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Abstract— This paper presents a new approach for estimating with a minimal number of parameters, and to exploit at best
vehicle velocities at its gravity center. The proposed sti@gy  the information coming from vehicle’s sensors.
relies on recent algebraic techniques for numerical diffeenti- The wheel rotation obviously satisfies
ation and diagnosis. We do not use any tire model in order
to obtain an estimation, which is robust with respect to mode
uncertainties (friction, ...). All available measuremens in a
mass-production car are however exploited.

|rw:—rFx+C (1)

wherel; andr are, respectively, the inertia momentum and
the wheel radiusw is the wheel rotation speedy is the
longitudinal tire force at ground/tire contact point, a@ds
A. Generalities the motor/brake torque. Sina® can be measured; and
values can be approximately known, and if we suppose

Active security systems like ESP, Igne keeplng, AB#hatC can be somehow estimated, Eq. (1) provides a first
or even Stop&Go strongly depend on tire/road mteracuogstimation of F,. Besides, a good estimation &% can

forces. A gooq k_nowledge of_the vehicle velocities at th%e obtained (see, e.g., [22]), so that an acceptable fnictio
cente; of gravity IS also very important. Hence several tIr%stimator could be synthesized. However, such an estimator
modet based estimation methods have been developed wbuld not be very robust with respect to imprecisions on
recent years. torque estimation and wheel radius value. Thus, improving

A;jslingrlle trsck m?tdel, Iinelar 0(; not accordir(;ghto thfe tirethe estimation requires a good knowledge of the vehicle
models, has been often employed (see [26] and the re eren?&?gitudinal velocity. Therefore, obtaining velocitiea the

therein). In [3] and [21], the au_thors propose different—vercenter of gravity is the first step towards reliable vehicle
sions of the extended Kalman filter. A filter is suggested Tnboard control laws and diagnosis
g .

in [16]; [15] proposes a neural network approach and [6] poqijes siip ratio knowledge requires a precise estimatio

;éﬁﬁ?gﬁgg l[ez?sitmsp?ggfr?tsmaetﬂi%c:{ 52;’2] l:)sbesséril(ladrl.n[%]m%c]i&s Io_ngiFudinaI velocij[y, Which is obtained by_expressing
! . » U Mllongitudinal acceleration with respect to a rotating frame
[10], [11], [12], [13], [24], [25] exploit a Lyapunov funatin
in order to synthesize asymptotic nonlinear observers of { %((t):\:/x(t)—tp(t)vy(t)
tlre_ forces or vehicle velocmes.l Those approaches arg o_nl K1) = Vy(t) + P(t)Vx(t)
valid under very favorable conditions, such as small steeri _ o
angles or slowly variable velocities. Thus, in many sitoasi Where Vy is the lateral velocity,ys the yaw rate,y the
they are extremely sensitive to friction conditions. Soméongitudinal acceleration ang the lateral acceleration. Even
other authors (see, e.g., [18], [20]) have tried to incoaper if verticgl, pitch and roll dyna_mic_s are neglect_ed in this
some kind of cornering stiffness variability using relagat Model, it remains very realistic in most situations. Fur-
models, where parameters are identified online. In all thodBermore, it is completely independent of the considered
methods, tire models are hard to exploit because their p¥ehicle, and therefore on its parameters. No parameter is
rameters are too numerous and/or not easily identifiable. Vigen required; only the three previous measurements (plus

have therefore preferred to use simple dynamical modeRdometer informations) will be necessary. Let us note that,
contrarily to most of the previous approaches, we will not

1See, e.g., [13], [19] and the references therein for demilsvehicle US€ the steering angle input, usually accessible on the CAN
dynamics. bus.

I. INTRODUCTION

)



B. Outline of the article « I is the static wheel radius,

Section I presents the general approach in order to es-, ¢y — 1 @ is the mean rotation speed of the four
timate longitudinal and lateral velocities. Some toolsnfro 4£

diagnosis will be introduced and we shall explain how to ~ Wheels,

tackle the unobservability problems associated to Eqlii23). . Ry = Ly, )

real automotive context, low cost sensors are generallg,use * L1 iS the vehicle front wheelbase.

so that measurements are usually highly noise-corrupted.

Filtering these signals is the object of Section Ill, where a Remark 1:The difference between faultless and faulty
summary on numerical differentiation is presented. Sactidbehavior appears in a quite natural way in longitudinal
IV is devoted to a precise explanation of the implementedynamics. Concerning lateral dynamics, sideslip angle ex-
estimation algorithms. Section V provides convincing ntime pression on the front axle’s centgy can be used to obtain
ical results of very realistic simulations. The conclusion an equation similar to Eq. (6):

Section VI is sketching some future works. W

Wy +L .
By, = arctan| % =W =—Li+Wtan(By).

X . .
Differentiating both sides of Eq. (6) and replaciigandVy
aﬁy their corresponding expressions in Eq. (2) yields:

Il. DIAGNOSIS FOR VELOCITIES ESTIMATION

As previously mentioned, Eq. (2) and the available me
surements ofk, % and ¢ on high-end cars will be used to _ _ _ )
precisely estimat®y andVy. The next proposition shows the Ry = YRy — Gx+ PGy + K
mathematical impossibility of estimating simultaneously Ry = (R — Gy_ PGx+
andVy, from the previous three measureménts .

It yields for Gx and Gy:
Gx(t) = P(1)Gy(t) — Lagp?(t) — réa(t) + (t)
Gy(t) = —P(t)Cx(t) — P()raa(t) + Lah(t) + (1)  (7)

Proposition 1: Longitudinal and lateral velocitied/, V)
cannot be simultaneously estimated from equations:

() :\-/X(t) h L{J(t)vy(t) 3) and if we consider initial conditions
w(t) =Vy(t) + P()Vx(t) 4)
except if values,, andVy at initial timeto are known. Gx(to) =0, Gy(to) =0

then the integration of this system provides the necessary

Proof: EQ. (2) can be rewritten as a single equatior] _ X
information about the instants where the assumpfjoar w

in the complex domain if the linear combination (8@,

wherei = v/—1, is considered: is no more valid. If values coming from this numerical
. ) ’ _ integration were precise, they could be sufficient to get
V(1) +1Vy(t) = ye(t) + TR (t) + P (—iVix(t) +Vy(t)) a good estimation of longitudinal velocity (details will be

presented in Section V). However, highly corrupted signal
provided by the vehicle sensors (especially accelerometer
V= —i@E)V([) +y(t), V(to) =Vo (5) see Fig. 1) and fixed integration step determined by signals
, ) sampling rate impose a signal pre-treatment. In addition,
whereV (t) = Vx(t) +Vy(t) and y(t) = () +i%(t). EA. (5) ropust and real-time efficient numerical differentiators a
has a unique solution if, and only if, the initial condition 5 needed to render this approach feasible. It will be

Vo = Vx(to) +Vy(to) is known. _ ™ implemented on one hand to filtg, %, ¢, and on the other
It hardly seems possible to have good estimators Qfand to estimate the derivativésand .
longitudinal and lateral velocities using only Eq. (2). émdi,

a good estimation would require the precise knowledge !ll- ALGEBRAIC NUMERICAL DIFFERENTIATION® )

of initial conditions at every sample (in order to avoid Replace the convergent Taylor expansiét) = ¥ ,-ank;,

increasing offsets due to integration). an € C, by its truncated Taylor expansioq (t) = szoan:-,—!-
Our strategy allows to use at best Eq. (2) by means df reads in the operational domain as (see, e.g., [27]):

diagnosis tools (see, e.g., [9] and the references thetsah) 11 1. (N) ~

us consider the velocitie§/x,Vy) as the sum of an ideal S =S (0) =T (0. =y (0) =0

which is equivalent to the complex differential equation

term (Rx Ry) and a "disturbing" one(Gx, Gy) The derivatives at the origin= 0 are directly obtained from
the linear system of equations
{ WO-ROroi © o :
Vy(t) = Ry(t) + Gy(t) 5*"@ {x,(\lN) (0) + x&N’l)(O)s+ R XN(O)SN} =

where gm

e Ri=ra, vaﬁ{SNHXN} (8)

2This property may be related to a lack of observability (eahd the 4See [9] for more details and various application to nonlinggstems,
references therein). such as state and parameter estimation, diagnosis, andthzgion atten-

3Those disturbing terms are nothing else than "poorly knoeffécts.  uation. Let us add moreover that the engineering literabmenumerical
See [8] for the control of poorly known systems. differentiation is a huge one; see, e.g., the reference8]in [



m=0,...,N, v > N+1. This system is a triangular one w
non-zero diagonal elements: it implies that the param
x§\',)(0), and therefore the coefficients,...,ay arelinearly
identifiable Replacexy by x in Eg. (8) to obtain thi
operational estimatofx (0)]e, of x((0).

Write the numerical estimates by expressing Eq. (8) |
in the time domain, using the classical rules of operati
calculus [27]:

« & a>1,ceC, byc%,tzo;

ég—g by the iterated integral of order

t tail... a _1\nN .
./o/o ,/0 (=1)"TX(1)dtg_1 - dtadT =
(-1

@ _?Ln)! /Ot t—1) "%(r)dt  (9)

Remark 2:Iterated integrals have an averaging effect,
therefore act as low-pass filters, which attenuate noisesn
viewed as highly fluctuating phenomeéna

Remark 3:A feasible real-time implementation
achieved thanks to a short time window.

A general expression of th@-derivative estimators cau
be written, in a window of size T, as follows [14]:

XN(O
xn (0

)
) T
Z(T) = [ 2uaymar o)

(
i
where the elements of the triangular matg&, (T) are, for
i=0,...,N, j=0,...,N—i:

B (N—J)' TV*N+i+J.*1
M= N o voNT -1

The elements of the integral term are

{2v(n)} = I;Qi,l (T—-1)

Qi,I:<|i

v—N—-1-I .l.ifl

with

(N+1)! (-1
) (N+1-D!I' (v—=N—-1-1)!

Let us show as an example the particular expressiors:
of Eq. (10) for filtering the longitudinal acceleration and .

differentiating the yaw rate.

In both cases, the signal can be locally approximated
polynomials of degree 1, i.eN = 1. Thus, /(t) = ag+
ajt, t >0, ag,a1 € R, and(t) =bp+byt, t >0, bg,by € R. It
yields, if we take for instance = 2, the following estimators:

T
%'230:%./0 (2T —31) y(1)dT
. . _31 T

-:b]_:_l_—zz!/ (T-20)Y(1)dr
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Fig. 1. Lateral acceleration filtering with 2 different wind sizes (top).
Comparison between a standard numerical differentiatfoty and the one
obtained with the algebraic methods (bottom)

IV. ESTIMATION ALGORITHMS

From Eqg. (2) and (7) the estimates df andVy can be
obtained via the algorithms 1 and 2.

Algorithm 1 Estimation ofVy

Require: Yaw rate ((t), longitudinal and lateral accelera-
tion (k(t) and y(t)), 4 wheel’s rotation speed(t),
lateral velocity estimatovy(t)

Ensure: Longitudinal velocity estimatov(t;), Vtj € [0, T]

1: Use algebraic methods described in Section Il to obtain
U, O % % @ andw

. Integrate numerically system (7) with previous estimated

signals

30 if |Gx(t)] < &1, Yt € [ti — aTs,ti] then
4 W) =ra(t)
else .
Vi(ti) = Vi(ti_1) + (/t W+ t,b\7y) dt
py”: end if '

We see at the bottom of Fig. 2 that the obtained esti-
mation is excellent and differs significantly from the crude
estimateray. Indeed, when slipping becomes significant,
the algorithm does not rely on wheel speed (line 4 of
algorithm 1), but also on accelerometer’'s measure (line 6 of
algorithm 1). The switch between these two modes, bearing
some resemblance with diagnosis techniques, relies on the

Observe in Fig. 1 that the noise attenuation is ObViOUSI¥ignificance of some residual related terms

related to the size of the estimation window.

5See [7] for details.

Note that these switching conditions (line 3 in algorithms
1 & 2) between integration modes are not solely obtained



Algorithm 2 Estimation of\Vy

Require: Yaw rate ((t), longitudinal and lateral accelet
tion (y(t) andy(t)), 4 wheel’s rotation speeg (t), lon-
gitudinal velocity estimatof/y(t), initial lateral velocity
W(to) = Vg R

Ensure: Lateral velocity estimato¥(t;), Vtj € [0, T]

1: Use algebraic methods described in Section Il to ok
U, O % % @ andw
2: Integrate numerically system (7) with previous estim:
signals
if [W(t)] < &, Yt € [ti — BTs,ti] then
Vy(ti) =0

else "

Uy(t) =Vh(t-)+ | (15— Vi) ot

. end if -

N are

from Gx and Gy values. Hence, remark in Fig. 2 that, e
if the evolution of Gy is naturally linked to the validity ¢
equatiorivy =ra, Gk does not stabilize around the origin
time instants » 7s. This phenomenon can be explainec
two facts: measurements are highly corrupted by noise
integration step is fixed and constrained by the samplirey
Gx has been chosen as the switching variable in
3 of algorithm 1 because, even if it is slightly noisy,
remains close to zero whéfy = rwy. Note that the threshold

U S

50

4
time (s)

©

— dGX/dt
— Switch

4
time (s)

©

— RealV
X

i 7“.01

V>< estimation

it .
Fig. 2. Gx(t) (top); Gx(t) and sw
estimation (middle); real and e

condition established in algorithms 1 and 2 must be fulfilleghottom)

all over a window of a user-predefined sizds. The aim
of this kind of constraint is to avoid sudden changes
estimation modes (line 4, resp. 5, in the algorithms 1 ¢
each time the noisysx passes through zero. However,
see in Fig. 2 (middle graph, final zone) that the respi
time to stabilization aroun@y = 0 is quite significarft

The previous analysis concerning the switching vari
for longitudinal dynamics is not valid anymore for late
dynamics. Note in Fig. 3 thaby is much more noisy tha
Gx. This fact is probably due to remanent noise on '
rate derivative estimation. Therefore, it seems much r
convenient to use a noiseless estimate of the yaw ra
decide whether the lateral velocity is zero or if it is given
Eq. (4).

Remark 4:If the working horizon is quite long, it i
preferable to reset Eq. (7) when the derivatives of
residualsR, andRy get close to zero.

V. NUMERICAL EXPERIMENTS

Our scenario (see steering angle and motor/brake tc
in Fig. 4) leads to maximal longitudinal and lateral acca!
tions y andy, which are approximatively equal ta8y (see
the last graph in Fig. 4).

Our numerical experiments are very realistic. We
employing a simulator of a vehicle with 14 degrees
freedom, and with complete drive-train and tire models

time (s)

itching variable on longitudinal velocity

stimated longitudinal eéles andrw

time (s)

4
time (s)

filtered dy/dt

— filtered dy/dt
—— Switch

[17]). The white Gaussian noises, which have been added

4
time (s)

6 7

Fig. 3. Gy(t) (top), Gy(t) (middle), and filteredp and switching variable
6A good trade-off between noisy or reactive estimation widl the on lateral velocity estimation (bottom)

engineers task.
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Fig. 4. Steering angle (rack displacement), motor/brakejum, anc
longitudinal/lateral accelerations of the vehicle.

time (s)

. Fig. 5. Real and estimated longitudinal (top) and lateratt(m) velocities
to every measured signal, are stronger than those COI’ngtl\Qi?h a friction coefficienty — 0.79 (top) am)

real onboard sensors. All necessary parameters to imptemen
the previous algorithms are detailed in table I.

16

Parameter| Value
Ts 0.0025 s
& 0.01 o —
& 0.01 R
a 200 S 4
B 100 z
Te 200 g 13
TABLE | 2 nf

PARAMETER VALUES

Real V,
x

-—- -V estimation
10 i i i i i T T

Fig. 5 shows the simulation results on a quite nor 0 : 2 P iy C o 7 8
road, where the friction coefficient js=0.7. The estimator
perform pretty well. Fig. 6 and 7 show their behaviors w o3

T

PaN — — —V_ estimation
y

Real V.

y

the driver actions are identical, but the friction coeffitiés,
respectively, highery( = 0.9) and lower 1 = 0.5).

Remark that the global behavior is very similar to
previous case. Thus, longitudinal velocity is rather \
estimated and lateral velocity respects the trends prelyi
shown. Nevertheless, note that estimation error§,phave
a larger influence oW estimation than conversely.

y

Lateral velocity V. (ms‘l)

VI. CONCLUSION

A new estimation approach for vehicle velocities at "o 1 2 I 6 7 8
. . . Ime (s,
center of gravity is proposed. It is based on algebia
estimation technlques and dlagn_05|s t00|§. A new straisegy,iig. 6. Real and estimated longitudinal (top) and laterattfim) velocities
presented, where only acceleration equations with regpectwith a friction coefficientu = 0.9
a rotating frame is used. Since this system of equations does
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Fig. 7. Real and estimated longitudinal (top) and lateratt@im) velocities

with a friction coefficienty = 0.5 [15]

[16]
not contain any vehicle parameter, the obtained estimators
are remarkably robust. [17]

Our first results not only exhibit excellent tracking qualit
but also demonstrate good robustness with respect to noié?l
measurements and to road friction coefficient variations.
Even if our simulations are accurately reproducing realig19]
tic situations, an experimental validation on a large randéol
of scenarios (including banked roads) is necessary, and is
under development on a prototype vehicle. Besides, similgi]
techniques will be tested on tire forces and friction coeffit
estimation. [22]

See [1] for a preliminary application of our algebraic
estimation techniques to traffic control. 23
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