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Abstract— We propose a new-kernel based approach for
linear system identification. The impulse response is modeled as
realization of a Gaussian process which includes information on
smoothness and BIBO-stability. The corresponding minimum-
variance estimate belongs to a Reproducing kernel Hilbert space
which is given a spectral characterization and shown to be dense
in the space of continuous functions. The approach may prove
particularly useful in order to obtain reduced order models and
assess the corresponding bias error in the context of robust
identification. Several benchmarks taken from the literature
demonstrate the effectiveness of the proposed approach.

Index Terms— linear system identification; kernel-based
methods; Bayesian estimation; regularization; Gaussian pro-
cesses; robust identification; stochastic embedding

I. INTRODUCTION

We consider estimation of the impulse response of a

BIBO-stable time-invariant linear system, fed with a known

input, from a finite set of noisy output samples. The most

used approach to solve such problem postulates a class of

finite-dimensional models, possibly of low-order for control

purposes [1], [2]. Then, criteria such as AIC or GCV are

used to select the ”best” model order. A crucial issue is

quantification of both variance and bias error affecting the

estimate of the nominal model. Furthermore, in presence

of undermodeling, it is well known that the estimate may

depend heavily on the form of the signal chosen as system

input. Thus, prefiltering of output data is often advisable

even if the choice of the operating frequency range may be

nontrivial [3].

In the robust identification literature three main approaches

have been proposed in order to characterize the variance

and bias error. The first two approaches, namely stochastic

embedding [4], [5] and model error modeling [6], rely on

a probabilistic paradigm, while the third one, namely set-

membership identification [7], [8], adopts a deterministic

worst-case viewpoint. All the three methods start with the

identification of a low-order nominal model by using stan-

dard techniques such as maximum likelihood or prediction

error methods. Then, on the basis of the nominal model they

proceed to quantify bias and variance errors. For example, in

the stochastic embedding setting the bias error is described

as the realization of a stochastic process, e.g. white noise

with decreasing variance [4]. In the model error modeling

approach, residual analysis is used to obtain information on
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undermodeling while set-membership identification relies on

worst-case error associated with the nominal model [2].

Although the stochastic embedding has some connection

with Bayesian estimation, a treatment of the robust iden-

tification problem in a fully Bayesian context is still lacking.

In this paper, the main difference with respect to existing

approaches is that the probabilistic prior is formulated di-

rectly on the unknown estimated impulse response rather

than on the bias error. In particular, we assume that the

impulse response is the realization from a Gaussian measure

defined on an infinite-dimensional function space. Our new

prior model avoids overfitting by including information on

both continuity of the impulse response and BIBO-stability

of the system. The minimum variance estimate is the solution

of a Tikhonov-type regularization problem defined on a

Reproducing Kernel Hilbert Space (RKHS) which is fully

characterized and shown to be able to approximate a very

wide class of functions. According to our strategy, first,

a virtually unbiased estimate of the impulse response is

obtained in such hypothesis space. Then, the desired low-

order model, suitable for the intended use, may be derived

from the regularized estimate. In this way, prefiltering of

output data is completely avoided and replaced by projection

of a regularized estimate onto a low-dimensional space.

The paper is organized as follows. In Section 2, the problem

statement is given and regression via Gaussian processes [9]

in RKHS [10] is concisely overviewed. In Section 3, we

extend a result reported in [11] and show that the optimal

estimate of a nominal model is obtained by projecting the

Bayes estimate onto a finite-dimensional space. In Section 4,

a new Gaussian prior for system identification is derived by

defining a suitable Mercer kernel K. In Section 5, a spectral

analysis of K is obtained. It is also shown that realizations

from the new prior are almost surely associated with BIBO-

stable systems and that the RKHS defined by K is dense

in the space of continuous functions. In Section 6 simulated

benchmarks taken from the literature are used to demonstrate

the effectiveness of the proposed approach. Conclusions then

end the paper.

II. PRELIMINARIES

We are given a finite set of noisy output data from a

continuous-time linear dynamic system fed with a known

input u(t). The measurements model is

yi
.
= Lu

i [ f ;∆]+ vi =
∫ ti

0
f (ti − τ −∆)u(τ)dτ + vi (1)

where {ti}
n
i=1 are the sampling instants, ∆ may account for

a possible time-delay in the system, {vi} is white Gaussian
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noise with variance σ2. In addition, f represents the un-

known system impulse response of the system which has

to be estimated from the output data. In the sequel, we

will mainly refer to such continuous-time setting even if the

approach which will be developed can deal with discrete-time

problems by just replacing integral operators with suitable

discrete convolutions.

It is assumed that there exists a prior for f which consists

of a Gaussian measure in an infinite-dimensional function

space. To be specific, we use f̃ to indicate a zero-mean

Gaussian process with auto-covariance λ 2K(·, ·). Here, λ 2 is

a possibly unknown scale factor while K represents a Mercer

kernel, i.e. a mapping K : D×D 7→ ℜ, where D ⊆ ℜ, which

is continuous, symmetric and positive definite1. Let N(µ,Σ)
denote a Gaussian density of mean µ and covariance Σ and

let Id be the d×d identity matrix. Then, the statistical model

for f is specified as follows

f (t) =
d

∑
i=1

θiψi(t)+ f̃ (t) t ∈ D (2)

θ ∼ N(0,ρId) ρ → +∞

where θ is independent of f and of {vi} while {ψi}
d
i=1 are

assigned functions. In the sequel, we also use B to indicate

the subspace spanned by {ψi}.

Since f and {vi} are assumed jointly normal, the posterior

of f given {yi} is Gaussian as well. Our target estimate

is the posterior mean. To define such estimate in rigorous

mathematical terms, it is useful to recall that a Mercer Kernel

K can be associated with a unique Hilbert space H of real

valued functions, contained in the space C(D) of continuous

functions on D. This RKHS satisfies the following two

properties

• pointwise evaluation is a linear bounded functional

• the inner product, denoted by < ·, · >H , satisfies the

reproducing property

< f (·),K(·,s) >H = f (s)

In view of the last property, K is also called reproducing

kernel of H [10], [12]. In the sequel, we also use ‖ ·‖H to

denote the norm associated with H .

Remarkably, if the dimension of H is infinite, it can be

proved that realizations from f̃ do not fall in H with

probability one [13], [14]. The following result points out

that, for known {yi}, the minimum variance estimate of f

belongs to the direct sum of H and B (denoted as H ⊕B)

and it can be obtained as the solution of a Tikhonov-type

variational problem. Below, and in the sequel, it is assumed

that Lu
i : H 7→ ℜ is continuous ∀i.

Proposition 1: Assume that f is given by (2) and is

independent of {vi}. Let P denote the orthogonal projection

1A kernel K is positive definite if for any finite set {s1,s2, ...,sk} ⊂ D

and for any real r1,r2, . . . ,rk we have

k

∑
i=1

k

∑
j=1

riK(si,s j)r j ≥ 0

of h onto H , in H ⊕B and let also γ = σ2/λ 2. For known

{yi} and γ , the minimum variance estimate of f is given by

f̂ = arg min
h∈H ⊕B

n

∑
i=1

(yi −Lu
i [h;∆])2 + γ‖P[h]‖2

H (3)

¥

In (3), the choice of K and γ will have a major influence

on the quality of the estimate. The former reflects our prior

knowledge about f and will determine important properties

of H such as its capability of approximating a wide class of

functions. The latter is the so-called regularization parameter

which has to correctly balance expected regularity of the

solution and adherence to experimental data.

As far as K is concerned, typical choices are Gaussian or

polynomial kernels. In particular, when the signal is just

known to be regular, the most popular approach is to model

f as an integrated Wiener process with completely unknown

initial conditions. Under such statistical assumptions, denot-

ing the corresponding kernel as W , we have [13], [15]

W (s,τ) = cov( f̃ (s), f̃ (τ)) =

{

s2

2

(

τ − s
3

)

s ≤ τ
τ2

2

(

s− τ
3

)

s > τ
(4)

This type of kernel underlies the Bayesian interpretation of

cubic smoothing splines [13]. In the sequel, let S = [0,1].
Then, the associated RKHS of functions on S, denoted as

HW , is a Sobolev space whose boundary conditions are the

values of the unknown function and its first-order derivative

at zero. Thus, ψ1 and ψ2 are a constant and a linear function,

respectively, so that θ ∈ ℜ2 and

BW = span{1, t} t ∈ S (5)

An explicit solution of the problem in (3) with hypothesis

space HW ⊕BW can be found in Chapter 1 of [12].

Once K is given, the Bayesian interpretation underlying

Problem (3) can be exploited to determine γ . In particular, an

effective approach is the so-called Empirical Bayes method:

the unknown hyper-parameters, e.g. σ2 and λ 2, are first

estimated via a maximum likelihood approach. Then, they

are set to their point estimates and f̂ is computed from (3)

as if they were perfectly known.

Finally, confidence intervals can be obtained by computing

the posterior autocovariance Var[ f |y], see e.g. Section 4 in

[16] for computational details.

III. MEAN-SQUARE OPTIMAL FINITE-DIMENSIONAL

APPROXIMATION

Let y ∈ ℜn denote a random vector. We also use L to

indicate the space of functions mapping an interval D into the

real line. A generic element of L is denoted by h, while F ⊂
L represents the space of nominal models. As an example,

F could contain all the first-order approximations of a stable

time-invariant dynamic system, i.e.

F =
{

h : h(t) = Ae−at ,A ∈ ℜ,a ∈ ℜ+, t ∈ ℜ+
}

Let Γ map vectors y into functions h, i.e. Γ : ℜn 7→ L .

Furthermore, Γt : ℜn 7→ ℜ is defined by Γ(y) evaluated at t,
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i.e. if Γ : y 7→ h then Γt : y 7→ h(t), t ∈ D. Further, we use

f (t), or the abbreviated notation ft , to denote a real-valued

stochastic process with t ∈ D while pt( ft ,y) indicates the

joint density of ft and y. Finally, w(t), t ∈ D, represents a

strictly positive weighting function.

Proposition 2: If Γ : y 7→ L , the solution of the problem

argmin
Γ

∫

ℜn+1×D
( ft −Γt(y))

2
pt( ft ,y)w(t)d ftdydt

is denoted by Γ̂B and given by

Γ̂B
t (y) = E[ ft |y] =

∫

ℜ
ftpt( ft |y)d ft

¥

Now, consider the situation where the range of Γ is

restricted to the function space F . The next result shows

how the optimal estimate of ft within such space is given

by a projection (weighted by w) of the Bayes estimate onto

the space of nominal models.

Proposition 3: Let the range of Γ be restricted to F , i.e.

Γ : y 7→ F . Then, for known y, the solution of the problem

argmin
Γ(y)

∫

ℜ×D
( ft −Γt(y))

2
pt( ft |y)w(t)d ftdt

is given by

Γ̂(y) = arg min
h∈F

∫

D

(

Γ̂B
t (y)−h(t)

)2
w(t)dt (6)

IV. SYSTEM IDENTIFICATION USING

A NEW GAUSSIAN PRIOR

A. Modeling the unknown impulse response

Regularization methods which exploit the kernel W in (4)

are widely employed in nonparametric function estimation.

However, this approach is not suitable to reconstruct the im-

pulse response of a physical system because of the following

limitations:

• Tikhonov estimator (3), with HW ⊕BW as hypothesis

space, is able to fit straight lines on S = [0,1] without

bias. However, in system identification one would like

to obtain unbiased estimates of exponentials on the

noncompact domain X = [0,+∞).
• The variance of the process associated with kernel W

increases over time. But, from physical constraints, it

is known that impulse response variability is larger in

the first time instants and then decreases over time. In

particular, a prior is needed on X which includes the

BIBO-stability constraint.

In the sequel, a prior is said to preserve a family of

functions if the posterior expectation, given direct (i.e. input

u in (1) is a Dirac delta) and noiseless samples (1) of

any function f belonging to the family, coincides with the

function itself. The problem that we pose is to find a mapping

which converts X into S such that the prior which preserves

exponentials in the old coordinates preserves straight lines in

the new ones. The time-transformation has thus to map an

exponential, with rate constant β , into a straight line. Once

the change of coordinates is performed, we will show that

impulse response stability is guaranteed by imposing that the

function value at zero is null. The prior on S which has such

features is exactly the integrated Wiener process with zero

initial value and arbitrary first-order derivative at zero. From

this discussion it comes that the desired time-transformation

is

τ = e−β t t ∈ X

and the resulting kernel is

K(s, t) = W (e−β s,e−β t) (s, t) ∈ X ×X (7)

Then, our stochastic model (”stable spline” model) for the

unknown impulse response becomes

g(t) =

{

0 if t < 0

θe−β t + g̃(t) if t ∈ X
(8)

where θ ∈ ℜ is an infinite variance Gaussian variable and

g̃(t) is now a zero-mean Gaussian process, independent of

θ , with auto-covariance λ 2K. The process g is assumed

independent of the measurement noise. Further, in place of

(5), we define

BK = span{e−β t} t ∈ X (9)

Finally, when dealing with discrete-time systems, one has

just to consider the sampled version of the model (8).

B. Estimating hyper-parameters and impulse response

Our estimate for the impulse response is thus given by

the Tikhonov estimator (3) with hypothesis space H ⊕B

replaced by HK ⊕BK . However, such estimator requires

the knowledge of the parameter vector ξ = [λ ,β ,σ ,∆,θ ].
We treat the elements of ξ as possibly unknown hyper-

parameters to be determined by optimizing the marginal

likelihood of y, i.e. the total probability of y,ξ and g where

g is integrated out.2.

Let ξ̂ denote the estimate of ξ . By the same arguments

as in the proof of Theorem 1.5.3 in [13], we obtain

ĝ(t) = θ̂e−β̂ t + λ̂ 2
n

∑
i=1

ciL
u
i

[

K(s, t; β̂ ); ∆̂
]

where {ci} are the elements of vector c ∈ ℜn given by

c = Var
[

y|ξ = ξ̂
]−1

ψ(ξ̂ )

where Var[y|ξ = ξ̂ ] denotes the auto-covariance of y given

ξ and ψ(ξ ) ∈ ℜn is the vector whose i-th component is

yi−Lu
i [θe−β t ;∆] . Needless to say, in a discrete-time context

the same approach can be followed provided that integral

operators are replaced by their discrete counterparts.

2An alternative is to treat θ as a nuisance parameter and then integrate
it out to obtain the likelihood of {yi}, see e.g. Section 1 of [13]. Our
simulations, however, suggest that including also θ in ξ improves numerical
stability of the computational scheme.
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V. SYSTEM IDENTIFICATION KERNEL: SPECTRAL

ANALYSIS

In this Section, also following [17], we derive a complete

spectral analysis of the kernels W and K defined by (4) and

(7). Relying upon this analysis, first we will demonstrate

that realizations drawn from the new prior are almost surely

the impulse response of a BIBO-stable system. Then, a

characterization of the RKHS associated with K will be

provided. We start with some definitions and a proposition

which will prove useful in the sequel.

Definition 4: We define the sequence {λi}, with λi+1 ≤ λi,

as

λi = (1/αi)
4 i = 1,2, ... (10)

where αi denotes that solution of

1/cosh(α)+ cos(α) = 0 (11)

that is closest to (i−1/2)π .

In addition, functions {φi} and {ρi} are defined as follows

φi(t;αi) = C1(αi)cos(αit)+C2(αi)sin(αit) (12)

+ C3(αi)e
−αi(1−t) +C4(αi)e

−αit t ∈ S

ρi(τ;αi) = φi(e
−βτ ;αi) τ ∈ X (13)

where {Ck} are suitable scalars, see [17] for details.

¥

Proposition 5: Let W be defined by (4). Then, it holds

that

< φ j,φk >2 =

{

1 if j = k

0 otherwise

λ jφ j(s) =
∫

S
W (s, t)φ j(t)dt

W (s, t) =
∞

∑
j=1

λ jφ j(s)φ j(t)

where the sum above converges uniformly with respect to

(s, t) ∈ S×S. In addition, for s ∈ S, HW is defined by

HW =

{

g ∈ L2(S) | g =
∞

∑
j=1

a jφ j ,
∞

∑
j=1

a2
j

λ j

< ∞

}

(14)

¥

Hereafter, L2
ν(X) is used to indicate the space of square

integrable functions on X with respect to the (probability)

measure ν which admits the density βe−β t (β > 0 and t ≥ 0)

with respect to Lebesque measure. Further, the inner product

on L2
ν(X) is denoted as < ., . >L2

ν
. The proof of the following

result is omitted for reasons of space.

Proposition 6: Associated with K, consider the integral

operator on L2
ν(X) defined by

ϒk[ f ](x) =
∫

X
K(x,τ) f (τ)dν(τ) x ∈ X

Then ϒk is a bounded, compact and positive operator. In

addition, for every g ∈ L2
ν(X), ϒk[g] ∈C(X).

¥

The next proposition (whose proof is again omitted) shows

that ϒk is a trace-class (nuclear) integral operator on L2
ν(X),

i.e. K has a spectrum composed entirely of a countable

number of eigenvalues with a finite sum. In addition an

explicit characterization of such spectrum is provided.

Proposition 7: We have

< ρ j,ρk >L2
ν

=

{

1 if j = k

0 otherwise
(15)

λ jρ j(s) =
∫

X
K(s, t)ρ j(t)dν(t) (16)

K(s, t) =
∞

∑
j=1

λ jρ j(s)ρ j(t) (17)

where {ρ j} are defined by (13) and the sum above converges

uniformly with respect to (s, t) ∈ X1 ×X2, with X1 and X2

being any compact subset of X .

¥

The next result provides information regarding the nature

of the prior describing the impulse response of the system.

Proposition 8: Let Lp(X) denote the classical Lebesque

spaces of p-power integrable functions on X . Let g(t), with

t ∈ X , be a zero-mean Gaussian process with autocovariance

K. Then, realizations from g(t) belong to Lp(X), with p ≥ 1,

almost surely. Hence, realizations from g(t) are almost surely

the impulse response of a BIBO linear system.

¤

Recall that the optimal estimate belongs to HK ⊕BK .

Then, by exploiting Proposition 7 and results on separability

of RKHSs defined on noncompact sets (see e.g. Corollary 1

in [18]), we have

HK =

{

g ∈ L2
ν(X) | g(s) =

∞

∑
j=1

a jρ j(s) with
∞

∑
j=1

a2
j

λ j

< ∞

}

(18)

Some eigenfunctions relative to HW , as well as to HK

(with β set to 1), are displayed in Fig. 1. They provide an

interesting insight into the nature of the hypothesis space

chosen for system identification.

From (14) and (18) it also comes that HW and HK are

isometrically isomorphic, the isometry being established by

a transformation Ψ : HW 7→ HK which maps f (t), t ∈ S

into g(τ) = f (e−βτ), τ ∈ X . Now, if h is a continuous

function defined on X , f defined by Γ−1[h] turns out to

be a continuous function on S. In addition, since HW

is associated with the Green’s function of a self-adjoint

differential operator, functions in HW (plus a term able to

accommodate a failure of the boundary condition at zero)

can approximate arbitrarily well any continuous function on

a compact S1 ⊂ S in the sup-norm topology, see Proposition

C.1 in [19]. Then, the following result holds.

Proposition 9: HK is dense in the space of continuous

functions defined on any compact subset of X , i.e. given any

continuous function h on the compact X1 ⊂ X and any scalar

ε > 0, there exists g ∈ HK such that

sup
τ∈X1

|g(τ)−h(τ)| < ε
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Fig. 1. {φ j} (left) and {ρ j} (right) for j=1,2,3,5,10

VI. EXAMPLES

A. Discrete-time test functions

The proposed nonparametric identification scheme is ap-

plied to identify discrete-time dynamic systems from noisy

output data. In particular, we consider 5 classical simulated

impulse responses which are visible in the left (and right)

panels of Fig. 2 (solid line). The first two are second-order

systems taken from [4], while the third one is proportional to

a normal density with support only on the positive axis. The

last two impulse responses are a third and a fourth order

model, taken from Example 5.1 in [3] and Section 8.6 of

[6], respectively. The input of the system is white noise of

unit intensity in the first three cases, while in the last two

cases it consists of a PRBS signal, with basic period equal

to one sample. System identification has to be performed

starting from 100 output noisy samples, in the time interval

[0,100], corrupted by a white noise. At each Monte Carlo

run, SD of the noise is set to 5% of the maximum absolute

value of the generated noiseless output samples. The SD of

the measurement noise and the time-delay of the system are

assumed to be unknown and have to be estimated from data

together with λ and β . Estimation of hyper-parameters is

performed by randomly choosing a starting point for the

optimizer. This did not lead to any convergence problem.

For each test function, 300 Monte Carlo runs are considered.

the prior model of the system impulse response is either

the sampled version of the integrated Wiener process with
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Fig. 2. Monte Carlo study (300 runs): true impulse response (solid line)
and 99% variability bands of estimates (dashed lines) obtained modeling
the unknown function using classical kernel W (left) and the new kernel K

(right)

unknown initial conditions or our new model. In the left

panels of Fig. 2 we display results obtained by using kernel

W . In particular, the true function (solid line) and the 99%

variability bands (dashed lines) of the 300 estimates are

visible. It is apparent that variability bands are rather wide.

Reconstructed curves suffer from oscillations in the final part

of the experiment because the prior model does not include

information on system stability. In the right panels we display

results obtained by exploiting the new kernel K. In addition

to the improved quality of the estimates variability bands are

much narrower and always close to the true function.

B. Continuous-time second-order system: estimate of a first-

order nominal model suitable at low frequencies

Consider a continuous-time second-order system whose

frequency response F(s) is given by

F(s) =
5s+15

s2 +21s+20

The impulse response is visible in the top (and bottom)

left panels of Fig. 3 (thick line) while the Bode plot of the

magnitude is displayed in the top (and bottom) panel of Fig.
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Fig. 3. Left: true impulse response (thick line), estimated impulse response
obtained by fitting a first-order model to data (dashed lines) and using
the new nonparametric approach (solid line). Right: noisy output samples
and reconstructed output. System input is a comb (top) or a step function
(bottom).

4 (thick line). In Fig. 3, we plot 200 noisy output samples

generated by using as input either a comb function with

noise SD equal to 0.08 (top right panel) or a step function

with SD = 0.02 (bottom right panel). Now, suppose that

for control purposes it is desirable to achieve a first-order

approximation of the system for use at low frequencies. In

the left panels of Fig. 3 we plot the estimates of the impulse

response obtained by fitting a first-order model to data via

least squares (dashed lines) while the corresponding Bode

plots are visible in Fig. 4 (dashed lines). It is apparent that

when using the comb function the result is very inaccurate

at low frequencies. This result could be improved by

resorting to pre-filtering methods but this would require

a careful choice of the operating frequency range. In the

left panels of Fig. 3 and in Fig. 4 we plot the estimates

obtained by the new nonparametric approach proposed in

this paper (solid line). One can notice that the estimate

is not sensitive to the type of system input and closely

approximates the magnitude plot over a wide frequency

range. The desired finite order model can be derived from

the regularized estimate in both situations. For instance, in

Fig. 4 we display a first-order model obtained by projecting

the nonparametric estimate onto a first-order model using

a weighting function which, over the frequency domain, is

constant on [0,1] rad/sec and 0 elsewhere (dash-dot line).

Finally, in the small plots of Fig. 4, we also display the true

profile and the nonparametric estimate together with 99%

confidence intervals (dashed lines).

C. Discrete-time second-order system and model selection

issues

Consider now a discrete time second-order system taken

from [20] with frequency response F(z) given by

F(z) =
z−0.6

z2 −1.4z+0.65
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Fig. 4. True magnitude Bode plot (thick line), estimated magnitude
obtained by fitting a first-order model to data (dashed lines), by using the
new nonparametric approach (solid line) and by projecting the regularized
estimate onto a first-order model (dash-dot lines). System input is a comb
(top panel) or a step (bottom panel). Smaller plots show the true profile and
the nonparametric estimate together with 99% confidence intervals (dashed
lines).

where poles have real part equal to 0.7. As in [20], the

problem consists of reconstructing f using a step function as

input. In particular, estimation has to be performed from 40

noisy measurements corrupted by a noise with a constant

SD = 0.04 which is assumed unknown. For the sake of

comparison, we consider also the identification of f by

means of finite Laguerre expansions, i.e.

M(z,η)=
m

∑
k=1

ηkLk(z, p) Lk(z, p)=

√

1− p2

z− p

(

1− pz

z− p

)k−1

where value for p is either 0 (corresponding to FIR models)

or is optimally chosen and set to 0.7 (see also Fig. 5).

We perform 5 Monte Carlo simulations consisting of 1000

runs where independent realizations of the noise are gener-

ated. In the first case study, at each Monte Carlo run f is

estimated by the new nonparametric approach proposed in

this paper. The other 4 studies, where least-squares estima-

tion of the Laguerre coefficients is performed, differ from

each other by the employed value for p (either FIR, that is

p = 0, or Laguerre, that is p = 0.7) and the way model order

m is selected (either AIC or ”oracle”). For what concerns

this latter point, letting f̂ m denote the estimate achieved in

a certain run using m basis functions, model order is chosen

either by Akaike’s criterion AIC (with maximum allowed

value for m equal to 20) or by using an ”oracle” in which

case m is given by

argmin
m

40

∑
k=1

(

f (k)− f̂ m(k)
)2

In Fig. 6 we display box-plots of the root mean square

errors (RMSE) achieved by the 5 estimators. Remarkably, the

proposed nonparametric approach outperforms AIC-based

estimators also when basis functions encode knowledge on
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Fig. 5. Coefficients of the Laguerre expansion of f for p = 0.7
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Fig. 6. Boxplots of RMSE relative to 5 estimators used to reconstruct f

pole position. Furthermore, results are better than those

obtained by combining an oracle and FIR models and are

close to those achieved by combining an oracle and setting

p to 0.7. To understand these results, one has to consider

that estimation of Laguerre coefficients by least-squares may

be exposed to ill-conditioning. This problem is exacerbated

when using FIR models, since they do not include any

information about regularity of the impulse response. When

Laguerre polynomials are optimally chosen, smoothness in-

formation on f is instead included in the model. However,

AIC does not explicitly account for system stability when

selecting number of basis functions to reconstruct f . In our

nonparametric approach, model complexity is controlled by

the regularization parameters γ and β and information on

regularity and stability is incorporated in the prior for f . This

explains why our identification procedure, which searches the

estimate in an infinite-dimensional space, can prove more

robust than finite-dimensional models.

VII. CONCLUSIONS

Current methods for robust identification start with a low-

order nominal model identified by standard techniques such

as least-squares. Then, on the basis of the nominal model,

bias and variance errors are quantified. In this paper, we

have embedded this problem in a fully Bayesian framework.

In particular, a new probabilistic prior has been formulated

directly on the unknown impulse response f , rather than

on the bias error. The prior encodes information on both

continuity of f and system BIBO-stability. The minimum

variance estimate is given by a Tikhonov estimator defined on

an RKHS which has been fully characterized and shown to

be dense in the space of continuous functions. Following our

strategy, first, a virtually unbiased estimate of f is obtained

in such RKHS and then the desired nominal model is ob-

tained by projecting the regularized estimate onto the desired

finite dimensional space. Simulated benchmarks taken from

the literature demonstrate the effectiveness of the proposed

approach.
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