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Abstract— This paper deals with fault detection and isolation
problems for nonlinear dynamic systems. Both problems are
stated as constraint satisfaction problems (CSP) and solved
using consistency techniques. The main contribution is the iso-
lation method based on consistency techniques and uncertainty
space refining of interval parameters. The major advantage
of this method is that the isolation speed is fast even taking
into account uncertainty in parameters, measurements, and
model errors. Interval calculations bring independence from the
assumption of monotony considered by several approaches for
fault isolation which are based on observers. An application to
a well known alcoholic fermentation process model is presented.

I. INTRODUCTION

Early and accurate fault detection and diagnosis for indus-

trial processes can minimize downtime, increase the safety

of plant operations, and reduce costs.

Different techniques have been developed in recent years

that are intended to detect and diagnose faults. These tech-

niques can be classified in different ways [1], [2]. For

example, a distinction can be made between model-based

techniques and techniques based on other kinds of knowl-

edge, such as heuristic approaches, statistical approaches,

learning systems, artificial neural networks, etc.

Among others, all the fault detection and isolation tech-

niques have to face the challenge of dealing with uncertainty.

This can be achieved in several ways, e.g. by statistical data

processing, averaging, or using intervals.

This paper introduces a fault diagnosis approach based

on a model that takes into account the uncertainties in the

measured signals and in the model by means of intervals.

These uncertainties are caused by, for example, non-modeled

effects, electrical disturbances, model simplifications, and so

on.

Several engineering problems such as system and state

estimation, fault detection, robustness analysis, robust control

design, risk assessment, and worst case behavior analysis,

can be solved when interval uncertainties are considered.

As matters stand, some interval methods have been pro-

posed in the context of fault detection and diagnosis, e.g. [3],

[4] and [5]. A fault detection approach based on constraint

propagation is proposed by Stancu et al. in [6]. In [7], the

fault detection problem is solved using a tool known as
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IntervalPeeler, based on constraint projection algorithms (2B-

consistency) to reduce interval domains of variables without

bisections.

Consistency methods are used to perform results of this

article. They are a combination of interval methods and con-

straint satisfaction techniques. Constraint satisfaction tech-

niques implement local reasoning on constraints to remove

inconsistent values from variable domains. In practice, the

set of inconsistent values is computed by means of interval

reasoning.

To introduce the results of this papers it is necessary to

mention a method based on parameter partitioning and the

monotony of an observer prediction error for fault isolation

which is proposed in [8]. The method applies for fault

isolation in non-linear dynamic systems and assumes that the

fault is detected once it occurs, so the isolation procedure is

triggered at this time. Its authors emphasize the approach

speed, being quicker than other methods based on adaptive

observers.

Regarding the approach proposed in [8], the main contri-

butions of this paper are: (i) the isolation problem is based

on parameters uncertainty refining instead of partitioning,

(ii) the isolation problem is stated as a Constraint Satisfac-

tion Problem (CSP) and solved by means of consistency

techniques. A sliding time window is used to reduce the

computational effort. And (iii) interval calculations allow

the proposed approach to be independent of the assumption

(about the type of nonlinear systems) that the system dynam-

ics is a monotonous function with respect to the considered

parameters.

The aim of this paper is to show the usefulness of the

consistency methods to solve not only the fault detection

problem, but also the isolation problem when a fault appears

as a parameter deviation for non-linear dynamic systems.

The method provides the estimation of the faulty parameter

range, which is very useful information for the controller

reconfiguration in the Fault Tolerant System (FTC).

In section II the fault detection and isolation problems

are shown to be constraint satisfaction problems and the

resolution of them is achieved by the solver RealPaver [9].

An alternative, which is to use an efficient combination of

Hull- and Box- consistency, is explored.

The proposed approach effectiveness is illustrated by

means of a well known alcoholic fermentation process pre-

sented in [10], [11], [12], [8], [13] and [14], for instance.
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In section III, the used model is described, two simulation

scenarios are considered, and fault detection and isolation

results are presented. Some conclusions and future work are

stated in section IV.

II. FAULT DETECTION AS A CONSTRAINT SATISFACTION

PROBLEM

Many engineering problems can be formulated in a logical

form by means of some kind of first order predicate for-

mulas: formulas with the logical quantifiers (universal and

existential), a set of real continuous functions (equalities

and inequalities), and variables ranging over real interval

domains.

As defined in [15], a numerical constraint satisfaction

problem is a triple CSP = (V ,D, C(x)) defined by

1) a set of numeric variables V = {x1, . . . , xn},

2) a set of domains D = {D1, . . . , Dn} where Di, a set

of numeric values, is the domain associated with the

variable xi,

3) a set of constraints C(x) = {C1(x), . . . , Cm(x)}
where a constraint Ci(x) is determined by a numeric

relation (equation, inequality, inclusion, etc.) linking a

set of variables under consideration.

The fault detection problem can be represented by a CSP

similar to the one presented in [16], which deals with the

problem of nonlinear state estimation. For example, consider

a discrete-time nonlinear dynamic system described by:

{

xxx(k + 1) = ggg(xxx(k),uuu(k), θθθ,www(k))
yyy(k) = hhh(xxx(k),uuu(k), θθθ) + vvv(k)

, (1)

where:

⋄ uuu(k) ∈ ℜnu , yyy(k) ∈ ℜny , and xxx(k) ∈ ℜnx are the

input, output, and state vector, respectively.

⋄ www(k) ∈ ℜnw and vvv(k) ∈ ℜny are the perturbation

and measurement noise vectors, which are un-

known but bounded. The perturbation vector takes

into account, for instance, unmodeled dynamics of

the actual plant, unknown inputs, or an error due

to the discretization procedure.

⋄ θθθ ∈ ℜnp is a vector of uncertain parameters.

The dynamic system (1) can be represented as a CSP:

V = {θθθ, ỹ̃ỹy(1), . . . , ỹ̃ỹy(k), x̂̂x̂x(1), . . . , x̂̂x̂x(k+1), ũ̃ũu(1), . . . , ũ̃ũu(k)

www(1), . . . ,www(k),vvv(1), . . . , vvv(k)}

D = {ΘΘΘ, Ỹ̃ỸY (1), . . . , Ỹ̃ỸY (k), X̂̂X̂X(1), . . . , X̂̂X̂X(k+1), Ũ̃ŨU(1), . . . , Ũ̃ŨU(k)

WWW (1), . . . ,WWW (k),VVV (1), . . . ,VVV (k)}

C = {x̂̂x̂x(2) = ggg(x̂̂x̂x(1), ũ̃ũu(1), θθθ,www(1))

ỹ̃ỹy(1) = hhh(x̂̂x̂x(1), ũ̃ũu(1), θθθ) + vvv(1)

.

..

x̂̂x̂x(k + 1) = ggg(x̂̂x̂x(k), ũ̃ũu(k), θθθ,www(k))

ỹ̃ỹy(k) = hhh(x̂̂x̂x(k), ũ̃ũu(k), θθθ) + vvv(k)}.

A problem finding the CSP solution is the continuous in-

crement with time in the computational effort. An alternative

for overcoming this problem is the use of a sliding time

window. The time interval from the initial time point to the

current one is called time window w [17].

Consistency techniques can be used to contract the do-

mains of the variables involved removing inconsistent values

[18], [19], [20]. In particular for the fault detection applica-

tion, they are used to guarantee that the observed behavior

and the model are inconsistent when there is no solution.

The algorithms that are based on consistency techniques are

actually ”branch and prune” algorithms, i.e., algorithms that

can be defined as an iteration of two steps [18]:

1) Pruning the search space by reducing the intervals

associated with the variables until a given consistency

property is satisfied.

2) Generating subproblems by splitting the domains of a

variable

Most interval constraint solvers are based on either hull-

consistency (also called 2B-consistency) or box-consistency,

or a variation of them [19]. Box-consistency tackles the prob-

lem of hull-consistency for variables with many occurrences

in a constraint. The aforementioned techniques are said to be

local: each reduction is applied over one domain with respect

to one constraint. Better pruning of the variable domains

may be achieved if, complementary to a local property, some

global properties are also enforced on the overall constraint

set.

In this paper, the solution of the fault detection and

isolation CSP is achieved by using the solver RealPaver [9].

The BC4 algorithm, an efficient combination of hull and box

consistency, is used in Section III.

In this paper, only the case where the fault is caused by

a change of a singular parameter is considered. For each

parameter, its initial domain is set to its possible range in

practice and the initial domains of the other parameters are

equal to the nominal intervals. For example, if we have three

parameters θθθ = (θ1, θ2, θ3), and the corresponding nominal

intervals, Θ0Θ0Θ0 = (Θ0
1, Θ

0
2, Θ

0
3), and possible range in practice,

ΘpΘpΘp = (Θp
1, Θ

p
2, Θ

p
3), then three constraint satisfaction prob-

lems are taken into account. For the first, the set of initial

domains of the parameters is: (Θp
1, Θ

0
2, Θ

0
3), for the second,

(Θ0
1, Θ

p
2, Θ

0
3), and finally, for the third, (Θ0

1, Θ
0
2, Θ

p
3).

As a novelty, in this paper the fault isolation problem is

also stated as a CSP and solved using the same reasoning for

solving the fault detection problem described above. Thus,

the CSP for the fault isolation is similar to the one for fault

detection. The fault isolation task starts once the fault has

been detected. The sliding time window goes up from its

smallest value until it gets its maximum possible value. When

no CSP solution is found, we can judge that the fault is not

caused by a change of the parameter θi, in which the initial

domain is the possible range Θp
i . Satisfactory simulation

results are presented in Section III-A.
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III. APPLICATION EXAMPLE: THE ALCOHOLIC

FERMENTATION PROCESS

A well-known dynamical example of an alcoholic fer-

mentation process [8] will be used to explain the proposed

method for fault detection and isolation.

The fermentation consists in growing a population of

microorganisms by feeding them appropriate nutrients or

substrates, provided the environmental conditions are pro-

pitious [14].

The model obtained from the mass balance considerations

is composed of the following differential equations:



















dC(t)
dt = µ(t)C(t) − D(t)C(t)

dS(t)
dt = − 1

Yc/s
µ(t)C(t) + D(t)Sa − D(t)S(t)

dP (t)
dt =

Yp/s

Yc/s
µ(t)C(t) + D(t)P (t)

(2)

where C(t), S(t) and P (t) represent respectively the

biomass, substrate, and product concentrations in the biore-

actor. The dilution rate D(t) is used as the control variable.

Sa represents the substrate concentration in the feeding. Yc/s

and Yp/s are the yield coefficients and it is assumed that

they are known and constant. The measurable state is the

substrate concentration S(t). µ(t) represents the growth rate

of the biomass, and it is a nonlinear function of the variable

S(t) described by

µ(t) = µm
S(t)

Ks + S(t)
(3)

where µm is the maximum growth rate and Ks is the

saturation constant.

Faults are modeled as a single parameter change in the

process parameters µm and Ks.

The interval method presented in this paper uses discrete-

time models. In this case a discretization is obtained by using

a first order approximation:

xxx(t + Ts) ≃ xxx(t) + Ts ggg(xxx(t),uuu(t), θθθ), (4)

where the sample time, Ts, is equal to 3 minutes.

Thus, from (2), the following discrete-time model can be

obtained:

Ĉ(k+1) = Ĉ(k)+Ts(µ(k)Ĉ(k)−D̃(k)Ĉ(k)) + w1(k)

Ŝ(k+1) = Ŝ(k)−Ts(
µ(k)
Yc/s

Ĉ(k)−D̃(k)(Sa−Ŝ(k))) + w2(k)

P̂ (k+1) = P̂ (k)+Ts(
Yp/s

Yc/s
µ(k)Ĉ(k)+D̃(k)P̂ (k)) + w3(k)

S̃(k) = Ŝ(k) + v(k)
(5)

where wi(k) is the perturbation vector at time k, and

it takes into account, for example, an error due to the

discretization procedure. v(k) is the measurement noise of

the interval measurement S̃(k).

A. Simulation results

The nominal values of model parameters used as well as

the yield coefficients are obtained from real applications and

are given by [8]:

µm = 0.38h−1

Ks = 5g/l
Yc/s = 0.07
Yp/s = 0.44

Sa = 100g/l

The possible value ranges, i.e. experimental considera-

tions, of the parameters in practice are given by Ks ∈
[0.5, 5.1] and µm ∈ [0.2, 0.53].

In this paper two faulty scenarios are considered: (i) the

faulty parameter is µm and its value is 0.3, and (ii) the faulty

parameter is Ks and its value is 3.1.

In the simulation, D(t) is selected as a rectangular wave

varying between 0.1 and 0.27 with a period of 30 hours.

Fault detection results are obtained by using the BC4

consistency technique and a window length equal to 100

samples (5h). When no solution is found to the CSP, a

fault is detected. Otherwise, when the observed behavior

and the model are not proven to be inconsistent, this means

there is not a fault or it could not be detected. In this way,

the proposed approach prioritizes avoiding false alarms over

missed alarms.

1) First scenario:

This scenario analyzes a fault appearing as a deviation of

the parameter µm. Regarding the nominal range of µm ∈
[0.36, 0.41], obtained results for the faulty parameter µm =
0.3 are shown in Fig. 1. “FD” indicates there is a fault and

“NF—FND” means there is not a fault or one could not be

detected.

As shown in this figure, there is no false alarm in the

absence of a fault. The fault begins at 70h and is detected

from 70.05h.

0 20 40 60 70

NF|FND

FD

Time (h)

F
a
u
lt
 d

e
te

c
ti
o
n

Fig. 1. First scenario fault detection. Fault in parameter µm beginning at
time t = 70h. The fault is detected from 70.05h.
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Once the fault is detected, the fault isolation algorithm

starts. Isolation results are presented in Fig. 2 and Fig. 3.

70.05 75 80

0.2

0.3

0.36

0.41

0.53

Time (h)

µ
m

 (h
−1

)

Fig. 2. First scenario fault isolation (Faulty parameter µm = 0.3).
Consistent values for µm when the parameter Ks is equal to its nominal
interval Ks = [4.9, 5.1].

70.05     70.70 75 80

0.5

4.9
5.1

Time (h)

K s (g
/l)

Fig. 3. First scenario fault isolation (Faulty parameter µm = 0.3).
Consistent values for Ks when the parameter µm is equal to its nominal
interval µm ∈ [0.36, 0.41].

Fig. 2 shows the consistent values for µm when the pa-

rameter Ks is equal to its nominal interval, Ks = [4.9, 5.1].
After almost 10 hours of detecting the fault, the consistent

interval of µm is equal to [0.282, 0.314], which includes the

faulty parameter value µm = 0.3.

Similarly, Fig. 3 shows the consistent values for Ks when

the parameter µm is equal to its nominal interval, µm =
[0.36, 0.41]. Since there is no consistent region of Ks in its

feasible range of variation, the fault is not in the parameter

Ks. Therefore the fault associated with a deviation in this

parameter can be discarded at time 70.70h.

2) Second scenario:

The second scenario considers a deviation of parameter Ks

from its nominal region Ks ∈ [0.5, 5.1]. In Fig. 4, obtained

results for the faulty parameter Ks = 3.1 are shown. The

fault begins at 70h and is detected from 70.35h.

0 20 40 60 70

NF|FND

FD

Time (hour)

F
a

u
lt
 d

e
te

c
ti
o

n

Fig. 4. Second scenario fault detection. Fault in parameter Ks beginning
at time t = 70h. The fault is detected from 70.35h.

Fig. 5 shows the consistent values for µm when the pa-

rameter Ks is equal to its nominal interval, Ks = [4.9, 5.1].
Since there is no consistent region of µm in its feasible range

of variation, the fault is not in the parameter µm. Therefore

the fault associated with a deviation in this parameter can be

discarded at time 75.20h.

70.35 75.20 80

0.2

0.36

0.41

0.53

Time (h)

µ
m

 (h
−1

)

Fig. 5. Second scenario fault isolation (Faulty parameter Ks = 3.1).
Consistent values for µm when the parameter Ks is equal to its nominal
interval Ks = [4.9, 5.1].

Fig. 6 shows the consistent values for Ks when the param-

eter µm is equal to its nominal interval, µm = [0.36, 0.41].
After almost 10 hours of detecting the fault, the consistent

interval of Ks is equal to [2.89, 3.25], which includes the

faulty parameter value Ks = 3.1.

70.35 75 80

0.5

3.1

4.9
5.1

Time (h)

K s (g
/l)

Fig. 6. Second scenario fault isolation (Faulty parameter Ks = 3.1).
Consistent values for Ks when the parameter µm is equal to its nominal
interval µm ∈ [0.36, 0.41].
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IV. CONCLUSIONS AND FUTURE WORKS

When interval uncertainties are considered, consistency

methods can be used to solve fault detection problems. In this

paper, through the obtained results, consistency techniques

are shown to be particularly efficient to solve the isolation

problem when a fault can be represented as parameter

deviations. The speed of fault isolation is fast (similar to the

one obtained in [8]) even dealing with uncertain measure-

ments, parameters, and model errors. Interval calculations

allow the proposed approach to be independent of monotony

assumptions. In the future, the case of multiple faults (or a

fault caused by the changes of multiple parameters), must be

studied in depth.
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[10] Z. Li, “Contribution à l’élaboration d’algorithmes d’isolation et
d’identification de défauts dans les systèmes non linéaires,” PhD
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