
Dynamical Approach to Manipulation of Single Atoms/Molecules
at Material Surface

Takashi Hikihara

Abstract— Nano-technology is a bottom-up technology and
shows the possibility of spatial arrangement of atoms and
molecules by using sensing probes, for example, SEM, AFM,
and so on. The demonstrative experiments have been reported
since 1990s. In this paper, we will discuss a model of single
particles manipulation from material surface. The model is
based on a van der Waals molecule vibrational predissociation
of T-shaped model. The probability of the manipulation is also
considered with relation to chaotic dynamics. The theoretical
discussion is confirmed by numerical simulation. Through
the results, the method for manipulation of nano-particles is
discussed.

I. INTRODUCTION

This paper describes the dynamics of single atoms and
molecules, bonding to material surface by van der Waals
force, at one of potential wells under external excitation.

Recently, manipulation of single atoms and molecules
has been experimentally achieved on surfaces with use of
scanning tunneling microscope (STM) and atomic force
microscopy (AFM) in lateral processes as well as vertical
processes [1], [2], [3], [4], [5]. The lateral processes can
transfer atoms and molecules parallel to the surface and the
vertical between tip and adatom via vibrational excitation
of the target-substrate bond. The processes have been also
studied theoretically [6], [7], [8], [9] and numerically [10].

This paper applies van der Waals molecular vibrational
predissociation based on T-shaped model [11], [12], [13],
[14], [15]. The model was introduced to describe a quantum
mechanics that governs the rates of vibrational predisso-
ciation of A–B–A triatomic molecules, which are coupled
Morse oscillators. Atoms and molecules attached on the
material surface are bonded by van der Waals potential,
which is characterized by Morse type atom-atom interaction
potential. The dynamics of manipulated particles is described
by the fragmentation of the atom B from the coupling of A–
A.

In the following section, we introduce a Hamiltonian of
the triatomic molecules. The system is coupled nonlinear
oscillators. Assuming that the rotation and bending modes
are neglected, at first, it is shown that the eigen frequency
decides the resonance and energy exchange. At high energy,
the system possibly shows chaotic vibration. It gives the
probability to classical dynamics of atoms and molecules.
The fragmentation of atoms from surface is discussed based
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on the global phase structure. We also confirm the possibility
of manipulation by numerical simulation. When the pertur-
bation of energy exceeds the critical value, the dynamics
appears the global behavior out of single potential well. That
is, the vibratory dissociation can achieve the manipulation
of nano-particles. This is inevitable to capture the atom
dissociated from the material surface. The possibility of
capture is also discussed based on the setting of dissipation.
The results show us the possible manipulation method of
nano-particles in situ conditions.

II. DYNAMICS OF SINGLE ATOM AT MATERIAL SURFACE

In this section, the dynamics of single atoms is discussed
based on Hamiltonian mechanics. At first we introduce a
model of atoms and molecules alignment for estimating
fragmentation of atom from surface bond.

A. Model of Single Atom and Molecule

Here we focus on the dynamics of single atoms and
molecules attached on material surface at low temperature
and vacuum circumstances. Assume that single atoms or
molecules B at a surface is bonding to quadri-atoms A (see
Fig.1) . The model of molecular vibrational fragmentation
has been discussed for T-shaped structure with van der Waals
potential. At the surface, we assume the pyramid structure
of atoms at steady state. In the pyramid-shape bonding, the
rotation and bending modes disappear. Then the DOF (degree
of freedom) of B is restricted in the vertical direction to the
rectangle plane of A. Hereafter, the system can be modeled
by T-shaped structure with diagonal atoms A and B without
rotating dynamics.

The Morse interaction potential limits the distance of the
interaction in a short range. In the region, the atoms are
called Velet neighbors [16]. The distance between the atoms
A is depicted as

√
2Q and distance between B and center O
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Fig. 1. Atoms and molecules alignment at material surface.
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Fig. 2. Schematic Morse potential with equilibrium point at 1.0.

the q-axis. Each momentum is given by P and p. The
Hamiltonian can be written in the form:

H =
P2

2m
+

p2

2µ
+V0(Q,q)+V1(Q,q), (1)

where the angle between the axis of A-plane and the vector
from the center of mass to B is restricted at rectangle. Then
we neglect the kinetics of angular motion. Here mA and mB
are the masses of A and B, respectively. m = mA/2 is the
reduced mass of A and µ = 2mAmB/(mA +2mB) the reduced
mass of the whole system. The potentials are given as follows
[15]:

V0(Q,q) = W0(Q)+W0(q),

where

W0(Q) = D0A(e−2β0A(Q−Q0) −2e−β0A(Q−Q0)),

W0(q) = D0B(e−2β0B(q−q0) −2e−β0B(q−q0)),

and

V1(Q,q) = W1(r+)+W1(r−),

where

W1(r±) = D1(e−2β1(r±−r±0) −2e−β1(r±−r±0)).

V1 is the expansion of van der Waals potential in the Tayler
series around equilibrium point. r± are the distance between
B and one of the atoms A. r is a function of Q and q. The
equilibrium point is given by r0. D0A, D0B, and D1 depict
the dissociation energy. β0A, β0B, and β1 denote the range
parameters. The shape of Morse potential is shown in Fig.2

Assuming the 2-dimensional symmetry of quadri-atoms A,
the potential function around the single atom B possesses the
axial symmetric property at steady state. Then, the system
seems to be equivalent to T-shaped model. It implies that the
fragmentation is limited in the vertical direction to the plane
A.

Equation 1 represents the model system Hamiltonian in
coordinates (Q,q,P, p). In the classical dynamics, we have

the relation: 

Q̇ =
∂H
∂P

,

q̇ =
∂H
∂ p

,

Ṗ = −∂H
∂Q

,

ṗ = −∂H
∂q

.

(2)

The linearization of the system (2) is based on Taylor
expansion around the equilibrium point for Q and q.

B. Analysis based on Action-Angle Formulation [14]

Under the dissipative or excited state, the perturbed Hamil-
tonian is given as

H = H0 + εH1, (3)

where ε is a small parameter. H1 includes V1(Q,q). The zero-
oder component of Hamiltonian is given by

H0 =
P2

2m
+

p2

2µ
+W0(Q)+W0(q). (4)

We can rewrite H0 by an action(I)-angle(θ ) form. Based on
the reference [14], the following relationship is obtained.

H0 = EA(IA)+EB(IB) (5)

IA and IB are action variables, which are obtained by action
integral. The potential energy of Morse oscillators, EA and
EB, are defined as follows:{

EA(IA) = (IA + 1
2 )ωA − (IA + 1

2 )2ω2
A/4D0A −D0A,

EB(IB) = (IB + 1
2 )ωB − (IB + 1

2 )2ω2
B/4D0B −D0B,

where
ωA = (2D0Aβ 2

0A/m)1/2,

ωB = (2D0Bβ 2
0B/µ)1/2.

D0A and D0B are defined by related Morse potentials. The
simple derivatives of EA and EB give the zero order frequen-
cies in each motion along Q and q. That is,{

θ̇A = −ωA +(2IA +1)ω2
A/4D0A = ΩA,

θ̇B = −ωB +(2IB +1)ω2
B/4D0B = ΩB.

(6)

The energy at which the atom B is separated at infinity
depends on D0B. The external energy input for fragmentation
is due to the boundary of trapped motion of H. The phase
structure is schematically described in Fig.3.

The maximum values of IA and IB are obtained by Eq.(4)
[18]. 

IAmax = −1
2

+
2D0A

ωA
,

IBmax = −1
2

+
2D0B

ωB
.

(7)

These are also limits of actions for T-shaped structure in
Hamiltonian. That is, the external energy input to the system
can dissociate the bonding between atoms A and B.
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Fig. 3. Phase portrait of Hamiltonian.
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Fig. 4. Manipulation of single atom by probe.

III. MANIPULATION OF SINGLE ATOMS BY PROBE

One of the important topics of nanotechnology is the
manipulation of single atoms at the material surface. We
have already known the dynamics of single atoms, which
dissociate from material surface. Here, we will discuss a
mathematical formulation of vibratory fragmentation of sin-
gle atoms by probe based on perturbed Hamiltonian system.

A. Dynamics of Atoms between Surface and Probe

The manipulation of single atoms has been achieved by
STM and AFM [1], [2], [3], [4], [5]. The schematic structure
is described in Fig.4.

The manipulation implies the energy exchange between
an atom bonding to surface and probe. The manipulation
of atoms is governed by the probability of dissociation of
atomic bond. However, the dynamics and probability have
not been well understood [19]. If the probe is rigid or consists
of heavy atoms with strong bond to bulk, the dynamics is
simply modeled by T-shaped configuration of atoms and
molecules at surface. Then, the vibration of probe gives us
an external energy input to the original Hamiltonian system.

B. Probability of Hamiltonian System

The dynamics of single atoms, which are manipulated
by probe, is explained with relation to the bond in T-
shaped structure. The nonlinear resonances under external
excitation are related to energy transfer between modes

Mixed region of stochastic and 

regurlar motion

Vibratory fragmentation
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B

HΔ

Perturbation

H0

C

Manipulation

Tip Atom

Fig. 5. Phase portrait of perturbed Hamiltonian system.

and external vibration. Moreover, the limit of resonance
depicts the appearance of instability depending on the non-
linearity. On the other hand, we know that there is chaotic
region around resonant boundary [13], [14], [15]. Under
the external Hamiltonian perturbation ∆H might generate
vibratory fragmentation and manipulation of atoms as shown
in Fig.5. Therefore, the instability of the resonance around
the boundary is strongly related to the global phase structure.
When the system becomes dissipative, the complexity is due
to the intersection of stable and unstable manifolds. Bonding
instabilities are also reported between atoms at material
surface and the foremost tip of probe [20]. The instability
does not generate the probability but the abrupt jump of
dynamics. This might be related to the uncertainty in capture
and release of atoms.

In the classical treatment, the probability of fragmentation
is defined by the rate of initial conditions from which
trajectories come out of the region surrounded by homoclinic
orbit. Consider initial conditions in the space (Qi,qi,Pi, p j);
i and j show the indexes of meshed initial condition space.
Their Hamiltonian trajectories are generated by

P2
i

2m
+W0(Qi) = EA(IA),

p2
j

2µ
+W0(q j) = EB(IB).

(8)

These equations possibly show the stochastic region in initial
condition space [14]. The dissipation to the coupled Morse
oscillators loosens the homoclinic orbit corresponding to the
energy limit of bonding. At the same time, the homoclinic
intersection and folded manifolds appear in the global phase
structure. In the case, the probability is strongly governed
by the structure in spite of the uncertainty of Hamiltonian
system [15].

C. Energy Input for Manipulation

When the forcing of probe vibrates the single atoms, the
dynamics can be approximated by Eq.(2) with dissipation
and forcing terms. To achieve the vibratory fragmentation,
the external energy must be as much as

∆EB ≥ EB(IBmax)−EB(IB0), (9)
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Fig. 6. Energy of manipulated dynamics at small perturbation. The
dynamics is sampled at period of external forcing.

where IB0 is the initial action value. At the same time the
atom B must be captured in the bond of probe tip. As for the
foremost atom (C) of tip, the situation coincides with energy
exchange between A–B and B–C in the bond A–B–C. After
the fragmentation of the bond A–B, the atom B generates the
new bonding B–C. In this process, the dissipation works for
the stabilization of dynamics. Between release and capture,
chaotic dynamics cannot be avoided as mentioned above.
Then, the manipulation is governed by the uncertainty of
dynamics.

IV. NUMERICAL DISCUSSION

The manipulation dynamics of single atom between the
surface and probe has already described by the Hamiltonian
system. Then, we confirmed the statistic behavior of the par-
ticle. In the following numerical discussion, the parameters
are set as follows: mA = mB = 1.0× 10−12, D0A = D0B =
1.0×10−13, and β0A = β0B = 2.0. The equilibrium points are
at 2.0 and 7.0 between the surface and the probe normalized
by the Morse equilibrium point. Fig.6 is the periodical
motion of atom. The excitation induces the disturbance of
potential. The quasi-periodic behavior depends on the natural
frequency of atom and forcing frequency.

On the other hand, Fig. 7 shows the change of the energy
depending on the irregular trajectory. The external forcing
by probe gives the disturbance of interaction force through
Morse potential. When the amplitude of the forcing exceeds
the critical value, the trajectory becomes irregular as shown
in the figure. However, the system keeps the features of
Hamiltonian system.

The motion of single atom is kept in the potential well
under a weak excitation. This is the case of harmonic oscil-
lators. Depending on the initial given energy, the trajectory
shows the different closed orbit. Based on the previous dis-
cussion, the manipulation of atom requires the perturbation
in energy to exceed the critical value.

The Hamiltonian system has no dissipative terms after the

Fig. 7. Energy of manipulated irregular dynamics at the perturbation
exceeding a critical value. The dynamics is sampled at period of
external forcing.
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Fig. 8. Capture of nano-particle by dissipation. The dissipation is
set for the displacement over 4.0 near the probe.

trajectory jumps out of the potential well. The manipulation
of single atom should set the dissipative control of dynamics.

V. METHOD FOR MANIPULATION

The manipulation of nano-particles is a challenging topic.
If the concept is in the Hamiltonian formulation, the idea is
far from the practical setups. One of the practical consid-
erations is the dissipation control to capture the particle. If
the dissipation can be changed in the gap, the dynamics of
nano-particle will be affected by the energy dissipation. Fig.
8 shows the numerical simulation of capturing a particles
after irregular motion.

The atom B is wandering in the phase space because
of the irregular motion under excitation. The dissipation
is additionally given when the displacement is larger than
a critical value, which is set at 4.0 in proportion to the
velocity as a damping. Physically, the dissipation seems to
appear as a thermal dynamics between probe and surface.
In the low temperature and vacuum condition, the multi-
body effect might govern the thermal effect in the probe
and material. It finally causes the thermal effect of the
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probe-surface system. The estimation of the effect decides
the method of control. In the simulation, it clearly shows
the convergence of the trajectory to the well of the probe
potential. When the trajectory become chaotic, the control
method based on the controlling chaos has a potential to
stabilize the particle behavior. The method for controlling
chaos in AFM dynamics might play an important role [21].

If there are several probes, the particle is possibly trans-
ferred between probes. The concept has already been pro-
posed by authors [10], [22]. The design of the system is our
next project.

VI. CONCLUDING REMARKS

This paper discusses the manipulation dynamics of single
atoms and molecules by probe at material surface along the
theory of classical mechanics of vibrational fragmentation for
T-shaped molecules. The Hamiltonian approach can estimate
the minimum energy that corresponds to fragmentation of
single atoms from other bond. At the material surface, the
model is effective in low dimensional approximation through
summing Velet neighbors. We showed that the formulation
could describe the manipulation dynamics by vibrating probe
at the material surface. In the model, the dynamics was
focused on the new bond between a targeting atom and a
foremost atom of tip. The dynamics also has chaotic behavior
based on the nonlinearity of interaction of atoms under
Morse potential. These situations are numerically confirmed
in the system with external excitation of potential. It clearly
shows the appearance of irregular behavior under the external
excitation exceeding the critical energy level. The chaotic sea
in phase space of the control variables decides the probability
of manipulation.

In order to capture an atom by probe, it is inevitable to
stabilize the dynamical motion jumping out of a potential
well of material surface. Here, the numerical discussion
shows that the key is the dissipation of energy in the system.
The method for describing dissipation and its design are
also important topics in the nano-dynamics. We hope that
this approach can contribute to the dynamical design of
nano-technology and application of nonlinear dynamics in
practical systems.
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