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Abstract— This paper investigates a path planning algorithm
for Dubins vehicles. Our approach is based on approximation
of the trajectories of vehicles using sequence of waypoints and
treating each way point as a moving particle in the space.
We define interaction forces between the particles such that
the resulting multi-particle system will be stable, moreover, the
trajectories generated by the waypoints in the equilibria of the
multi-particle system will satisfy all of the hard constraint such
as bounded-curvature constraint and obstacle avoidance.

I. INTRODUCTION

The bounded-curvature path-planning problem, a central
problem in robotics, involves planning a collision-free path
for a nonholonomic robot moving amid obstacles, and has
been widely studied (see, e.g., [2]). Dubins seminal work
[3] characterizes shortest bounded-curvature paths in the
absence of obstacles. He first notices that shortest bounded-
curvature paths are made of arcs of minimum radius cir-
cles (C-segments) and straight line segments (S-segments).
Using length reducing perturbations, Dubins shows that the
structure of shortest paths, which is the sequence of (C-
segments) and (S-segments) of which it is made, must be
either CSC or CCC, where each segment may have zero
length. Reif and Wang [4] show that finding the shortest
bounded-curvature path amidst polygonal obstacles in the
plane is NP-hard and. Fortune and Wilfong [5] show that
the general feasibility algorithm is exponential in time and
space. The NP-hardness result provide evidence that there
are no efficient exact algorithms for curvature constrained
path planning problem, and it justifies the approaches based
on approximation and discretization used in most of the prior
works on curvature-constraint path planning. Despite the NP-
hardness of the problem, there are efficient approximation
algorithms [6], [7]. However, these algorithms are incomplete
because they may not find a bounded-curvature path even if
one exists.

In this paper we consider the problem of bounded-
curvature path planning with a fixed length trajectory. The
obstacles are modeled as union of disjoints discs. In this
paper we present an approximate solution to this problem
which can be generated in polynomial time, and we show
that the algorithm is complete. Consider the trajectory of
a vehicle as a fixed length bounded-curvature curve that
connects the initial and final positions of the vehicle. We
approximate this bounded-curvature curve by a polygonal
curve, and each node of this polygonal curve represents a
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waypoint of the vehicle. First we find necessary and sufficient
conditions for a bounded-curvature polygonal curve, then
we construct the polygonal curve by treating each node
as a moving particle in the space. We define interaction
forces between the particles such that the resulting multi-
particle system will be stable, moreover; the polygonal curve
generated by the waypoints in the equilibria of the multi-
particle system will satisfy all of the bounded-curvature
necessary conditions as well as other hard constraints such
as obstacle avoidance.

The paper is organized as follows: First, we find the
conditions for bounded-curvature polygonal curves. Then, we
try to solve the fixed length bounded-curvature path planning
problem in the absence of obstacles. Next, we add obstacles
to our model.

II. POLYGONAL CURVE APPROXIMATION

In the rest of the paper, we assume that the trajectory of
each vehicle is a fixed length bounded-curvature curve with
a given initial and final configuration. Our approach is based
on discrete approximation of a continuous curve using finite
number of vertices.

Consider a bounded-curvature curve γ with length L,
connecting points P and Q. We can approximate the curve
using finite number of vertices each lying on the curve,
connected by straight edges. The resulting polygonal curve
γp is represented by its ordered vertices p0, p1, ..., pn ∈ R2,
where p0 = P , pn = Q and pipi+1 is the line segment
connecting pi to pi+1. The length of polygonal curve γp is
given by

len(γp) =
n∑

i

‖pi − pi−1‖ ' L. (1)

With the assumption of equidistance edges with length d we
get

d = ‖pi − pi−1‖ ' L/n. (2)

Assuming that d ¿ 1
κ , where κ is the curvature bound, we

can use the circle passing through the points pi−1, pi and
pi+1, as an approximation to the osculating circle to the curve
at pi (Fig. 1). Then the inverse value of the radius ri is an
approximation of the curvature at pi. Let A denotes the area
of the triangle pi−1pipi+1. and dij = ‖pi−pj‖. The discrete
curvature κi is given by

κi = 1/ri =
4A

d(i−1)idi(i+1)d(i−1)(i+1)
(3)

With the assumption of equidistance edges, and us-
ing the fact that the area of a triangle abc is A =
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Fig. 1. Approximation of a smooth curve by a polygonal curve.

√
s(s− a)(s− b)(s− c), where s = a+b+c

2 . we get

κi =
2

√
d2 − d2

(i−1)(i+1)

4

d2
. (4)

Since γ has a maximum curvature κ; therefore, κi ≤ κ,
which implies

‖pi−1 − pi+1‖ = d(i−1)(i+1) ≥ L/n

√
4− κ2L2

n2
(5)

In summary, the n + 1 ordered points p0, p1, ..., pn ∈ R2,
where p0 = P , pn = Q, form an equidistance polygonal
curve with maximum curvature κ and length L, if and only
if, for all i = 1...n, distances ‖pi−1−pi‖ and ‖pi−1−pi+1‖
satisfy (2) and (5).

One way of finding points p0, p1, ..., pn ∈ R2, that satisfy
constraints (2), and (5) is modeling the problem as feasibility
Problem as follows.

min
{p1,...,pn−1}∈R2

0 (6)

s.t.:
p0 = P and pn = Q,

‖pi − pi−1‖ = d, i = 1, ..., n

‖pi−1 − pi+1‖ ≥ η, i = 1, ..., n− 1

The optimization problem (6) is a nonconvex problem. In the
following section, we we propose a multi-particle dynamical
system approach to solve the feasibility problem (6). First,
we consider the path planning problem without obstacles.

III. PATH PLANNING USING STABLE MULTI-PARTICLE
SYSTEMS

A. Continuous Forces

In this section, we propose a method to find a feasible
solution of problem (6) for a single vehicle in the absence
of obstacles in the environment.

Consider the waypoints of the vehicle as p0, ..., pn ∈ R2.
Now lets assume that the points p0, ..., pn ∈ R2 are point
mass moving particles with initial random distribution in the
space. Also assume that the vector Fi is a force acting on
the i− th point. Therefore, we have

mip̈i = Fi (7)

Fig. 2. Analysis of the net forces in the equilibrium which shows that the
net forces in p3 could be zero even though the forces are not zero)

Now assume p0 = P and pn = Q are fixed, we can enforce
this condition by assuming m0,mn →∞.

In the following we try to find vector forces Fi, i = 0...n
such that, the set of stable equilibria of the dynamical system
(7) would be equal to the set of points p0, ..., pn that satisfies
constraints (2) and (5).

Define vector forces Fi, i = 0...n as follows:

Fi =
n∑

j=0
j 6=i

fij(‖pi − pj‖) eij − υṗi (8)

Where eij = pj−pi

‖pi−pj‖ is a unit vector in the direction of pi

to the pj .
With the following conditions on functions fij

(i) fij = fji for all i and j.
(ii) Functions fij are nondecreasing.
(iii) The vector (p0, ..., pn) is a feasible solution of

problem (6) if and only if fij(‖pi − pj‖) = 0 for
all i, j = 0, ..., n.

Theorem 1: All feasible solutions of problem (6) are
locally asymptotically stable equilibria of the multi-particle
system (7) where Fi defined in (8).

Due to space limitation the proof is eliminated. One should
note that dynamical system (7) with continuous vector forces
(8) may have some additional unfavorable equilibria. A
simple analysis shows that in an equilibrium the net force
on each particle pi can be zero while some of the force
components are not zero (Fig. 2). In fact, nonzero forces in an
equilibrium imply infeasibility of the corresponding solution
(path). This may arise the possibility of converging to infeasi-
ble solutions. In the next section, we will show that by using
discontinuous forces such possibilities can be eliminated. It
can be proved that all unfavorable equilibria (corresponding
to infeasible paths) are unstable. Some additional restrictions
on the initial and final orientations of vehicle can be imposed.
This can be done by fixing the positions of particles p1 and
pn−1 additional to p0 and pn by imposing the constraints
m2,mn−1 →∞.

B. Discontinuous Forces

In the previous section we tried to convince the reader that
by using continuous forces we will always have unfavorable
equilibria. In this subsection we use discontinuous forces and
by using net force analysis we show that an equilibrium is
stable iff all of the forces are zero. Since we are using dis-
continues forces, we need nonsmooth analysis and stability
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of nonsmooth systems to analyze the dynamical system with
discontinuous right-hand sides, but due to space limitation
we omit this part. We restrict our discontinuous forces to the
following set of functions

f(z) =
{

0 if z ≥ η
−w if z < η

, (9)

Where w, η ≥ 0 are constant.

Theorem 2: All feasible solutions of problem (6) are
locally asymptotically stable equilibria of the multi-particle
system (7) where

Fi =
n∑

j=0
j 6=i

fij(‖pi − pj‖) eij − υṗi. (10)

Forces fij’s are either continuous as defined in (8) or
discontinuous forces in the form of (9), also eij = pi−pj

‖pi−pj‖ ,
and υ > 0 is a constant.

Proof: See appendix for a proof.
Now we define the functions fij that satisfy the conditions
of the theorem (1) as follows

fi(i+1)(z) =





w1 if (z − l
n ) ≥ w1

kf

kf (z − l
n ) if −w1

kf
≤ z ≤ w1

kf

−w1 if (z − l
n ) ≤ −w1

kf

, (11)

and
f(i−1)(i+1)(z) =

{
0 if z ≥ η

−w2 if z < η
, (12)

where η = l
n

√
4− κ2

maxl2

n2 and w1, w2, kf > 0 are some
constant numbers. An unfavorable equilibrium is one that the
net forces on the particles are equal to zero but some of the
forces are not equal to zero. Please note that all of the hard
constrains (equidistance and curvature) are satisfied iff all of
the forces are equal to zero. In the following theorem we
show that with the forces defined in (11), (12) and with the
key assumption that w2 > 2w1 and even number of particles,
there would be at most one unfavorable equilibrium which
is unstable, therefore for almost all of the initial conditions
the dynamical system converges to a favorable equilibrium.

Theorem 3 (Instability of the unfavorable equilibrium):
Consider a dynamical system of 2n particles with the forces
defined in (11) and (12) also assume that L > ‖p0 − pf‖
then there is at most one unfavorable equilibrium and and
this equilibrium is unstable.

Proof: In the previous theorem we prove that the
dynamical system is asymptotically stable so the state of the
system converges to a stable equilibrium, in the equilibrium
the net force on each particle is zero but not necessary all of
the forces are zero. There are two type of forces, the forces
that are between consecutive particles Vi,i+1 = fi,i+1(‖pi−
pi+1‖)ei,i+1 for enforcing ‖pi−pi+1‖ = L/(2n+1) and cur-
vature constraint derived forces Vi−1,i+1 = fi−1,i+1(‖pi−1−
pi+1‖)ei−1,i+1. We have

‖Vi,i+1‖ ≤ w1 < w2/2 (13)

Fig. 3. The nodes represent the particles and the edges represent interaction
forces between the particles.

also
‖Vi−1,i+1‖ = 0 or w2 (14)

Now let construct a graph that nodes of the graph represent
the particles and the edges represent the interaction forces
(Fig. 3). Any particle except p1 and p2n is connected to 4
other particles (note that p0 and pf are not moving particles).
At node p1 there are 3 forces V0,1, V1,2 and V1,3, since the
net force is zero therefore

V0,1 + V1,2 + V1,3 = 0 (15)

So
‖V0,1 + V1,2‖ = ‖V1,3‖ (16)

Now we claim that V1,3 = 0 otherwise we have V1,3 = w2

so
‖V0,1 + V1,2‖ = ‖V1,3‖ = w2 (17)

But we have

‖V0,1 + V1,2‖ ≤ ‖V0,1‖+ ‖V1,2‖ ≤ 2w1 < w2 (18)

Which is a contradiction, therefore V1,3 = 0. Since the
edge V1,3 is eliminated now there are 3 edges connected
to node p3 which are V2,3, V3,4 and V3,5, with the similar
argument one can show that V3,5 = 0, similarly V5,7 =
0, ..., V2i−1,2i+1 = 0, ..., V2n−1,f = 0. So all of the curvature
constraint driven forces connecting odd edges are eliminated.
Now one can use the exact same argument this time starting
from node p2n, since p2n connected to 3 nodes, one could
conclude V2n,2n−2 = 0 and similarly V2n−2,2n−4 = 0 and
V2n−4,2n−6 = 0, · · · . Now all of the curvature constraint
driven forces are eliminated and the only way that Vi,i+1 6= 0
with the net force equal to zero is that all of the particles are
in a line connecting p0 and pf which is clearly unstable.

Please note that if L ≤ ‖p0−pf‖ there would be just one
equilibrium (which is stable) and which is the configuration
that all of the particles are in a line connecting p0 and pf .

C. Single Vehicle Path Planning with Obstacles

Let’s assume that obstacles are union of disks with centers
oi i = 1...m and radii ri i = 1...m. In order to fix the
location of oi, we also assume that oi is an infinite mass
moving particles that interact with the waypoints.

Thus, we define obstacle avoidance force between obstacle
oi and waypoint pj as

fij(α) =
{

0 if α ≥ rj

−w3 otherwise . (19)

Please note that the force defined in Eq. (19) actually satisfies
the required conditions in theorem 2, therefore with obstacle
avoidance forces the system still would be asymptotically
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Fig. 4. Graph representation of the forces in the presence of obstacles.

stable.
Based on the obstacle avoidance force definition, there

would be a force between a particle and an obstacle iff
the particle lies inside of the obstacle, and since the ob-
stacles don’t have any overlap at any time each particle
could interact with at most one obstacle. Therefore in the
connectivity graph each particle could be connected to at
most one obstacle. One example of the graph representation
of the forces is depicted in fig. (4). In the following
theorem we prove that if there exist a solution to the path
planning problem then with the assumption of even number
of particles and assumption that

2(w1 + w2) < w3 (20)

then all of the stable equilibria of the system are actually
desirable.

Theorem 4 (Instability of unfavorable equilibria):
Assume that there are 2n particles and obstacles are union
of disks with centers oi i = 1...m and radii ri i = 1...m
and the forces are defined as Eq. (11), (12) and (20) with
the following constraints on w1, w2 and w3

2w1 < w2

2(w1 + w2) < w3
(21)

then all of the stable equilibria are favorable.
Proof: Fist we prove that in any equilibrium all of the

particles are outside of the obstacles. Let assume that pi is
inside the obstacle Oj therefore pi connected to 5 nodes as
follows
• Obstacle avoidance force as Vi,j = w3ei,j

• Equidistance driven forces as Vi−1,i = fi−1,iei−1,i and
Vi,i+1 = fi,i+1ei,i+1

• Curvature forces as Vi,i+2 = fi,i+2ei,i+2 and Vi−2,i =
fi−2,ie2−1,i

Net force on pi is zero so

Vi−1,i + Vi,i+1 + Vi−2,i + Vi,i+2 + Vi,j = 0 (22)

and

‖Vi−1,i + Vi,i+1 + Vi−2,i + Vi,i+2‖ = ‖Vi,j‖ = w3 (23)

But

‖Vi−1,i + Vi,i+1 + Vi−2,i + Vi,i+2‖ ≤ (24)
‖Vi−1,i‖+ ‖Vi,i+1‖+ ‖Vi−2,i‖+ ‖Vi,i+2‖ ≤
w1 + w1 + w2 + w2 = 2(w1 + w2) < w3

Which is contradiction with equality in eq. (23). Therefore
in the equilibrium all of particles are outside of the obstacles
and there are no forces between particles and obstacles. But

in theorem (5) we proved that in this case all of the stable
equilibria are favorable.
Figure 5 shows a generated fixed length bounded-curvature
trajectory connecting two points and avoiding obstacles.

IV. APPENDIX

A. Nonsmooth Stability Analysis
In this section first we review Filipov solution concept

for differential equations with discontinuous right-hand sides,
the nonsmooth analysis of Clarkes generalized gradient and
Lyapunov theorem for nonsmooth systems. We refer the
interested reader to the references [10]- [14] for further
details.

A function f defined on some topological space X is
called locally(essentially) bounded, if for any x ∈ X there
exists a neighborhood U ⊆ X of x such that f(U) is a (es-
sentially) bounded set. The essential supremum is the proper
generalization of the maximum to measurable functions, the
technical difference is that the values of a function on a set of
measure zero don’t affect the essential supremum. Given two
metric spaces (X, dX) and (Y, dY ) the function f : X → Y
is called locally Lipschitz continuous if for any x ∈ X there
exists a neighborhood U ⊆ X of x so that f restricted to U
is Lipschitz continuous. The following are some facts about
locally Lipschitz functions
• Any C1 function is locally Lipschitz, the proof follows

from the mean value theorem and the fact that continu-
ous functions on a locally compact space are bounded.

• Composition of locally Lipschitz functions is locally
Lipschitz [15].

• Sum of locally Lipschitz functions is locally Lipschitz.
Lemma 1: A continuous and piecewise differentiable

function is locally Lipschitz. The proof is eliminated due
to space limitation.
Given function f : Rm → Rn, the right directional derivative
of f at x in the direction of v ∈ Rm is defined as

f ′(x; v) = lim
h→0+

f(x + hv)− f(x)
h

(25)

On the other hand, the generalized directional derivative of
f at x in the direction of v ∈ Rm is defined as

fo(x; v) = lim sup
y→x h→0+

f(y + hv)− f(y)
h

(26)

A function f : Rm → Rn is regular at x ∈ Rm if for all
v ∈ Rm, the right directional derivative of f at x in the
direction of v exists, and f ′(x; v) = fo(x; v). The following
are some facts about regular functions [10].
• Any C1 function is regular.
• A function which can be written as the pointwise

maximum of a set of smooth functions is regular.
• Sum of regular functions is also regular.

Now lets consider an autonomous dynamical system as

ẋ = f(x, t) (27)

Where f : Rn × R → Rn is measurable and essentially
locally bounded. We must first define what it means to be
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Fig. 5. An example of a fixed length bounded-curvature trajectory connecting two points and avoiding obstacles.

a Filipov solution of this equation. A vector function x(.)
is called a solution of (27) on [t0, tl] if x(.) is absolutely
continuous on [t0, tl] and for almost all t ∈ [t0, tl]

ẋ ∈ K[f ](x, t) (28)

where

K[f ](x, t) =
⋂

δ>0

⋂

µN=0

c̄of(B(x, δ)−N, t) (29)

and
⋂

µN=0 denotes the intersection over all sets N of
Lebesgue measure zero. In this formula, c̄o denotes convex
closure, and µ denotes the Lebesgue measure. For a locally
Lipschitz function V : Rn × R → Rn define the Clarke’s
generalized gradient of V at (x, t) by

∂V = c̄o{lim∇V (x, t) | (xi, ti) → (x, t), (xi, ti) /∈ ΩV }
(30)

where ΩV is the set of measure zero where the gradient of
V is not defined.

Theorem 5 (Chain Rule [14]): Let x(.) be a Filipov solu-
tion to ẋ = f(x, t) on an interval containing t and V : Rn×
R → Rn be a Lipschitz and in addition, regular function.
Then V (x(t), t) is absolutely continuous, (d/dt)V (x(t), t)
exists almost everywhere and

d

dt
V (x, t) ∈a.e. ˙̃V (x, t) ≡

⋂

ξ∈∂V (x(t),t)

ξT

[
K[f ](x, t)

1

]

(31)

Theorem 6 (Nonsmooth Lyapunov theorem [14]): Let
ẋ = f(x, t) be essentially locally bounded and 0 ∈ K[f ](0).
Also let V : Rn × R → R be a regular function satisfying
V (0) = 0 and

0 < V1(‖x‖) ≤ V (x) ≤ V2(‖x‖) (32)

in a neighborhood of origin for some V1, V2 ∈ class K [9].
Then ˙̃V (x, t) ≤ 0 implies x(t) = 0 is a uniformly stable
solution.

Theorem 7: (LaSalle [14]) Let Ω be a compact set such
that every Filipov solution to the autonomous dynamical
system ẋ = f(x) start in Ω is unique and remains in Ω.
Let V : Ω → R be a time independent regular function such
that v ≤ 0 for all v ∈ ˙̃V , then every trajectory in in Ω
converges to the largest invariant set, M , in closure of the
set S = {x ∈ Ω | 0 ∈ ˙̃V }.

B. Proof of Theorem 2

For the dynamical system we define Lyapunov function
E(p, ṗ) as follows

E(p, ṗ) =
n∑

j=i+1

n−1∑

i=0

Wij(‖pi−pj‖)+1
2

n∑

i=0

mi ‖ṗi‖2 (33)

Where
Wij(α) =

∫ α

α0

fij(ξ)dξ (34)

and α0 is root of fij , i.e. fij(α0) = 0. Since function fij is
nondecreasing , Wij(α) ≥ 0, therefore, E(p, ṗ) ≥ 0. Indeed,
before using Nonsmooth Lyapunov theorem we need to show
that E(p, ṗ) is regular and locally Lipschitz function. So we
need to show that if fij is not continuous then hij(p) =
Wij(‖pi − pj‖) is regular and locally Lipschitz. Function
hij(p) can be written as the pointwise maximum of a set of
smooth(linear) functions so hij(p) is regular. Also based on
lemma 1 function Wij is locally Lipschitz. Function hij(p)
which is composition of two locally Lipschitz functions is
locally Lipschitz. Now we can use Nonsmooth Lyapunov
theorem. For simplicity we drop (p, ṗ) from E(p, ṗ). Also
we use fij(.) in replacement of fij(‖pi − pj‖).

˙̃E =
⋂

ξ∈∂E

ξT K




ṗ∑

j 6=1

f1j(.)e1j − υṗ1

...∑

j 6=n

fnj(.)enj − υṗn




Let’s assume that at the point p some of the fij(‖pi − pj‖)
are discontinuous. Also let S denotes the set of indices of
fij which are discontinuous at p. Let

∀ {i, j} ∈ S
aij = lim

ε→0−
fij(‖pi − pj‖+ ε)

aij = lim
ε→0+

fij(‖pi − pj‖+ ε) (35)

Since functions fij are nondecreasing aij < aij , thus

∂E = −




∑

{1,j}∈S

[a1j , a1j ]e1j +
∑

{1,j}/∈S

f1j(.)e1j

...∑

{n,j}∈S

[anj , anj ]enj +
∑

{n,j}/∈S

fnj(.)enj

ṗ
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Also

K




ṗ∑

j 6=1

f1j(.)e1j − υṗ1

...∑

j 6=n

fnj(.)enj − υṗn



⊆




ṗ∑

{1,j}∈S

[a1j , a1j ]e1j +
∑

{1,j}/∈S

f1j(.))e1j − υṗ1

...∑

{n,j}∈S

[anj , anj ]enj +
∑

{n,j}/∈S

fnj(.))enj − υṗn




Let ξ ∈ ∂E(p, ṗ), thus

ξ =




−
∑

{1,j}∈S

ξ1je1j −
∑

{1,j}/∈S

f1j(.)e1j

...

−
∑

{n,j}∈S

ξnjenj −
∑

{n,j}/∈S

fnj(.)enj

ṗ




Where ξij ∈ [aij , aij ]. As a result,

˙̃E =
⋂

ξij∈[aij ,aij ]

∑

{i,j}∈S

[aij−ξij , aij−ξij ]ṗi·eij−υ

n∑

i=1

‖ṗi‖2

˙̃E =
∑

{i,j}∈S

⋂

ξij∈[aij ,aij ]

[aij − ξij , aij − ξij ]ṗi · eij

− υ

n∑

i=1

‖ṗi‖2

= −υ

n∑

i=1

‖ṗi‖2 ≤ 0

The last equality is the result of the fact that for any given
interval [a, b] we have

⋂
ξ∈[a,b][a− ξ, b− ξ] = 0.

This establishes the stability but not the asymptotic sta-
bility of favorable equilibria. We use nonsmooth version of
LaSalle’s theorem to prove locally asymptotically stability of
the favorable equilibria. Let (p0, 0) be a favorable equilib-
rium of the dynamical system, now consider N((p0, 0), ε) a
ε-neighborhood of the favorable equilibrium such that there
is no unfavorable equilibrium in N((p0, 0), ε). Now let Ω =
{(p, ṗ) | E(p, ṗ) ≤ 1}⋂

N((p0, 0), ε). As a consequence
of LaSalle (Theorem 7), the trajectory enters the largest
invariant set in

Ω
⋂

{(p, ṗ) | 0 ∈ ˙̃E} = Ω
⋂

{(p, ṗ) | ṗ = 0}
To obtain the largest invariant set in this region note that ṗ =
0 and p = constant, as a result the trajectory converges to
an equilibrium. But in Ω there is no unfavorable equilibrium,
consequently the manifold of favorable equilibria is locally
asymptotically stable.
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