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Abstract—We extend an observer design for estimation of
the vehicle sideslip angle on horizontal surfaces to include esti-
mation of the road inclination angle and the road bank angle.
The design makes use of a nonlinear road-tire friction model,
and the nonlinearity of the road-tire friction forces are taken
into account in the theoretical analysis of the design. Using
an absolute-stability argument we show that, under a set of
technical assumptions, the origin of the observer error dynamics
is globally exponentially stable. Taking unknown road-surface
conditions into account, we discuss simultaneous estimation of
the road bank angle and a road-tire friction parameter, which
is complicated by the dependence of the friction-parameter
estimation on lateral excitation of the vehicle. To improve
performance on low-friction surfaces, we modulate the observer
gains based on a set of practical conditions. Using experimental
data from a passenger car, we investigate the performance of
the approach.

I. INTRODUCTION

For implementation of automotive control algorithms, ac-

curate information about the state of the vehicle and its

surroundings is important. Whereas some quantities can

be obtained by direct measurement, others are difficult to

measure because of high cost or impracticality. Among the

quantities that are not measured in production vehicles is the

angle between the heading of the vehicle and the direction

of travel, known as the vehicle sideslip angle. To estimate

the vehicle sideslip angle, it is common to estimate the

longitudinal and lateral velocities of the vehicle, denoted vx
and vy , and to calculate the sideslip angle as arctan.vy=vx/.

The longitudinal and lateral velocities are influenced by

gravity components due to slanting of the road surface.

For velocity observers that rely on the vehicle’s dynamic

equations of motion, knowledge about the slanting of the

road surface is therefore important. Nevertheless, sideslip

estimation designs often assume that the road surface is flat

and horizontal. Designs that take the slanting of the road

surface into account include [1]–[3].

Knowledge about the slanting of the road surface is of

interest for purposes other than sideslip estimation, and

several designs focus specifically on estimation of the road

bank angle. These include [4], which is based on transfer

functions from the steering angle and road bank angle to

the yaw rate and lateral acceleration, and [5], [6], which

use an extended Kalman filter (EKF) to estimate the sideslip
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angle, which is in turn used in a linear unknown-input

observer to estimate the road bank angle. Several GPS-based

designs, such as [7], [8], estimate the road inclination or bank

angle. In this paper, we do not assume availability of GPS

measurements.

A. Contributions of This Paper

Sideslip estimation designs found in literature are usually

based on linear or quasi-linear techniques. Most commonly,

an EKF is employed. Although often effective, the EKF is

difficult to analyze because the algorithm is derived through

linearization of the prediction error [9]. Other potential dis-

advantages associated with the EKF are high computational

complexity—due to the need to solve the Riccati equation at

each time step—and a large number of tuning parameters.

In [10], [11], the authors presented a nonlinear vehicle

sideslip observer for a vehicle traveling on a flat, horizontal

surface. The main features of this observer are a reduction

in computational complexity and in the number of tuning

parameters compared to an EKF. In addition, analysis of sta-

bility and robustness in [10], [11] is carried out in a nonlinear

setting. Inspired by the theory of nonlinear unknown-input

observers, an extension of [10] for estimating the bank angle

is developed in [12]; however, the nature of the disturbance

introduced by road surface slanting suggests that something

similar to regular integral action is appropriate. In this paper,

we present such a solution, extending the design from [10],

[11] to include estimation of the road inclination and bank

angles. We analyze the stability of the design, taking the

nonlinearity of the road-tire friction forces into account.

B. Sensor Configuration

In our design, we assume that measurements of the

longitudinal and lateral accelerations, wheel speeds, steering

wheel angle, and yaw rate are available. These measurements

can be considered standard in modern passenger cars with

an electronic stability control system (ESC).

II. ROAD-TIRE FRICTION

When a car turns, the tires become misaligned with the

direction of travel. The angle between the direction the tire

is pointing in and the velocity vector of the vehicle above the

center of the tire is called the tire slip angle. Fig. 1 illustrates

the tire slip angle ˛1 for the front-left wheel. A nonzero tire

slip angle gives rise to friction forces in the lateral direction

of the tire, illustrated by Fy;1 in Fig. 1. The longitudinal
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Fig. 1. Illustration of the car

tire slip, defined as a normalized difference between the

circumferential velocity of the tire and the velocity of the tire

center, gives rise to longitudinal friction forces, illustrated by

Fx;1 in Fig. 1. Collectively, we refer to the longitudinal tire

slip and lateral tire slip angle as the tire slips.

During normal driving the road-tire friction forces are

approximately linear with respect to the tire slips. When the

tire slips become large, however, the road-tire friction forces

saturate, meaning that an increase in the tire slips does not

result in a corresponding increase in friction forces.

A key component of the design presented in this paper is

a road-tire friction model. The road-tire friction model takes

measurements and observer estimates as inputs, and returns

estimates of the road-tire friction forces. To account for the

nonlinearity of the road-tire friction forces for large tire slips,

a fully nonlinear model is needed. A widely used example

of a nonlinear tire model is the magic formula [13].

The observer presented in this paper is not designed

with a particular road-tire friction model in mind. Instead,

we assume that a nonlinear friction model satisfying some

physically reasonable properties is used, and we base the

design and analysis on these properties. The experiments are

carried out using a proprietary road-tire friction model of a

complexity comparable to the magic formula.

A. Monotonicity

According to Newton’s second law, the vehicle’s accel-

eration in a particular direction is equal to the sum of the

forces acting in that direction, divided by the mass. For a

vehicle traveling on a horizontal surface, the most significant

forces acting in the road-surface plane are the road-tire

friction forces, and we ignore smaller influences such as

wind forces and air resistance. The road-tire friction forces

are functions of the tire slips, which in turn are functions

of the vehicle velocities. Consequently, the measurements of

the vehicle accelerations are indirect measurements of the

vehicle velocities.

To see how the connection between the accelerations and

the velocities can be exploited, we consider what happens if

we change the lateral velocity vy while keeping everything

else constant. When the lateral velocity increases, it causes

the tire slip angles to decrease. At each wheel, the decrease in

the tire slip angle generally leads to a decrease in the lateral

road-tire friction force. As a net result, the acceleration ay
decreases when the lateral velocity vy increases, meaning

that the relationship between ay and vy can be modeled

as monotonic.1 It is demonstrated in [10] that, except in

some particular cases, the partial derivative @ay=@vy is

smaller than some negative number. In [10], the monotonicity

property is exploited to make ay an indirect measurement of

vy .

When the vehicle is moving on a slanted surface, gravity

components influence the velocity of the vehicle, in addition

to the road-tire friction forces. Nevertheless, because the

accelerometers are influenced by the same gravity forces as

the vehicle itself, the measured accelerations still correspond

to the sum of the road-tire friction forces divided by the

mass. This means that, even on a slanted surface, we can

still exploit the monotonicity property of the measured lateral

acceleration as an indirect measurement of vy .

III. VELOCITY ESTIMATION ON HORIZONTAL SURFACE

Before introducing the design for estimation of the inclina-

tion and bank angles, we briefly review the design from [10].

For a vehicle traveling on a horizontal surface, the vehicle

velocities are governed by the equations of motion [14]

Pvx D ax C P vy ; (1a)

Pvy D ay � P vx ; (1b)

where vx and vy are the longitudinal and lateral velocities, ax
and ay are the longitudinal and lateral accelerations, and P is

the yaw rate. Throughout the rest of this paper, a hat indicates

an estimated quantity, and a tilde indicates an estimation

error, meaning that Ovx is an estimate of vx , and Qvx ´ vx �

Ovx . We discuss the longitudinal-velocity estimate Ovx and the

lateral-velocity estimate Ovy separately, ignoring at first the

interconnections between the two estimates.

A. Longitudinal-Velocity Estimation

The longitudinal-velocity estimate is given by

POvx D ax C P Ovy CKvx .t/.vx;ref � Ovx/; (2)

where Kvx .t/ � Kvx ;min > 0 is a time-varying gain,

and vx;ref is a reference velocity calculated from the wheel

speeds.

To calculate the reference velocity, we use the four wheel

speeds, the steering wheel angle, and the yaw rate to obtain

four separate estimates of the longitudinal velocity. The

reference velocity is calculated as a weighted average of

these four velocity estimates, and the gain Kvx .t/ is made

to reflect the quality of the reference velocity. When the

quality of the reference velocity is deemed to be low, the

1See Section VI for further remarks on this topic.



gain is reduced, making the observer less reliant on the

reference velocity, and more reliant on integration of the

system equations. The primary factor in determining the

quality of the reference velocity is the spread in the four

velocity estimates from the wheel speeds.

Ignoring the lateral-velocity error Qvy , global exponential

stability of the longitudinal-velocity error is easily proven

when we assume that vx;ref represents the true longitudinal

velocity.

B. Lateral-Velocity Estimation

For the lateral velocity, we start by introducing

Oay.t; Ovx ; Ovy/, which denotes an estimate of the lateral ac-

celeration ay . The estimate Oay.t; Ovx ; Ovy/ is formed by using

the nonlinear friction model for each wheel, where the mea-

surements of the steering wheel angle, yaw rate, and wheel

speeds, as well as the estimated velocities Ovx and Ovy , are

used as inputs. The friction forces modeled for each wheel

are added up in the lateral direction of the vehicle and divided

by the mass, resulting in the lateral-acceleration estimate

Oay.t; Ovx ; Ovy/. The t in Oay.t; Ovx ; Ovy/ denotes the dependence

of Oay on time-varying signals such as the steering wheel

angle. We also write Qay.t; Qvx ; Qvy/ ´ ay � Oay.t; Ovx ; Ovy/.

The lateral-velocity estimate is given by

POvy D ay � P Ovx �Kvy .ay � Oay.t; Ovx ; Ovy//; (3)

where Kvy is a positive gain. Analysis of (3) is based on the

following assumption:

Assumption 1: There exists a continuous function

ı.t; Qvy/ � ımin > 0 such that, if Qvx D 0, then

Qay.t; 0; Qvy/ D �ı.t; Qvy/ Qvy : (4)

Assumption 1 is justified by the previous discussion of the

monotonic relationship between ay and vy , by using the

mean value theorem. Using Assumption 1, global exponential

stability of the lateral-velocity error is easily verified when

the longitudinal-velocity error Qvx is ignored.

C. Combined Longitudinal- and Lateral-Velocity Estimation

When we take the interconnections between the two

observer equations (2), (3) into account, we require an

additional assumption:

Assumption 2: There exists a continuous, uniformly

bounded function �.t; Qvx ; Qvy/ such that

Oay.t; vx ; Ovy/ � Oay.t; Ovx ; Ovy/ D �.t; Qvx ; Qvy/ Qvx :

Using Assumption 2, we can verify that the origin of the error

dynamics for the observer (2), (3) is globally exponentially

stable, provided Kvx ;min is chosen large enough to dominate

the cross-terms that occur because of the interconnections.

The observer is also input-to-state stable with respect to

errors in the reference velocity vx;ref. For more details, we

refer to [10].

IV. INCLINATION AND BANK ANGLE

We now consider the presence of nonzero inclination and

bank angles. To define these angles precisely, we say that the

orientation of the road surface is obtained from the horizontal

position by a rotation around the vehicle’s y-axis equal to

the inclination angle ‚, and a subsequent rotation around the

x-axis equal to the bank angle ˆ. The inclination and bank

angles cause gravity components to appear in the equations

of motion, and we rewrite (1) as [3]

Pvx D ax C P vy C g sin.‚/; (5a)

Pvy D ay � P vx � g cos.‚/ sin.ˆ/; (5b)

where g is the acceleration of gravity. It is important to note

that in (5), ax and ay denote the accelerations measured by

the accelerometers. We assume that the inclination and bank

angles vary slowly enough compared to the dynamics of the

system to be modeled as constants.

A. Inclination Angle

We define �i D sin.‚/, and introduce an estimate O�i of �i.

Although we can solve for the inclination angle by writing

‚ D arcsin.�i), typical inclination angles are small enough

that ‚ � �i. The estimate O�i is therefore considered an

estimate of the inclination angle. We use O�i to compensate

for the disturbance, by letting

POvx D ax C P Ovy C g O�i CKvx .t/.vx;ref � Ovx/; (6)

where O�i is given by

PO�i D K�iKvx .t/.vx;ref � Ovx/; (7)

with K�i a positive gain. If the gain in (7) were constant, the

inclination-angle estimation would be recognized as regular

integral action. Instead, we let the gain in (7) vary in direct

proportion to Kvx .t/. The reason for using a time-varying

gain is the same as in the longitudinal-velocity estimation

itself, namely that we wish to rely less on the reference

velocity vx;ref whenever it is of poor quality.

To justify this approach, we use the theory of absolute

stability [15, Ch. 7.1]. We split the gain Kvx .t/ into a

constant and a time-varying part by writing Kvx .t/ D a C

.Kvx .t/ � a/, where 0 < a < Kvx ;min. Ignoring for the

moment the lateral-velocity error Qvy , and assuming that vx;ref
represents the true longitudinal velocity, we write the error

dynamics of the longitudinal-velocity and inclination-angle

estimates as the interconnection of the linear time-invariant

(LTI) system

PQvx D �a Qvx C g Q�i C u; (8a)

PQ�i D �K�ia Qvx CK�iu (8b)

with the time-varying sector function u D �.Kvx .t/�a/ Qvx .

Lemma 1: If the gain K�i is chosen such that 0 < K�i <

a=g, then the origin of (8) is globally exponentially stable.

Proof: The function �x.t; Qvx/ D .Kvx .t/ � a/ Qvx
belongs to the sector Œ0;1�, because �x.t; Qvx/ Qvx � 0 [15,

Def. 6.2]. The transfer function from u to Qvx is given by

G.s/ D
s C gK�i

s2 C as C gK�ia
:



According to [15, Th. 7.1], we only have to show that G.s/ is

strictly positive real to demonstrate that the interconnection

is absolutely stable and that (8) is globally exponentially

stable. We use [15, Lemma 6.1] to show that G.s/ is

strictly positive real. The poles of G.s/ are given by .�a˙
p

a2 � 4gK�ia/=2. For any K�i > 0, Re.
p

a2 � 4gK�ia/ <

a; hence, G.s/ is Hurwitz. We find Re.G.j!//:

Re.G.j!// D
.a � gK�i/!

2 C g2K2
�i
a

.gK�ia � !2/2 C a2!2
:

If K�i < a=g, then a�gK�i > 0, and hence Re.G.j!// > 0

for all ! 2 R. We have that G.1/ D lims!1G.s/ D 0.

Hence, we must prove that lim!!1 !2Re.G.j!// > 0. We

have

!2Re.G.j!// D
.a � gK�i/!

4 C g2K2
�i
a!2

!4 � 2gK�ia!
2 C g2K2

�i
a2 C a2!2

Hence lim!!1 !2Re.G.j!// D a�gK�i > 0, which proves

that G.s/ is strictly positive real, provided K�i < a=g.

B. Bank Angle

We handle the bank angle in roughly the same way as

the inclination angle. We define �b D cos.‚/ sin.ˆ/ and

introduce an estimate O�b of �b. Typical bank and inclination

angles are small enough that ˆ � �b, and O�b is therefore

considered an estimate of the bank angle. Using O�b for

compensation in the observer (3), we obtain

POvy D ay � P Ovx � g O�b �Kvy .ay � Oay.t; Ovx ; Ovy//: (9)

We again use the lateral acceleration as an indirect measure-

ment of the lateral velocity, letting

PO�b D K�b.ay � Oay.t; Ovx ; Ovy//; (10)

where K�b is a positive gain.

Ignoring the effect of the longitudinal-velocity error Qvx ,

we write the error dynamics of the lateral-velocity and bank-

angle estimates as the interconnection of the LTI system

PQvy D �Kvy ımin Qvy � g Q�b CKvyu; (11a)

PQ�b D K�bımin Qvy �K�bu (11b)

with the time-varying sector nonlinearity u D �.ı.t; Qvy/ �

ımin/ Qvy .

Lemma 2: If the gain K�i is chosen such that 0 < K�i <

K2vy ımin=g, then the origin of (11) is globally exponentially

stable.

Proof (Outline): The function �y.t; Qvy/ D .ı.t; Qvy/ �

ımin/ Qvy belongs to the sector Œ0;1�, because �y.t; Qvy/ Qvy �

0. The proof proceeds as the proof of Lemma 1, with the

transfer function

G.s/ D
Kvy s C gK�b

s2 CKvy ımins C gK�bımin

:

The resulting gain requirement is K�b < K
2
vy
ımin=g.

C. Combined Analysis

We have so far ignored the interconnections between the

. Qvx ; Q�i/-subsystem and the . Qvy ; Q�b/-subsystem. With the help

of Lemmas 1 and 2, we can now state a theorem for the

combined system, taking the interconnections into account.

Theorem 1: There exists a constant C > 0 such that if

the gains K�i , K�b , and Kvx .t/ are chosen such that 0 <

K�i < a=g, 0 < K�b < K2vy ımin=g, and Kvx ;min > C , then

the origin of the error dynamics for the observer (6), (7), (9),

(10) is globally exponentially stable.

Proof: From the proof of [15, Th. 7.1] there is a

Lyapunov function V1 D 1
2
xT

1P1x1, where x1 ´ Œ Qvx ; Q�i�
T,

such that, along the trajectories of (8),

PV1 � �"1x
T

1P1x1 � Qvx�x.t; Qvx/

� �"1x
T

1P1x1 � .Kvx ;min � a/ Qv2x ;

for some "1 > 0. There is a also a Lyapunov function

V2 D 1
2
xT

2P2x2, where x2 ´ Œ Qvy ; Q�b�
T, such that, along

the trajectories of (11), PV2 � �"2x
T

2P2x2, for some "2 > 0.

If we include the effect of Qvy on the x1-subsystem,

we get an extra perturbation Œ P Qvy ; 0�
T on the right-

hand side in (8). If we include the effect of Qvx on

the x2-subsystem, we get an extra perturbation Œ� P Qvx C

Kvy�.t; Qvx ; Qvy/ Qvx ;�K�b�.t; Qvx ; Qvy/ Qvx �
T on the right-hand

side in (11), where �.t; Qvx ; Qvy/ comes from Assumption 2,

by writing Qay.t; Qvx ; Qvy/ D ay� Oay.t; vx ; Ovy/C Oay.t; vx ; Ovy/�

Oay.t; Ovx ; Ovy/ D �ı.t; Qvy/ Qvy C �.t; Qvx ; Qvy/ Qvx . Using the

Lyapunov function V D V1 C cV2, where c > 0 is yet to be

determined, we have

PV � �"1�min.P1/kx1k
2 Cm P kP1kkx1kkx2k

CcmkP2kkx2kj Qvxj�.Kvx ;min�a/ Qv
2
x�c"2�min.P2/kx2k

2;

where m P is a bound on j P j, m is a bound on kŒ� P C

Kvy�.t; Qvx ; Qvy/;�K�b�.t; Qvx ; Qvy/�k, and �min.Pi /, i D 1; 2,

denotes the minimum eigenvalue of Pi . We can split the

right-hand side of the inequality by writing PV � �W1�W2,

where

W1 D
�

kx1k kx2k
�

"

"1�min.P1/ �
m P 

2
kP1k

�
m P 

2
kP1k

c"2
2
�min.P2/

#

�

kx1k

kx2k

�

;

and

W2 D
�

kx2k j Qvxj
�

�

c"2
2
�min.P2/ �1

2
cmkP2k

�1
2
cmkP2k Kvx ;min � a

� �

kx2k

j Qvxj

�

:

The first-order principal minor of the 2 � 2 ma-

trix in the W1 expression is "1�min.P1/ > 0. The

second-order principal minor is 1
2
c"1"2�min.P1/�min.P2/ �

1
4
m2

P 
kP1k

2, which is made positive by letting c >

m2
P 
kP1k

2=.2"1"2�min.P1/�min.P2//. Hence, the matrix is

positive definite. The first-order principal minor of the 2� 2

matrix in the W2 expression is 1
2
c"2�min.P2/ > 0. The

second-order principal minor is 1
2
c"2�min.P2/.Kvx ;min�a/�

1
4
c2m2kP2k

2, which is made positive by letting Kvx ;min >

C ´ a C cm2kP2k
2=.2"2�min.P2// Hence, both matrices

are positive definite, meaning that PV is negative definite.



Summing up the results of the stability analysis, global

exponential stability of the observer error is guaranteed if the

gains K�i , K�b are chosen sufficiently low, and the minimum

value Kvx ;min of Kvx .t/ is chosen sufficiently high. Even

though there is no upper limit on Kvx .t/, it is of obvious

interest to limit this gain, to avoid direct propagation of vx;ref
to the estimate Ovx .

V. UNKNOWN ROAD-SURFACE CONDITIONS

The observer (6), (7), (9), (10) depends on the construction

of a lateral-acceleration estimate Oay.t; Ovx ; Ovy/ as a function

of measured signals and velocity estimates. This approach

assumes that there is no uncertainty in the friction model with

respect to the road-surface conditions. In reality, however,

the friction model is sensitive to changes in the road-surface

conditions for large tire slips. In [11], the design from [10] is

altered to take unknown road-surface conditions into account,

by estimating a friction parameter � along with the velocities.

The longitudinal-velocity and inclination-angle estimates

do not depend on the friction model; hence, no changes are

necessary to (6), (7). We focus on the lateral-velocity and

friction-parameter estimation from [11], given by

POvy D ay � P Ovx (12a)

CKvyƒ.t; Ovx ; Ovy/�.t; Ovx ; Ovy/.ay � Oay.t; Ovx ; Ovy ; O�//;

PO�DK�ƒ.t; Ovx ; Ovy/ Oa
�

y .t; Ovx ; Ovy/.ay� Oay.t; Ovx ; Ovy ; O�//: (12b)

Here Oay has been redefined as Oay.t; Ovx ; Ovy ; O�/ D
O� Oa�
y .t; Ovx ; Ovy/, where Oa�

y .t; Ovx ; Ovy/ is the lateral-acceleration

estimate from the friction model, obtained using a nominal

parameterization corresponding to a high-friction surface.

The estimated friction parameter O� scales the output of

the friction model to adapt to different road-surface condi-

tions. The value �.t; Ovx ; Ovy/ is the approximated slope of

the line between . Ovy ; Oa�
y .t; Ovx ; Ovy// and .vy ; Oa�

y .t; Ovx ; vy//,

which is negative according to Assumption 1. The function

ƒ.t; Ovx ; Ovy/ is a freely chosen, strictly positive scaling func-

tion, which we define as ƒ.t; Ovx ; Ovy/ D .�2.t; Ovx ; Ovy/ C

Oa�
y

2
.t; Ovx ; Ovy//

�1=2 to give the observer good numerical

properties. Under the assumptions in [11], the estimation

error for (12) is uniformly globally asymptotically stable and

locally exponentially stable. For details, we refer to [11].

A central assumption in [11] concerns the lateral excitation

of the vehicle. In order to simultaneously estimate the

lateral velocity and the friction parameter, there needs to be

variation in the vehicle’s lateral movement. During stationary

maneuvers, such as straight driving, we cannot estimate the

friction parameter along with the lateral velocity, and the

friction estimation therefore has to be turned off.

A. When to Estimate Friction

Because lateral excitation is needed for the friction es-

timation, and because estimation of the friction parameter

is unnecessary during normal driving with small tire slips,

we leave the friction estimation off most of the time, and

only turn it on in certain cases. When to turn the friction

estimation on is determined in a manner similar to that of

an ESC system and alternative approaches found in literature

(for example [2], [16]). Using a linear reference model for

the yaw rate, we determine when the car becomes over- or

understeered. We also estimate Pvy , according to (1b), by

ay � P Ovx , highpass-filtered with a 10-s time constant. When

Pvy is high, it indicates a fast-changing sideslip angle, which

in turn indicates a high level of excitation and that some of

the tires might be in the nonlinear region. When the estimate

of Pvy is high, and the reference yaw rate is above a threshold

value, we therefore turn the friction estimation on. We also

turn the friction estimation on when the car is oversteered;

and when the vehicle’s ESC system is active, but not due

to stationary understeer. A small delay in turning friction

estimation off reduces chattering in the friction estimation

condition.

B. Combining Friction Estimation with Bank-Angle Estima-

tion

We can modify (12a) to take the bank angle into account,

by redefining

POvy D ay � P Ovx � g O�i (13)

CKvyƒ.t; Ovx ; Ovy/�.t; Ovx ; Ovy/.ay � Oay.t; Ovx ; Ovy ; O�//:

Because the lateral-velocity estimation in (13) is different

from (9), we also alter the bank-angle estimation to make it

fit within the absolute-stability framework:

PO�bD�K�bƒ.t; Ovx ; Ovy/�.t; Ovx ; Ovy/.ay�Oay.t; Ovx ; Ovy ; O�//: (14)

In the previous Lyapunov analysis, we have used tunable

gains to dominate cross-terms that appear in the time deriva-

tive of the Lyapunov function. A Lyapunov function is

available from [11] to prove exponential stability of the

lateral-velocity and friction-parameter error, within an ar-

bitrarily large region of attraction around the origin. This

Lyapunov function can be combined with the Lyapunov

function for the bank-angle estimation error. However, the

stability margin from [11] depends on the level of excitation,

which cannot be changed by increasing the gains, and the

conditions for asymptotic stability are therefore difficult or

impossible to verify. We therefore cannot find a particular

set of observer gains to guarantee asymptotic stability when

friction estimation is combined with bank-angle estimation.

From a practical point of view, it is often difficult to

distinguish the effect of low friction and a nonzero bank

angle in experimental data, something that is also noted

in [17]. This observation suggests that the difficulties we

encounter in analyzing the combined approach reflects a

genuine observability problem. How to combine friction

estimation and bank-angle estimation is therefore a matter

of practical consideration.

The simplest strategy would be to turn the bank-angle

estimation off whenever friction estimation is turned on. With

this strategy, however, it is possible to provoke problems

when driving on slippery surfaces in hilly terrains, where

combinations of large vehicle sideslip angles and large bank

angles may occur. For this reason, we leave the bank-angle



estimation on when estimating friction, albeit with the gain

set lower whenever one of three conditions hold. The first

condition is that jay� Oay.t; Ovx ; Ovy ; O�/j > c1 for some c1 > 0.

The second condition is that j R � OR .t; Ovx ; Ovy ; O�/j > c2 for

some c2 > 0, where R is the yaw acceleration found by

numerical differentiation of the yaw rate, and OR .t; Ovx ; Ovy ; O�/

is calculated using the friction model in the same way

as Oay.t; Ovx ; Ovy ; O�/, with the forces scaled by O� . The third

condition is that sign. P ref/ D sign. P / and .j P refj�j P j/ Ovx >

c3 for some c3 > 0, where P ref is the reference yaw rate used

in the friction estimation conditions described in Section V-

A. From experimental data, these conditions are found to

reduce the negative interference of the bank-angle estimation

on low-friction surfaces. We emphasize, however, that these

conditions are purely practical and that alternative conditions

may be equally good or better.

C. Final Observer

The final observer that we end up with has two modes,

without friction estimation and with friction estimation.

Without friction estimation we use equations (6), (7),

(9), (10), where Oay.t; Ovx ; Ovy/ is replaced by the friction-

parameter dependent Oay.t; Ovx ; Ovy ; O�/, and the friction param-

eter is attracted to a high default value:
PO� D Ke.�

�� O�/. With

friction estimation we use (6), (7), (13), (12b), (14).

In both modes, K�b is reduced according to the practical

conditions described above. Based on experimental results,

we also choose to set the gain K�i for the inclination-angle

estimation lower for the second mode than for the first.

VI. SOME REMARKS ABOUT ROAD-TIRE FRICTION

Throughout this paper, we assume a strictly monotonic

relationship between the lateral acceleration and the lateral

velocity. For large tire slip angles, however, the road-tire

friction forces saturate completely, and may decrease slightly.

In certain extreme situations with large tire slips for all

tires, the monotonicity assumption may therefore fail to hold.

Reflecting this possibility, the stability results in [10] are

stated as regional rather than global. We have chosen to

simplify the analysis by operating in the global domain. In

the friction model used in the experiments, the friction forces

saturate for large tire slip angles, but do not decrease. This

helps ensure stability of the observer equations.

VII. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The observer is discretized using the forward-Euler

method with a 10-ms sample time. The measurements are

taken from production-type sensors, and are filtered with a

15-Hz lowpass filter, without any correction for sensor bias.

Some notable implementation details are the following:

� The wheel loads are calculated using the acceleration

measurements, as in [14, Ch. 7.4].

� Tire relaxation dynamics are approximated in a manner

similar to [13, Ch. 1], by filtering the output of the

friction model with a transfer function 1=.T s C 1/,

where T D Te C le= Ovx .

� The front-axle steering angles are calculated using the

measured steering wheel angle and a lookup table based

on a steering transmission curve. The effect of caster

is included by making the steering angles dependent

on the estimated lateral road-tire friction forces for the

front axle, according to [13, Ch. 1].

� The effect of vehicle roll on the lateral-acceleration

measurement is compensated by multiplying the mea-

sured lateral acceleration with 1=.1C pgg/, where pg
is the roll-angle gradient.

� As in [11], the range of possible friction parameters is

limited. The estimated friction parameter must belong

to Œ0:05; 1:1� and, in addition, we ensure that 1:2g O� �

.a2x C a2y/
1=2. We do so because 1:2 O�g is the approxi-

mate maximum acceleration achievable from the friction

model when multiplied by the friction parameter, and

this maximum should never be smaller than the actual

acceleration of the vehicle.

The first experiment is a circle maneuver with a 40-m

radius, carried out on dry asphalt. The longitudinal velocity

is slowly increased from about 10 km=h to about 65 km=h,

when the circle can no longer be maintained because of

severe understeer. The area on which the circle maneuver

takes place has a constant slope of 0:5ı; hence, both the

inclination angle and the bank angle oscillate between ˙0:5ı

as the maneuver takes place. The results are shown in Fig.

2. Until approximately 88 s into the test, the bank angle

follows the reference well, albeit with a phase lag. The phase

lag can be made smaller by increasing the gain, but this is

not desirable for the sideslip angle estimate. After 88 s, the

bank-angle estimate reacts slowly to changes, because the

gain is then reduced according to the practical conditions

in Section V-B. There is also a small offset in the bank

angle, attributable to offsets in the measurements of the

steering wheel angle, lateral acceleration, and yaw rate. For

the inclination angle there is a significant offset, caused by an

offset in the longitudinal-acceleration sensor. Nevertheless,

the estimated sideslip angle is accurate.

The second experiment consists of driving downhill from a

mountain top on snow-covered roads. In this experiment, we

have no reference for the inclination and bank angles; hence

we have to evaluate the estimates based on plausibility and

on the quality of the estimated sideslip angle. The results

are shown in Fig. 3. Qualitatively, the estimates match well

with the terrain, indicating a varying but steep descent, and

significant road bank angles. The resulting sideslip angle

estimate is accurate.

It is evident from Fig. 2 that offsets found in production-

type sensors have a significant impact on the achievable accu-

racy of the inclination- and bank-angle estimation. Correction

for inertial sensor offsets is a fundamental, challenging

problem that lies outside the scope of this paper.

VIII. CONCLUDING REMARKS

The primary reason for estimating the road inclination and

bank angle is to improve estimation of the sideslip angle on

slanted road surfaces. In this respect, experimental results are
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Fig. 2. Experimental results for circle maneuver
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Fig. 3. Experimental results for mountain driving

mostly good; in most situations, the estimates of the sideslip

angle are of high quality. Problems persist, however, in some

situations on low-friction surfaces. The problems can largely

be attributed to the difficulty of distinguishing a nonzero

bank angle from low friction. The method of combining fric-

tion estimation and bank-angle estimation is a weakness of

the present design, which limits the achievable performance.

The ad-hoc approach of selectively reducing the bank angle

gain based on various criteria is likely to need revision and

improvement for the observer to reach production quality.

Preliminary results indicate that eventual availability of six-

degree-of-freedom inertial sensors in production vehicles is

likely to help, by making estimation of the bank angle less

dependent on the friction model.

With respect to providing accurate estimates of the incli-

nation and bank angle, the approach gives plausible estimates

in most normal driving situation, but sensor offsets and other

slowly-varying errors propagate to the inclination- and bank-

angle estimates. In extreme situations with large tire slip

angles, the estimates often become temporarily implausible,

due primarily to inaccuracies in the friction model.
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