. We use a finite

impulse response (FIR) model for prediction of the process

outputs. In contrast to state space parameterizations, the FIR

model is in a form that can easily be applied in robust

predictive control, i.e. predictive control based on robust

linear programming [2] or second-order cone programming

[3], [4]. To facilitate comparative performance studies of

l2 and robust MPC, we establish a FIR based l2-MPC

benchmark. This serves to bound the achievable performance

limits of FIR based robust MPC.

This paper is organized as follows. We derive the predic-

tive controller consisting of a regulator and an estimator in

Section II. By simulation Section III illustrates the effect

of uncertain impulse responses on the closed-loop MPC

performance. Section IV provides closed-loop simulations

with stochastic process and measurement noise. Conclusions

are given in Section V.

II. FIR MODEL BASED MPC

Model predictive control systems consists of an estimator

and a regulator as illustrated in Figure 1. The inputs to the

MPC are the target values, r, for the process outputs, z, and

the measured process outputs, y. The output from the MPC

is the manipulated variables, u.

A. Plant and Sensors

The plant is assumed to be a linear state space system

xk+1 = Axk +Buk +Bddk +Gwk (1a)

zk = Cxk (1b)

with x being the states, u being the manipulated variables

(MVs), d being unmeasured disturbances, and w being
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stochastic process noise. z denotes the controlled variables

(CVs). The measured outputs, y, are the controlled outputs,

z, corrupted by measurement noise, v. Consequently

yk = zk + vk (2)

The initial state, the process noise, and the measurement

noise are assumed to be normally distributed stochastic

vectors

x0 ∼ N(x̄0, P0) (3a)

wk ∼ Niid(0, Q) (3b)

vk ∼ Niid(0, R) (3c)

The measured output, y, is the signal available for feedback

and used by the estimator. u is the signal generated by the

control system and implemented on the plant.

B. Regulator

Stable processes can be represented by the finite impulse

response (FIR) model

zk = bk +
n

∑

i=1

Hiuk−i (4)

in which {Hi}
n

i=1
are the impulse response coefficients

(Markov parameters). bk is a bias term generated by the

estimator. bk accounts for discrepancies between the pre-

dicted output and the actual output. In this paper, the output

predictions used by the regulator are based on the FIR model

(4). Consequently, using the FIR model (4), the regularized

MPC

z

y

u
r

x̂

Regulator

Estimator

Plant

Sensors,
Lab analysis

Fig. 1. Generic model predictive control system.
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l2 output tracking problem with input constraints may be

formulated as

min
{z,u}

φ =
1

2

N−1
∑

k=0

‖zk+1 − rk+1‖
2

Qz
+ ‖∆uk‖

2

S (5a)

s.t. zk = bk +

n
∑

i=1

Hiuk−i k = 1, . . . , N (5b)

umin ≤ uk ≤ umax k = 0, . . . , N − 1 (5c)

∆umin ≤ ∆uk ≤ ∆umax k = 0, . . . , N − 1 (5d)

in which ∆uk = uk − uk−1. In this formulation, the

control and the prediction horizon are identical. If desired,

a prediction horizon longer than the control horizon could

be included in the formulation. However, we prefer instead

to select the control horizon sufficiently long such that any

boundary effects at the end of the horizon has no influence

on the solution in the beginning of the horizon. (5) can be

converted to a constrained linear-quadratic optimal control

problem. Efficient algorithms exists for the solution of such

problems with long prediction horizons, N . In this paper

we adopt another approach and formulate a dense quadratic

program in standard form that is equivalent with (5).

Define the vectors Z , R, and U as

Z =











z1
z2
...

zN











R =











r1
r2
...

rN











U =











u0

u1

...

uN−1











(6)

Then the predictions by the impulse response model (5b)

may be expressed as

Z = c+ ΓU (7)

For the case N = 6 and n = 3, Γ is assembled as

Γ =

















H1 0 0 0 0 0
H2 H1 0 0 0 0
H3 H2 H1 0 0 0
0 H3 H2 H1 0 0
0 0 H3 H2 H1 0
0 0 0 H3 H2 H1

















(8)

and c is

c =

















c1
c2
c3
c4
c5
c6

















=

















b1 + (H2u−1 +H3u−2)
b2 + (H3u−1)

b3
b4
b5
b6

















(9)

Similarly, for the case N = 6, define the matrices Λ and I0
by

Λ =

















I 0 0 0 0 0
−I I 0 0 0 0
0 −I I 0 0 0
0 0 −I I 0 0
0 0 0 −I I 0
0 0 0 0 −I I

















I0 =

















I

0
0
0
0
0

















(10)

and

Qz =











Qz

Qz

. . .

Qz











S =











S

S

. . .

S











(11)

Then the objective function (5a) may be expressed as

φ =
1

2

N−1
∑

k=0

‖zk+1 − rk+1‖
2

Qz
+ ‖∆uk‖

2

S

=
1

2
‖Z −R‖

2

Qz
+

1

2
‖ΛU − I0u−1‖

2

S

=
1

2
‖c+ ΓU −R‖

2

Qz
+

1

2
‖ΛU − I0u−1‖

2

S

=
1

2
U ′ (Γ′QzΓ + Λ′SΛ)U

+ (Γ′Qz(c−R) − Λ′SI0u−1)
′
U

+

(

1

2
‖c−R‖2

Qz
+

1

2
‖I0u−1‖

2

S

)

=
1

2
U ′HU + g′U + ρ

(12)

in which

H = Γ′QzΓ + Λ′SΛ (13a)

g = Γ′Qz(c−R) − Λ′SI0u−1 (13b)

ρ =
1

2
‖c−R‖

2

Qz
+

1

2
‖u−1‖

2

S (13c)

Consequently, we may solve the FIR based MPC regulator

problem (5) by solution of the following convex quadratic

program

min
U

ψ =
1

2
U ′HU + g′U (14a)

s.t. Umin ≤ U ≤ Umax (14b)

bl ≤ ΛU ≤ bu (14c)

in which

Umin =











umin

umin

...

umin











Umax =











umax

umax

...

umax











(15)

and

bl =











∆umin + u−1

∆umin

...

∆umin











bu =











∆umax + u−1

∆umax

...

∆umax











(16)

In a model predictive controller only the first vector, u∗0,

of U∗ =
[

(u∗0)
′ (u∗1)

′ . . . (u∗N−1)
′
]′

, is implemented

on the process. At the next sample time the open-loop

optimization is repeated with new information due to a new

measurement.
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C. Simple Estimator

To have offset free steady state control when unknown step

responses occur, we must have integrators in the feedback

loop. This may be achieved using a FIR model in difference

variables. Assume that the relation between the inputs and

outputs may be represented as

∆yk = ∆zk = ek +

n
∑

i=1

Hi∆uk−i (17)

in which ∆ is the backward difference operator, i.e. ∆yk =
yk − yk−1, ∆zk = zk − zk−1, and ∆uk = uk − uk−1. This

representation is identical with the FIR model (4)

yk = zk = b̂k +

n
∑

i=1

Hiuk−i (18)

if b̂k is computed by

ek = ∆yk −

n
∑

i=1

Hi∆uk−i (19a)

b̂k = b̂k−1 + ek (19b)

Note that in the regulator optimization problem b1 = b2 =
. . . = bN = b̂k at each time instant. This is based on

the assumption that the disturbances enter the process as

constant output disturbances. Of course this may not be how

the disturbances enter the process in practice, and significant

performance deterioration may result as a consequence of

this representation.

III. UNCERTAIN SYSTEM SIMULATION

In this Section we consider plants of the form

Z(s) = Y (s) = G(s)U(s) +Gd(s)D(s) (20)

with the transfer functions

G(s) =
K(βs+ 1)

(τ1s+ 1)(τ2s+ 1)
e−τs (21a)

Gd(s) =
Kd(βds+ 1)

(τd1s+ 1)(τd2s+ 1)
e−τds (21b)

The disturbance model, Gd(s), is kept fixed at its nominal

value, while the transfer function, G(s), from U(s) varies

around its nominal value. This is used to illustrate the

consequence of model uncertainty on the MPC closed-loop

performance. The nominal system is K = Kd = 1, τ1 =
τ2 = τd1 = τd2 = 5, β = βd = 2, and τ = τd = 5. The

system is converted to discrete time using a sample time of

Ts = 1 and a zero-order-hold assumption on the inputs.

The predictive controller is based on the impulse response

coefficients of the following system

Ẑ(s) = Ŷ (s) = Ĝ(s)U(s) (22)

in which Ĝ(s) is equal to the nominal system of G(s). The

simple estimator described in Section II-C is used for bias

estimation. The input limits are umin = −1, umax = 1,

∆umin = −0.2, and ∆umax = 0.2. The horizon of the

0 50 100 150 200
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0.4

0.6

0.8

time

D

Fig. 2. Disturbance scenario.
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Fig. 3. Impulse responses for different gains, K , in (21a).

impulse response model is n = 40 and the control horizon

is N = 120. The MPC is tuned with Qz = 1 and S = 10−3.

The performance of the controller on the different plants,

G(s), is evaluated using the disturbance function in Figure

2. This is an unmeasured disturbance and it is unknown to

the controller.

A. Effect of Uncertain Gain

First we consider the effect of uncertainty in the gain, K .

The impulse responses are illustrated in Figure 3. The corre-

sponding closed-loop performance of the MPC is illustrated

in Figure 4.

In Figure 3, it is evident that the gain uncertainty affect

the impulse responses significantly. Consequently, there is a

significant performance degradation of the closed-loop MPC

response. This is evident in Figure 4. The steady state offset

for the case K = 0.5 in the period 50-100 is due to an

infeasible set point. The MV rides its lower limit and is too

small (in an absolute sense) to reject the disturbance.

B. Effect of Uncertain Time Constant

Next, consider uncertainty in the time constant, τ1, of

the system (21a). The impulse responses for different time

constants, τ1, are illustrated in Figure 5. The corresponding

closed-loop performance of the MPC is illustrated in Figure

6.

The effect of variations in the time constant, τ1, on

the impulse responses is relatively small. Accordingly, the

443

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 10:36 from IEEE Xplore.  Restrictions apply. 



0 50 100 150 200
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time

Y

 

 

K=0.5
K=1.0
K=1.5

0 50 100 150 200

−1

−0.5

0

0.5

1

time

U

 

 

K=0.5
K=1.0
K=1.5

Fig. 4. Closed-loop MPC performance with gain uncertainty.
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Fig. 5. Impulse responses for different time constants, τ1, in (21a).

degradation in the closed-loop MPC performance due to

variations in the time constant, τ1, is modest.

C. Effect of Uncertain β

The impulse responses for different values of β are illus-

trated in Figure 7. This is related to an uncertain zero of the

system. It is evident that the impulse response with β = 4
is much more different from the nominal impulse response

(β = 2) than the impulse response with β = 0. As is evident

from Figure 8, the performance degradation for the case β =
4 is also more pronounced than the performance degradation

for the case β = 0. This confirms that the uncertainty of the

impulse response coefficients are well suited to measure the

resulting closed-loop MPC performance degradation.

D. Effect of Uncertain Time Delay

The effect of variations in the time delay, τ , of (21a)

on the impulse responses is illustrated in Figure 9. The

0 50 100 150 200
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−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time

Y
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0
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1

time

U
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T1=6.5

Fig. 6. Closed-Loop performance with time constant, τ1, variations.
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Fig. 7. Impulse responses for different values of β in (21a).

responses are only slightly shifted horizontally. However,

the vertical differences from the response of the nominal

delay to the responses of the perturbed delays are large.

Accordingly, this situation with variations in the time delay

corresponds to significant impulse response uncertainty. As a

consequence of the significant impulse response uncertainty,

the degradation of the closed-loop MPC performance is

significant as illustrated in Figure 10.

IV. STOCHASTIC SYSTEM SIMULATION

The effect of process noise and measurement noise as well

as model uncertainty on the closed-loop MPC performance

is investigated in this section. We assume that the process

noise enters the system in the same way as the unmeasured

disturbance, i.e. G = Bd. The simulations in this section are

based on the process noise and measurement noise illustrated

in Figure 11. The signals are generated using a process noise

variance of Q = 0.012 and a measurement noise variance of
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Fig. 8. Closed-loop MPC response for uncertain values of β in the plant
(21a).
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Fig. 9. Impulse responses for different time delays, τ , in (21a).

R = 0.0052. The steady state (x0 = 0) is used as the initial

state for the simulations.

The closed-loop MPC performance in the case when the

process model equals the nominal model used for controller

design is illustrated in Figure 12. Obviously, the performance

is degraded compared to the deterministic case. As is evident

in Figure 13, the closed-loop performance degrades further

and becomes quite oscillatory in the case when there is a

gain mismatch (K = 1.5). The effect of a time constant

mismatch (τ1 = 6.5) is illustrated in Figure 14. In this

case the performance degradation compared to the nominal

case is less pronounced. As illustrated in Figures 15 and 16,

the closed-loop response degrades significantly and becomes

quite oscillatory in the case of a zero mismatch (β = 4) and

a time delay mismatch (τ = 7). For this realization of the

stochastic signals the effect of a zero mismatch seems to lead

to the largest performance degradation.

0 50 100 150 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time

Y

 

 

Delay=3.0
Delay=5.0
Delay=7.0

0 50 100 150 200

−1

−0.5

0

0.5

1

time

U

 

 

Delay=3.0
Delay=5.0
Delay=7.0

Fig. 10. Closed-loop MPC performance for different plant time delays.
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Fig. 11. Top: Deterministic disturbance function with added process noise.
Bottom: Measurement noise.

V. CONCLUSION

Based on finite impulse response predictions, we have

developed a regularized l2 predictive controller with input

and input-rate constraints. It is verified by simulations that

the closed-loop MPC performance degradation due to plant-

model mismatch is tightly related to the uncertainty of the

impulse response coefficients. The affine nature of the FIR

model implies that it can be directly applied in predictive

controllers based on robust linear programming [2] as well as

predictive controllers based on second-order cone program-

ming [3], [4]. The simulations in the present paper illustrate

the potential as well as expected limits on the performance

improvement that can be achieved by robust MPC, i.e. an

upper limit on the potential performance is the performance
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Fig. 12. Closed-loop MPC performance for the nominal system.
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Fig. 13. Closed-loop MPC performance for the case K = 1.5.

of the nominal model. The closed-loop performance can

also be improved by adopting a FIR based moving horizon

estimator instead of the simple estimator used in this paper.
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