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Abstract— This paper presents a new approach for estimating
vehicle velocities at its gravity center. The proposed strategy
relies on recent algebraic techniques for numerical differenti-
ation and diagnosis. We do not use any tire model in order
to obtain an estimation, which is robust with respect to model
uncertainties (friction, . . . ). All available measurements in a
mass-production car are however exploited.

I. I NTRODUCTION

A. Generalities

Active security systems like ESP, lane keeping, ABS
or even Stop&Go strongly depend on tire/road interaction
forces. A good knowledge of the vehicle velocities at the
center of gravity is also very important. Hence several tire
model1 based estimation methods have been developed in
recent years.

A single track model, linear or not according to the tire
models, has been often employed (see [26] and the references
therein). In [3] and [21], the authors propose different ver-
sions of the extended Kalman filter. AH∞ filter is suggested
in [16]; [15] proposes a neural network approach and [6]
a recursive least squares method; [23] uses sliding modes
techniques; [2] implements a high gain observer; [4], [5],
[10], [11], [12], [13], [24], [25] exploit a Lyapunov function
in order to synthesize asymptotic nonlinear observers of
tire forces or vehicle velocities. Those approaches are only
valid under very favorable conditions, such as small steering
angles or slowly variable velocities. Thus, in many situations
they are extremely sensitive to friction conditions. Some
other authors (see, e.g., [18], [20]) have tried to incorporate
some kind of cornering stiffness variability using relaxation
models, where parameters are identified online. In all those
methods, tire models are hard to exploit because their pa-
rameters are too numerous and/or not easily identifiable. We
have therefore preferred to use simple dynamical models,

1See, e.g., [13], [19] and the references therein for detailson vehicle
dynamics.

with a minimal number of parameters, and to exploit at best
the information coming from vehicle’s sensors.

The wheel rotation obviously satisfies

Irω̇ = −rFx +C (1)

whereIr and r are, respectively, the inertia momentum and
the wheel radius,ω is the wheel rotation speed,Fx is the
longitudinal tire force at ground/tire contact point, andC is
the motor/brake torque. Sinceω can be measured,Ir and
r values can be approximately known, and if we suppose
that C can be somehow estimated, Eq. (1) provides a first
estimation of Fx. Besides, a good estimation ofFz can
be obtained (see, e.g., [22]), so that an acceptable friction
estimator could be synthesized. However, such an estimator
would not be very robust with respect to imprecisions on
torque estimation and wheel radius value. Thus, improving
the estimation requires a good knowledge of the vehicle
longitudinal velocity. Therefore, obtaining velocities on the
center of gravity is the first step towards reliable vehicle
onboard control laws and diagnosis.

Besides, slip ratio knowledge requires a precise estimation
of longitudinal velocity, which is obtained by expressing
longitudinal acceleration with respect to a rotating frame:

{

γx(t) = V̇x(t)− ψ̇(t)Vy(t)
γy(t) = V̇y(t)+ ψ̇(t)Vx(t)

(2)

where Vy is the lateral velocity,ψ̇ the yaw rate,γx the
longitudinal acceleration andγy the lateral acceleration. Even
if vertical, pitch and roll dynamics are neglected in this
model, it remains very realistic in most situations. Fur-
thermore, it is completely independent of the considered
vehicle, and therefore on its parameters. No parameter is
then required; only the three previous measurements (plus
odometer informations) will be necessary. Let us note that,
contrarily to most of the previous approaches, we will not
use the steering angle input, usually accessible on the CAN
bus.



B. Outline of the article

Section II presents the general approach in order to es-
timate longitudinal and lateral velocities. Some tools from
diagnosis will be introduced and we shall explain how to
tackle the unobservability problems associated to Eq. (2).In a
real automotive context, low cost sensors are generally used,
so that measurements are usually highly noise-corrupted.
Filtering these signals is the object of Section III, where a
summary on numerical differentiation is presented. Section
IV is devoted to a precise explanation of the implemented
estimation algorithms. Section V provides convincing numer-
ical results of very realistic simulations. The conclusionin
Section VI is sketching some future works.

II. D IAGNOSIS FOR VELOCITIES ESTIMATION

As previously mentioned, Eq. (2) and the available mea-
surements ofγx, γy and ψ̇ on high-end cars will be used to
precisely estimateVx andVy. The next proposition shows the
mathematical impossibility of estimating simultaneouslyVx

andVy from the previous three measurements2.

Proposition 1: Longitudinal and lateral velocities (Vx, Vy)
cannot be simultaneously estimated from equations:

γx(t) = V̇x(t)− ψ̇(t)Vy(t) (3)

γy(t) = V̇y(t)+ ψ̇(t)Vx(t) (4)

except if valuesVxt0
andVyt0

at initial time t0 are known.

Proof: Eq. (2) can be rewritten as a single equation
in the complex domain if the linear combination (3)+i(4),
wherei =

√
−1, is considered:

V̇x(t)+ iV̇y(t) = γx(t)+ iγy(t)+ ψ̇ (−iVx(t)+Vy(t))

which is equivalent to the complex differential equation

V̇ = −iψ̇(t)V(t)+ γ(t), V(t0) = V0 (5)

whereV(t) = Vx(t)+ iVy(t) andγ(t) = γx(t)+ iγy(t). Eq. (5)
has a unique solution if, and only if, the initial condition
V0 = Vx(t0)+ iVy(t0) is known.

It hardly seems possible to have good estimators of
longitudinal and lateral velocities using only Eq. (2). Indeed,
a good estimation would require the precise knowledge
of initial conditions at every sample (in order to avoid
increasing offsets due to integration).

Our strategy allows to use at best Eq. (2) by means of
diagnosis tools (see, e.g., [9] and the references therein). Let
us consider the velocities(Vx,Vy) as the sum of an ideal
term (Rx,Ry) and a "disturbing" one3 (Gx,Gy)

{

Vx(t) = Rx(t)+Gx(t)
Vy(t) = Ry(t)+Gy(t)

(6)

where

• Rx = rωt ,

2This property may be related to a lack of observability (see [9] and the
references therein).

3Those disturbing terms are nothing else than "poorly known"effects.
See [8] for the control of poorly known systems.

• r is the static wheel radius,

• ωt =
1
4

4

∑
i=1

ωi is the mean rotation speed of the four

wheels,
• Ry = −L1ψ̇,
• L1 is the vehicle front wheelbase.

Remark 1:The difference between faultless and faulty
behavior appears in a quite natural way in longitudinal
dynamics. Concerning lateral dynamics, sideslip angle ex-
pression on the front axle’s centerβ1 can be used to obtain
an equation similar to Eq. (6):

β1 = arctan

(

Vy +L1ψ̇
Vx

)

⇒Vy = −L1ψ̇ +Vx tan(β1).

Differentiating both sides of Eq. (6) and replacingV̇x andV̇y

by their corresponding expressions in Eq. (2) yields:

Ṙx = ψ̇Ry− Ġx + ψ̇Gy + γx

Ṙy = −ψ̇Rx− Ġy− ψ̇Gx + γy

It yields for Gx andGy:

Ġx(t) = ψ̇(t)Gy(t)−L1ψ̇2(t)− rω̇t(t)+ γx(t)

Ġy(t) = −ψ̇(t)Gx(t)− ψ̇(t)rωt(t)+L1ψ̈(t)+ γy(t) (7)

and if we consider initial conditions

Gx(t0) = 0, Gy(t0) = 0

then the integration of this system provides the necessary
information about the instants where the assumptionVx = rωt

is no more valid. If values coming from this numerical
integration were precise, they could be sufficient to get
a good estimation of longitudinal velocity (details will be
presented in Section IV). However, highly corrupted signals
provided by the vehicle sensors (especially accelerometers,
see Fig. 1) and fixed integration step determined by signals
sampling rate impose a signal pre-treatment. In addition,
robust and real-time efficient numerical differentiators are
also needed to render this approach feasible. It will be
implemented on one hand to filterγx, γy, ψ̇ , and on the other
hand to estimate the derivativeṡω and ψ̈ .

III. A LGEBRAIC NUMERICAL DIFFERENTIATION4

Replace the convergent Taylor expansionx(t) = ∑n≥0an
tn
n! ,

an ∈ C, by its truncated Taylor expansionxN(t) = ∑N
n=0an

tn
n! .

It reads in the operational domain as (see, e.g., [27]):

sN+1xN −sNxN(0)−sN−1ẋN(0) . . .−x(N)
N (0) = 0

The derivatives at the origint = 0 are directly obtained from
the linear system of equations

s−ν dm

dsm

{

x(N)
N (0)+x(N−1)

N (0)s+ . . .+xN(0)sN
}

=

s−ν dm

dsm

{

sN+1xN
}

(8)

4See [9] for more details and various application to nonlinear systems,
such as state and parameter estimation, diagnosis, and perturbation atten-
uation. Let us add moreover that the engineering literatureon numerical
differentiation is a huge one; see, e.g., the references in [9].



m= 0, . . . ,N, ν > N+1. This system is a triangular one with
non-zero diagonal elements: it implies that the parameters
x(i)

N (0), and therefore the coefficientsa0, . . . ,aN are linearly
identifiable. Replace xN by x in Eq. (8) to obtain the
operational estimator[x(i)(0)]eN of x(i)(0).

Write the numerical estimates by expressing Eq. (8) back
in the time domain, using the classical rules of operational
calculus [27]:

• c
sα , α ≥ 1, c∈ C, by c tα−1

(α−1)! , t ≥ 0;

• 1
sα

dnx
dsn by the iterated integral of orderα
∫ t

0

∫ tα−1

0
· · ·

∫ t1

0
(−1)nτnx(τ)dtα−1 · · ·dt1dτ =

(−1)n

(α −1)!

∫ t

0
(t − τ)α−1τnx(τ)dτ (9)

Remark 2: Iterated integrals have an averaging effect, and
therefore act as low-pass filters, which attenuate noises, when
viewed as highly fluctuating phenomena5.

Remark 3:A feasible real-time implementation is
achieved thanks to a short time window.

A general expression of thenth-derivative estimators can
be written, in a window of size T, as follows [14]:

Pν(T)











xN(0)
ẋN(0)

...

x(N)
N











=

∫ T

0
Qν (τ)y(τ)dτ (10)

where the elements of the triangular matrixPν(T) are, for
i = 0, . . . ,N, j = 0, . . . ,N− i:

{Pν(T)}i j =
(N− j)!

(N−1− j)!
Tν−N+i+ j−1

(ν −N+ i + j −1)

The elements of the integral term are

{Qν (τ)}i =
i

∑
l=0

qi,l (T − τ)ν−N−1−l τ i−l

with

qi,l =

(

i
l

)

(N+1)!
(N+1− l)!

(−1)i−l

(ν −N−1− l)!

Let us show as an example the particular expression
of Eq. (10) for filtering the longitudinal acceleration and
differentiating the yaw rate.

In both cases, the signal can be locally approximated by
polynomials of degree 1, i.e.,N = 1. Thus, γy(t) = a0 +
a1t, t > 0, a0,a1 ∈R, andψ̇(t)= b0+b1t, t > 0, b0,b1∈R. It
yields, if we take for instanceν = 2, the following estimators:

γ̂y = â0 =
2

T2

∫ T

0
(2T −3τ)γy(τ)dτ

ˆ̈ψ = b̂1 =
−3!
T3

∫ T

0
(T −2τ)ψ̇(τ)dτ

Observe in Fig. 1 that the noise attenuation is obviously
related to the size of the estimation window.

5See [7] for details.
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Fig. 1. Lateral acceleration filtering with 2 different window sizes (top).
Comparison between a standard numerical differentiation of ψ̇ and the one
obtained with the algebraic methods (bottom)

IV. ESTIMATION ALGORITHMS

From Eq. (2) and (7) the estimates ofVx andVy can be
obtained via the algorithms 1 and 2.

Algorithm 1 Estimation ofVx

Require: Yaw rate ψ̇(t), longitudinal and lateral accelera-
tion (γx(t) and γy(t)), 4 wheel’s rotation speedωi(t),
lateral velocity estimator̂Vy(t)

Ensure: Longitudinal velocity estimator̂Vx(ti), ∀ti ∈ [0,T]
1: Use algebraic methods described in Section III to obtain

ˆ̇ψ , ˆ̈ψ γ̂x, γ̂y, ω̂t and ˆ̇ωt

2: Integrate numerically system (7) with previous estimated
signals

3: if |Ġx(t)| < ε1, ∀t ∈ [ti −αTs,ti ] then
4: V̂x(ti) = rωt(ti)
5: else

6: V̂x(ti) = V̂x(ti−1)+

(

∫ t

ti
γx + ψ̇V̂y

)

dt

7: end if

We see at the bottom of Fig. 2 that the obtained esti-
mation is excellent and differs significantly from the crude
estimate rωt . Indeed, when slipping becomes significant,
the algorithm does not rely on wheel speed (line 4 of
algorithm 1), but also on accelerometer’s measure (line 6 of
algorithm 1). The switch between these two modes, bearing
some resemblance with diagnosis techniques, relies on the
significance of some residual related terms.

Note that these switching conditions (line 3 in algorithms
1 & 2) between integration modes are not solely obtained



Algorithm 2 Estimation ofVy

Require: Yaw rate ψ̇(t), longitudinal and lateral accelera-
tion (γx(t) andγy(t)), 4 wheel’s rotation speedωi(t), lon-
gitudinal velocity estimator̂Vy(t), initial lateral velocity
V̂y(t0) = Vy0

Ensure: Lateral velocity estimator̂Vy(ti), ∀ti ∈ [0,T]
1: Use algebraic methods described in Section III to obtain

ˆ̇ψ , ˆ̈ψ γ̂x, γ̂y, ω̂t and ˆ̇ωt

2: Integrate numerically system (7) with previous estimated
signals

3: if | ˆ̇ψ(t)| < ε2, ∀t ∈ [ti −βTs,ti ] then
4: V̂y(ti) = 0
5: else
6: V̂y(ti) = V̂y(ti−1)+

∫ t

ti

(

γy− ψ̇V̂x
)

dt

7: end if

from Gx and Gy values. Hence, remark in Fig. 2 that, even
if the evolution ofGx is naturally linked to the validity of
equationVx = rωt , Gx does not stabilize around the origin for
time instants t> 7s. This phenomenon can be explained by
two facts: measurements are highly corrupted by noise and
integration step is fixed and constrained by the sampling rate.

Ġx has been chosen as the switching variable in line
3 of algorithm 1 because, even if it is slightly noisy, it
remains close to zero whenVx = rωt . Note that the threshold
condition established in algorithms 1 and 2 must be fulfilled
all over a window of a user-predefined sizeαTs. The aim
of this kind of constraint is to avoid sudden changes in
estimation modes (line 4, resp. 5, in the algorithms 1 & 2)
each time the noisyĠx passes through zero. However, we
see in Fig. 2 (middle graph, final zone) that the response
time to stabilization arounḋGx = 0 is quite significant6.

The previous analysis concerning the switching variable
for longitudinal dynamics is not valid anymore for lateral
dynamics. Note in Fig. 3 thaṫGy is much more noisy than
Ġx. This fact is probably due to remanent noise on yaw
rate derivative estimation. Therefore, it seems much more
convenient to use a noiseless estimate of the yaw rate to
decide whether the lateral velocity is zero or if it is given by
Eq. (4).

Remark 4: If the working horizon is quite long, it is
preferable to reset Eq. (7) when the derivatives of the
residualsRx andRy get close to zero.

V. NUMERICAL EXPERIMENTS

Our scenario (see steering angle and motor/brake torque
in Fig. 4) leads to maximal longitudinal and lateral accelera-
tions γx andγy which are approximatively equal to 0.8g (see
the last graph in Fig. 4).

Our numerical experiments are very realistic. We are
employing a simulator of a vehicle with 14 degrees of
freedom, and with complete drive-train and tire models (see
[17]). The white Gaussian noises, which have been added

6A good trade-off between noisy or reactive estimation will be the
engineers task.
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to every measured signal, are stronger than those corrupting
real onboard sensors. All necessary parameters to implement
the previous algorithms are detailed in table I.

Parameter Value
Ts 0.0025 s
ε1 0.01
ε2 0.01
α 200
β 100
Te 200

TABLE I

PARAMETER VALUES

Fig. 5 shows the simulation results on a quite normal
road, where the friction coefficient isµ = 0.7. The estimators
perform pretty well. Fig. 6 and 7 show their behaviors when
the driver actions are identical, but the friction coefficient is,
respectively, higher (µ = 0.9) and lower (µ = 0.5).

Remark that the global behavior is very similar to the
previous case. Thus, longitudinal velocity is rather well
estimated and lateral velocity respects the trends previously
shown. Nevertheless, note that estimation errors onVx have
a larger influence onVy estimation than conversely.

VI. CONCLUSION

A new estimation approach for vehicle velocities at its
center of gravity is proposed. It is based on algebraic
estimation techniques and diagnosis tools. A new strategy is
presented, where only acceleration equations with respectto
a rotating frame is used. Since this system of equations does
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with a friction coefficientµ = 0.7
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with a friction coefficientµ = 0.5

not contain any vehicle parameter, the obtained estimators
are remarkably robust.

Our first results not only exhibit excellent tracking quality,
but also demonstrate good robustness with respect to noisy
measurements and to road friction coefficient variations.
Even if our simulations are accurately reproducing realis-
tic situations, an experimental validation on a large range
of scenarios (including banked roads) is necessary, and is
under development on a prototype vehicle. Besides, similar
techniques will be tested on tire forces and friction coefficient
estimation.

See [1] for a preliminary application of our algebraic
estimation techniques to traffic control.
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