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Abstract: This paper presents the formulation of a
Lyapunov function for an exponentially stable linear time-
varying (LTV) system using a well-defined PD-spectrum and
the associated PD-eigenvectors. It provides a bridge between
the first and second methods of Lyapunov for stability
assessment, and will find significant applications in the analysis
and control law design for LTV systems and linearizable
nonlinear time-varying systems.

I. INTRODUCTION

Consider linear time-varying (LTV) system described by

Jx = A(t)x, x(to ) = x o , t > t o 	( 1)

where A(t) is continuous and bounded for all t > to. LTV
system theory is an important tool for nonlinear system
control analysis and synthesis. LTV systems arise not only
from time-varying parameters and structures of the system,
such as the changing fuel mass and staging of a launch
vehicle, changing operating environment, such as the
aerodynamic coefficients of an aircraft, they also arise from
linearizing a nonlinear system along a time-varying
trajectory which yields LTV error dynamics.

LTV system control methods, such as linear matrix
inequality control [1, 2] and linear parameter varying (LPV)
control [3] have been developed. A differential algebraic
spectra theory (DAST) for LTV systems [4, 5, 6] extends the
algebraic spectra concept of linear time-invariant (LTI)
systems to LTV systems, which is a powerful tool to analyze
and synthesize LTV systems. It is noted that the time-
varying Parallel Differential (PD) eigenvalues defined in
DAST is different from the frozen-time eigenvalues given as
the roots of det [A (t) — A(t)] = o. While they are related to,
they are not the same as Lyapunov, Floquet or Bohl
exponents. Compared to LPV and LMI, which is essentially
a linear robust control approach, DAST grasps the intrinsic
nature of time-varying dynamics of LTV systems, and
potentially can result in less conservative controller design
and improved performance. A nonlinear control approach,
called trajectory linearization control (TLC), has been
developed based on DAST and successfully applied to
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challenging control problems [7-12, 23, 26, 27]. One unique
feature of DAST based TLC is the ability to assign time-
varying closed-loop dynamics for real-time adaptation of
modeling errors, changing operating conditions and
objectives, and unforeseen plant degradation and faults.
Adaptive time-varying bandwidth (TVB) and time-varying
notch filter (TVNF) schemes based on DAST have been
developed to improve the TLC stability for actuator
saturation and actuator failure, such as in the direct fault
tolerant control developed in [11], as well as excitation of
unknown or time-dependent structural modes [12].

DAST-based stability assessment belongs to Lyapunov
first method. Lyapunov second method is more widely
employed in control theory and applications. However, it is
difficult to apply Lyapunov second method in LTV system
analysis due to the difficulty in constructing a causal and
bounded Lyapunov function for stable LTV systems.

The LTV system (1) has a unique solution given an
initial condition x(to ), which can be written as

x(t) = (b (t,to )x(to )	 (2)

where (b (t, to ) is called the state transition matrix (STM). It
is well known [13, 14] that (1) is exponentially stable if and
only if there exists a positive definite (p.d.) and decrescent
quadratic Lyapunov function V (t, x) such that

o < Cl l1xl1 2 < V (t, x) = xTP(t)x < C2 l1xl1 2
2 , bt

where P(t) is bounded, symmetric p.d., i.e.

P(t) = PT  (t), o < C l I < P(t) < C2I

and the time-derivative of V (t, x) is negative definite (n.d.)
satisfying

V (t, x) = —xTQ(t)x — —C3 l1xl1 2 < o2

where Q(t) is bounded, symmetric p.d., i.e.

Q(t) = QT  (t), o < C3 I < Q(t) < C4I

The positive constants Ck are given by

C l = min (inf Ak (P(t))), C2 = max (sup Ak (P(t))) (3)
k	 t	 k	 t

C3 = min (inf Ak (Q(t))), C4 = max (sup Ak (Q(t)))
k	 t	 k	 t

where Ak (\ (t)) denotes the kth algebraic (frozen-time)
eigenvalue of the time-varying matrix \ (t) as a root of the
algebraic characteristic equation det[X(t) — A(t)I] = o.



Knowing the bounds of P(t) is essential in LTV system
analysis and synthesis. For example, the constants Ck can be
used to estimate the envelope of the state trajectory by

P(t) = 
rt d

)T (T ,t)Q(T)d) (T ,t)dT 	 (8)

x(t)J < rc Jx(to ) JJ e—1*—to)	 (4)

where rc =	 and u = - , which also asserts exponentialV Cl

stability by the definition. In linear adaptive control [15, 16]
and nonlinear adaptive control [17, 18, 19], the (constant)
matrices P and Q for the nominal exponentially stable LTI
controller are used in the adaptive control law design to
assure stability of the overall adaptive system. Those results
can be extended to LTV plants if practical methods can be
developed for constructing the time-varying P(t) and Q(t)
matrices.

There are two types of methods for finding time-varying
P(t) and Q(t) matrices. The first method is by solving for a
p.d. and bounded P(t) from the matrix differential
Lyapunov equation (DLE).

Þ
P(t) = —P(t)A(t) — AT(t)p(t) — Q(t)	 (5)

P(to )=Po =Po
T, t>to

for any given p.d. and bounded Q(t). It is well known that
the DLE (5) has a unique bounded solution P(t) if the LTV
system (1) is exponentially stable. However, this method is
not practical as DLE for an exponentially stable linear (LTV
or LTI) system is not stable forward in time, thus in general
does not provide bounded p. d. solutions. One approach to
construct P(t) is to solve the DLE using the reverse-time
method by letting T = —t, rendering the DLE into an
alternative form

Þ
P(T) = P(T)A(T) + AT (T)P(T) + Q(T ) 	 (6)

P(To )=Po =Po
T
, T > To

If the solution reaches a steady-state, that steady state can
then be used as initial values for the forward integration of
(5). Reverse integration requires knowledge of A(t) for all
future time t > to , which is an anti-causal requirement.
Thus, this method is effective only when A(t) has a
predictable future, such as LTI system, linear periodic
systems, finite-duration LTV systems with a A(t) that is
predefined over the operating duration, and freezes to
constant at the end of the mission. In particular, for a LTI
system, DLE is reduced to an Algebraic Lyapunov Equation
(ALE).

PA+ATP+Q = o	 (7)

In any case, this method is not applicable for adaptive LTV
systems where the closed-loop dynamics are to be
synthesized in real-time in response to unforeseen changes
in the plant dynamics or operating conditions. The results of
the Lyapunov function for both LTI system and LTV system
are summarized in [20]. In [21], the solution bounds of a
general DLE (6) are analyzed. In [22], a relatively
conservative solution bounds for DLE (5) is analyzed.

The second method constructs the P(t) for a given Q(t)
using the STM by [13, 14]

Eq. (8) requires integration over the infinite future time-
interval, which is anti-causal, and cannot be utilized in real-
time control applications. Moreover, it requires the STM
d) (t, T) to be known for all future time, which is not
practical to obtain for LTV systems even if A(t) is known
for all future times, except for some special cases, such as
the LTI systems.

In summary, both approaches to construct P(t) for
stable LTV systems are anti-causal and not applicable in
real-time control application. This is not surprising as future
behavior, such as exponential convergence as t —> oo, of the
state x(t) is determined by future values of A(t). The issue
at hand is to find causally enforceable conditions, i.e.
conditions that can be applied at the current time t on A(t)
so that exponential stability will be guaranteed. This can be
achieved using the DAST-based PD-eigenvalue assignment
control [5, 6].

In this paper, Lyapunov function for exponentially
stable LTV system is constructed using PD-eigenvalues and
PD-eigenvectors, collectively called the PD-eigenstructure.
Characteristics of P(t) and Q(t) are related to PD-
eigenstructure of the LTV system. Most importantly, the
constructed Lyapunov function is causal and applicable to
real-time applications.

The developed Lyapunov function is a useful tool not
only as an alternative to the ALE (7) for solving P and Q in
many Lyapunov control methods for time-invariant linear
and nonlinear systems, such as adaptive control, but also for
extending those methods to LTV and linearizable nonlinear
time varying (NLTV) systems. Using the results developed
in this paper, it is possible to assign the nominal controller
as an LTV system, the causal P(t) and Q(t) matrix can be
used in the adaptive law, as illustrated in [23]. Thus there is
potential to design a less conservative and more robust
adaptive control system. The main results of this paper also
establish an alternative proof for the PD-eigenvalue stability
criterion, along with estimate of the exponential envelope of
the state trajectory.

Following this introductory section, Section II presents
a brief overview of the DAST to facilitate exposition of the
main results, which are presented in Section III. Some
illustrative examples are presented in Section IV. The paper
is concluded with Section V.

II. OVERVIEW OF THE DAST

In this section we provide a brief overview of the DAST
[4, 5, 6]. Consider the n-dimensional NLTV tracking error
or operating error dynamics

x = f (t, x), x(t o ) = x o , t > t o 	 (9)

where f is continuous in t and differentiable with respect to
x, and x(t) o is the desired equilibrium state that needs to
be stabilized. The time-dependence of f may be due to
either time-varying parameters or time-varying nominal
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tracking trajectory of the NLTV system. To begin with, we
consider the special case where (9) can be linearized at the
null equilibrium point (i.e. along the nominal trajectory) to a
LTV system of the form

Jr = Ac (t)x, x(to ) = x o , t > to 	 (10)

where Ac (t) is continuous and bounded, and is in the
companion canonical form

	

Ôo	 ×

Ac (t)=ÖIn—1

o

Õ— a 1 (t) —a2(t)...— an (t) Ø

where Mn—1 is the (n — 1) x (n — 1) identity matrix. By
letting y = x 1 , the state equation (10) is equivalent to an
nth-order scalar LTV differential equation

y 
(n) + an (t)y (n—1) + ... + a2 (t)9 + a 1 (t)y = o ( 11)

y (k-1) (to ) = xok, k = 1, ... n t > t o

The general solution to LTV equation (11) can be written as

	

n	 n

y(t) = "Ckyk (t) = " Ck efio Pk(T)dT	 (12)

	

k=1	 k=1

where šyk (t) = exp (ft,,Pk (T) dT ) ›
k=1 

is a set of linearly

independent solutions to (11), and e Pk (t)fk=1 is called a
parallel differential (PD) spectrum for (11) in which each
Pk (t) is called a PD-eigenvalue for Ac (t). The PD-
eigenvalues are solutions to an (n — 1)th-order NLTV
differential equation, called PD-characteristic equation

A aPb = DP
—1 a P b + an atb Dp 

2 aPb +	 (13)
... + a3 atb DP aPb + a2 atb P + a 1 atb = o

where DP aPb =  dt + P(t)‘ aP (t)b = p(t) + P2(t), and
DP = DPDP —1 . In particular, for n = 2, the PD-character
equation is given by the Ricatti equation

	

P + P2 + a2 (t) P + a 1 (t) = o	 (14)

Note that for real-valued coefficients ak (t), the PD-
eigenvalues Pk (t) may be complex-valued in order to avoid
singular solutions. Moreover, the synthesis formula for
ak (t) from a PD-spectrum e Pk (t)fk=1 is given by

	

a 1 (t) = P1 (t) P2 (t) + 
P1 (t) P2 (t) — P2 (t) P 1 (t)	 (15)

P2 (t) — P1 (t)

a2 (t) = — P 1 (t) — P2 (t) — P2 (t) — P 1 (t)
P2 (t) — P1 (t)

For each PD-eigenvalue Pi (t), an associated PD-
eigenvector vi (t) for A, (t) is defined by

	

Ac (t) Ui (t) — Pi (t) Ui (t) = Ai (t) 	 (16)

where Ui (t) can be expressed using the PD-eigenvalue Pi (t)
as Ui (t) =  1 DPi{ 1 1 DPi { 1 } • • • DPa 1 { 11 ‘ T

 . The

diagonal matrix

Y(t) = diag [P1 (t), P2(t), ..., Pn (t)1

is called a PD-spectral canonical form for A, (t), and the
matrix consisting of all corresponding PD-eigenvectors

M(t) = c U 1 (t) I U2 (t) I ... I Un (t)

Ô1
	 1	 ...	 1

Ö DM a1b DM a1b ... DPna1bÖ
= Ö D2 a1b DP2 a1b ... DPna1b

Ö	 ã	 ä	 ã

Õ
DP, 1 a1b ... ... DV a1b

is called a PD-modal matrix for A, (t), and for the LTV
system (10). A PD-spectrum (PD-spectral matrix) is said to
be well-defined if the PD-eigenvalues Pk (t) are bounded and
continuously differentiable at least n times. A PD-modal
matrix is said to be bounded diffeomorphic if it is
continuously differentiable and invertible, with a uniform
bound on M(t), M—1 (t), and k(t). A bounded diffeo-
morphic PD-modal matrix constitutes a (stability preserving)
Lyapunov transformation that relates the PD-spectral matrix
Y(t) and A, (t) by

Y(t) = M- 1 (t) A, (t)M(t) — M(t)‘
Þ

The above concepts can be extended to general LTV
system (1) via a Lyapunov transformation that reduces A(t)
to A, (t)

A, (t) = L—1 (t) A(t)L(t) — L(t)‘

Then the PD-spectral matrix Y (t) for A, (t) is called a PD-
spectral matrix for A(t), and the composite Lyapunov
transformation V(t) = L(t)M(t) is called the
corresponding modal matrix for A(t). A sufficiency
condition for the existence of such a bounded
diffeomorphism L(t) is that there exists a bounded,
sufficiently differentiable n x 1 matrix Batb such that
eAatb ß Batbf is	 strongly	 controllable,	 i.e.
infk detcB(t) I PAB(t) I ... I PA

n—1 B(t)dk = c > o,
where PAB(t) = B(t) — A(t)B(t), PA = -PAPAk—1

The PD-eigenvalue concept is a natural extension of the
eigenvalue concept for LTI systems in that, when the
coefficients ak (t) =_ ak = constant, the PD-character
(differential) equation (13) possesses constant solutions
Pk (t) =_ Pk = constant that are conventional characteristic
roots for (11), and eigenvalues for Ac (t) =_ Ac, for which
(13) reduces to the conventional algebraic characteristic
equation, and the synthesis formula (15) reduces to the
conventional polynomial coefficient synthesis formula.
Moreover, stability of the LTV system (10) or (11), and
consequently the null equilibrium of the NLTV system (9),
can be determined by the negativity of the real-part of the
PD-eigenvalues. In particular, exponential stability is
implied by Re aPk (t)b < —c < o, for some constant c > o,
and for all k.



Let

and

Note that

Then

Px (t) = M*-1 (t)Pz (t)M- 1 (t)

Qx (t) = M*-1 (t)Q z (t)M- 1 (t)

//
z(t) = M/- 1 (t)x/(t)

45x (T , t) = M(T)45z (T , t)M- 1 (t)
45x

*
 (T , t) = M*-1 (t)45z (T , t)M* (T)

It is noted that, since {yk (t) }nk=1 are linearly
independent, by definition PD-eigenvalues are always
distinct. For instance, given a second order LTI system

symmetric matrix, and 45z (t, T) is the state transition matrix
for the LTV system z = A z (t)z. Let M(t) be a Lyapunov
coordinate transformation and define

_ 0	 1
x	 -A 2 - 2A 

x,

the system has repeated eigevalue A, whereas a PD-spectrum
can be chosen as p1 (t) =_ A and p2 (t) = A + —1 for somet+d
constant d < t0 . It should be noted that PD-eigenvalues are
functions of time. They are different from Lyapunov
exponent, Floquet exponent or Bohl exponent, which have
constant values. PD-eigenvalues are also different from the
frozen-time eigenvalues of an LTV system. It is well known
that frozen-time eigenvalues given as the roots of
det [A (t) - A(t)] = 0 are in general neither sufficient nor
necessary for stability assessment of a LTV system. Since
evaluating a PD-spectrum for an arbitrary given matrix A(t)
entails solving the (n - 1) th-order NLTV PD-characteristic
(differential) equation, which in general is difficult. Thus at
the present time using PD-spectrum as an analysis tool
remains a challenge, and requires significant future research.
However, PD-spectrum as a design synthesis tool is not
only practical, and very effective, as has been demonstrated
in [7-12, 23, 26, 27]. The main results of this paper that
follow bridge an important gap between the Lyapunov First
Method based PD-spectral theory and the Lyapunov Second
Method based control design techniques.

III. MAIN RESULTS

The main result of this paper establishes a relationship
between the first and second method of Lyapunov for
stability assessment using the PD-spectral concept.
Theorem 1. Let Y(t) = diag [p1 (t), p2 (t), â, pn(t)] be a
well defined PD-spectral matrix for A(t) with a bounded
diffeomorphic PD-modal matrix M(t) = [µ1 (t) l µ2 (t) l â l
µn (t)], where µk (t) are the corresponding PD-eigenvectors
for the PD-eigenvalues pk (t). If

Re (pk (t)) < -c < 0 (17)

for some positive constants c, then the null equilibrium for
Jr = A(t)x is exponentially stable. Moreover, xV(t, x) =
x* (t)Px (t)x(t) is a Lyapunov function for x = A(t)x with.
Vx (t, x) = - x * (t) Q x (t) x (t), where

Px (t) = M*-1 (t)M- 1 (t)	 (18)

and

Qx (t) = -2 M*-1 (t) Re (Y(t)) M-1 (t)	 (19)

where * denotes the conjugate transpose.
Proof of Theorem 1 relies on the following lemma,

which is an important result in its own right.
Lemma 1. Let

Pz (t) = J ^45z (T ,t)Qz (T)45z (T ,t)dT
t

where Qz (t) is a continuous, bounded, positive definite,

x(t) = M(t)z(t)

If the null equilibrium point for the LTV system z = A z (t)z
is exponentially stable, then Vx (t,x) = x* (t)Px (t)x (t) is a
Lyapunov function for x = Ax (t)x with Vx (t, x) =
-x * (t)Qx (t)x(t), where

Ax (t) = M-1 (t)A z (t)M(t) - M- 1 (t)k(t)

Px (t) = M
*-1 (t)Pz (t)M-

1 (t)

Qx (t) = M
*-1 (t)Q z (t)M- 1 (t)

Proof. Suppose the null equilibrium point for the LTV
system z = Az (t)z is exponentially stable and let

Pz (t) = J ^45z (T ,t)Qz (T)45z (T ,t)dT
t

It can be verified that Vz (t, z) = z* (t)Pz (t)z(t) is a
Lyapunov function for z = Az (t)z with Vz (t,z) =
-z* (t)Q z (t)z(t) [13, pp. 155-159]. Let M(t) be a
Lyapunov coordinate transformation and define

x(t) = M(t)z(t)

Then the null equilibrium for the LTV system x = Ax (t)x
is also exponentially stable, where

Ax (t) = M-1 (t)A z (t)M(t) - M- 1 (t)k(t)

Px (t) = 

/

M*-1 (t)Pz (t)M-1 (t)

= M*-1 lt)45z (T ,t)Qz (T)45z (T ,t)dTM- 1 (t)
r

= f ^M*-1 (t)45z (T  t)M* (T)M*
 

1 (T )Q z (T)M 1 (T)M(T)45z ( T  t)M 1 (t)dT
t

CO/p= J 45y (T ,t)Qx (T)45x (T ,t)dT
t

It follows from [13, pp. 155-159] that Vx (t, x) =
x* (t)Px (t)x (t) is a Lyapunov function for x = Ax (t)x with.
Vx (t, x) = -x * (t)Q x (t)x(t).	 q

Proof of Theorem 1. Suppose the PD-spectral matrix Y(t)
satisfies (17) and the PD-modal matrix M(t) is bounded and
diffeomorphic. Let z(t) = M- 1 (t)x(t). Then z = Y(t)z.

4



Let Qz (t) = -2Re aY(t)b > 2cI > 0. It is readily verified
that Pz = I satisfies the Lyapunov equation

Pz = -Pz Y(t) - Y * (t)P. - Wt)

Thus, Vz (t, z) = z * (t)Pz (t)z(t) = z* (t)z(t) is a Lyapunov
function for z = T(t)z with Vz (t, z) = 2z * (t)Re aY (t)bz(t)
< 0. By Theorems 4.10 and 4.12 of [13], the null

equilibrium of z = Y(t)z is exponentially stable. Since
M(t) constitutes a Lyapunov transformation, the null
equilibrium for x = A(t)x is also exponentially stable. It
then follows from Lemma 1 that Vx (t, x) = x* (t) Px (t) x (t)
is a Lyapunov function for x = A(t)x with Vx (t, x) =
-x * (t)Qx (t)x(t), where Px (t) and Qx (t) are given by (18)
and (19), respectively. 	 q

Remark 1. The proof of Theorem 1 provides an insight into
the relationship between Lyapunov first method and second
method for LTV systems. In particular, in the PD-spectral
coordinates z = Y(t)z, where the modes of the LTV
systems are decoupled, the Lyapunov function Vz (t, z) =
z* (t)Pz (t)z(t) = z* (t)z(t) represents the total energy in the
modes, and Vz (t, z) = 2z* (t)Re aY(t)bz(t) gives the energy
decay rate in terms of the PD-spectrum, which is twice the
exponential decay rate of the envelope of the trajectories.
The energy level and decay rate are “scaled” by the
condition number of the PD-modal matrix in the original
coordinates for the LTV system x = A(t)x.

Remark 2. For LTI systems with distinct eigenvalues, the
conventional (algebraic) eigenvalues and eigenvectors
define a constant PD-spectrum and a constant PD-modal
matrix. The bounds on the Lyapunov function
V(x) = x* (t)Px(t) and on the derivative
V(x) = -x * (t)Qx(t) given by (3) can be used to estimate
the envelope of the state trajectory by (4). Notice that, by
letting P = M*-1 M-1 , the eigenvalues Ak (P) = uk (M-1 ) ,

which are the singular value squared for M-1 . Thus, the
estimate of the peaking bound rc =È c2/c 1 is actually the
condition number of the (PD) modal matrix M, which is an
indication of how singular the modal matrix is. In particular,
the condition number attains its minimum when the modal
matrix is unitary, in which case the peaking bound is rc = 1.
Thus, the peaking phenomenon is determined by the
orthoganality of the PD-modal matrix, rather than by the
exponential decay rate. Moreover, when M is unitary,
M-1 = M*, then P = M*-1M-1 = I, and Ak (Q) =
-2Ak (Re (Y)). Thus, the exponential decay rate
µ = -c3 /(2c2) = -mink k Re (Ak (Y)k, which is decay rate of
the slowest mode. It follows that when two eigenvectors are
nearly collinear, not only peaking of the trajectory will be
large, the decay rate will also be slower than the single
slowest mode. In practice, if there are design freedoms to
assign the eigenvectors, they should be assigned as
orthogonal as possible. These observations also apply to
LTV case with a suitably defined induced matrix norm, such
as lA( - )l 2 = supt>t0

lA(t)l 2 .

Remark 3. The technical difficulty for obtaining a causal
expression of a Lyapunov function for an exponentially
stable LTV system is circumvented by requiring the real-
part of PD-spectrum to be bounded by a negative number.
This result allows time-varying closed-loop dynamics to be
synthesized for adaptation to unforeseen modeling errors
and adverse operating conditions as they arise, thereby
achieving best tradeoff between the closed-loop system
performance, robustness and control energy consumption.
Remark 4. For LTI systems, Theorem 1 provides an
alternative method to the ALE for computing a Lyapunov
function. Different P matrix can be obtained using different
modal matrices, which amounts to choosing a different
coordinate for the state space.
Remark 5. Theorem 1 also provides an alternative proof for
the PD-eigenvalue stability criterion.

IV. ILLUSTRATIVE EXAMPLES

In this section we use second-order LTI and LTV system
examples to illustrate the utility of the main results, and to
gain some insight into the relationship between the first and
second methods of Lyapunov. We will also demonstrate the
fallacy of frozen-time eigenvalue concept for LTV systems.

4.1 LTI Examples

In this subsection we consider some LTI examples with
distinct eigenvalues, which will be denoted Ak.

Example 1 (The Companion Form, Distinct Real
Eigenvalues). Suppose A is in the companion canonical
form

_ 0	 1 =	 0	 1A	 ”	 •	 ”	 •-a 1 -a2 	-A 1 A2 A1 + A2

Then the modal matrix is given by

M=r1 1•
L A1 A2

The P, Q matrices are given in terms of the eigenvalues by

	

A i+A 2 	-(A 1 +A2 )

	

P =
	

(A2 -A 1 ) 2 	(A2 -A 1 ) 2

Õ	 Ø

	

-(A 1 +A 2 ) 	 2

	

(A2 -A 1 ) 2 	(A2 -A 1 ) 2

	

Ô	 ×-2A1 A2 (A1 +A2 )	 4A 1 A2

=

	

(A2 -A 1 ) 2 	(A 2 -A 1 ) 2

	

Q
Õ	 Ø4A 1 A 2 	-2(A 1 +A2

	

(A2 -A 1 ) 2 	(A 2 -A 1 ) 2

Note that in this case, M cannot be orthogonal when both
eigenvalues are of the same sign. Thus, peaking is
unavoidable. For a 1 = 2, a2 = 3, we have A l = -1,
A2 = -2, and

P= ”3 2•, Q= ” 8 6•

with the singular values u (M-1 ) = e2.6180, 0.3820f,
condition number rc (M) = 6.8541, and the eigenvalues
A (Q) = e17Þ5440, 0Þ4560f. Thus the estimated trajectory



envelope is
_—0.7071 0.7071

0 0333(t—t0 ) 	 A — —0.7071 —0.7071lx(t)l <__ 6.8541 lx(t0 )ll e .

which should be compared to the slowest mode e —(t—t0). -%

Example 2 (Orthonormal Modal Matrix, Distinct Real
Eigenvalues). Consider

= —1.5 0.5
A ”	 •0.5	 —1.5

with eigenvalues A1 = —1, A2 = —2. The modal matrix is
given by

= 0.7071	 0.7071
M ”	 •—0.7071 0.7071

Note that M is orthonormal, and

1
P= ” 0 0•, Q= ” 8 6•

with u(M—1 ) = e1, 1f, rc(M) = 1, and A (Q) = e4, 2f
Thus the estimated trajectory envelope is

lx(t)l <_ lIx(t0 )le 
(t—t0 )

which should be compared to Example 1 above. 4
Example 3 (The Companion Form, Complex Eigen-
values). Suppose A is in the companion canonical form

0	 1 	 0	 1
 ”A=	 •	 ”	 •—a 1 —a2 	—au2 + w2b 2u

Then the modal matrix is given by

1	 1
M = ” u +jw u— jw

The P, Q matrices are given in terms of the eigenvalues by

 —

	

–

(u2 +w2 ) 	 —u	 —u(u2 +w2 ) 	 u2

P =	 2w2 	2w22 	 0 = —2uP
—u

,Q =	 u2 	—u
2w2 	2w2 	w2 	w2

Note that in this case, M cannot be unitary. Thus, peaking is
unavoidable. For a 1 = 1, a2 = È2, we have
A1,2 = —0.7071 f j0.7071, and

P = ” 1.41
2 421.42 42 •, Q= ” 2.82 84 2.8284

•

with u(M—1 ) = e0.7654, 1.8478f, rc(M) = 2.4142 and
A (Q) = e0.8284, 4.8284f. Thus the estimated trajectory
envelope is

lx(t)l <_ 2.4142 lx(t0) lI e—0.1213(t —t0 )

which should be compared to the envelope defined by the
real-part of the eigenvalues e.

	

— 0.7071(t—t0 ) 	
-%

Example 4 (Unitary Modal Matrix, Complex Eigen-
values). Consider

with eigenvalues A1,2 = —0.7071 f j0.7071. The modal
matrix is given by

M = 0.7071	 0.7071 1
”0.7071j —0.7071 j J

which is unitary, and

1P= ”0 
0 •, Q= ”1.4014 1.014•

with u(M—1 ) = e1, 1f, rc(M) = 1, and A (Q) =
e1.414, 1.414f. Thus the estimated trajectory envelope is

x(t)l <_ lx(t0) l e —7071(t—t 0 )

which should be compared to Example 3 above. 	 4
4.2 LTV Examples

In this subsection we first consider a LTV example that was
developed to demonstrate the fallacy of frozen-time
eigenvalue concept for LTV systems defined by the roots of
detcA(t) — A (t)Id = 0. We will compare the Lyapunov
function derived from the PD-eigenvalue concept and the
fallacious frozen-time eigenvalue concept. A third LTV
example is given to illustrate application of the main result
to a time-varying bandwidth (TVB) filter.

Example 5 (Parameterized Marcus-Yamabe Equation).
Consider the parameterized Marcus-Yamabe (M-Y)
Equation (1) with [24]

A(t) = a — 
1 w + acos (wt)	 1 w — asin (wt)

– — Zw — asin (wt)	 a — Zw — acos (wt)

which was developed to show the failure of the sufficiency
of the stability assessment using the negative real-part
criterion using the frozen-time eigenvalue. The PD-spectral
and	 PD-modal	 matrices	 are	 given	 by
Y(t) = diag 2a — 1 w, — 1 w‘ and

	

2	 2

M(t) = 
cos ( 2wt) sin ( 2 wt)

–	 —— sin ( Z wt) cos ( Zwt)

Note that the PD-eigenvalues are constant and real, and
exponential stability will be achieved for w > 4a > 0. Note
also that the PD-modal matrix is orthonormal for all t. The
P(t) and Q(t) matrices are given in terms of the parameters
a, w by P(t) = I and

Q(t) = —2a + w — 2acos (wt) 	 —2asin (wt)
” —2asin (wt)	 —2a + w + 2acos (wt)

The eigenvalues for Q(t) are given by e w, — 4a + wf. Thus
Q(t) > 0 for w > 4a, in agreement with the PD-spectral
stability condition. The parameterized M-Y equation
specialized to the original M-Y equation [13, Example 4.22,
p.158] when w = 2 and a = 0.75, for which the PD-
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eigenvalues are p1 (t) = 0.5, p2 (t) = —1. By the PD-spectral
stability criterion, the system is unstable. This is also
verified with the fact that for these values Q(t) < 0 for all t,
and V(t,x) = —x * (t)Q(t)x(t) > 0, for all t. Thus, any
initial value x(t0 ) will move away from the null equilibrium
x = 0. Now, consider the frozen-time eigenvalues for the

	

original M-Y equation, which are A 1ß2	
1	

,(t) = — 4 ±j 4
which by the fallacious frozen-time eigenvalue stability
criterion would imply exponential stability. The frozen-time
modal matrix can be easily found to be

1 — 

4 

sin (2t)	 1 — 4 sin (2t)

MT(t) = —4 cos (2t) + 2 3L7 —4COS(2t)4—2 	4

This would lead to a positive definite Q(t) > 0 with

	

4	 4	eigenvalues	 A(Q(t)) = š 4—3 sin (2t) 7 7[4—3 sin (2t)] › , 	 which

would also (fallaciously) imply exponential stability.
However, with the correct time-varying coordinate trans-
formation and with the frozen-time eigenvalues treated as
PD-eigenvalues, this stable system would actually be given
by x = B(t)x, where

.
B(t) = ˆMFT (t) diag c A 1 (t), A2 (t)d + MFT (t)‰MFT (t)

	

8—6 sin(2t)+9sin(4t)+24cos (2t)	 3

	

Ô 24sin(2t)—32	 4 sin (2t) + 1
= 323—48sin(2t)+9cos (4t)

Pin (2t) — 1 4 	 24sin(2t)—32

Example 6 (A time-varying bandwidth filter). Consider
an LTV system (1) with

0	 1
A(t) = –

— w^ atb —2(wn atb — 
Wn (t)

where 0 < ( < 1 is damping ratio and wn (t) > 0 is the time-
varying bandwidth. The PD-spectral and PD-modal matrices
are given by Y(t) = diag cp 1 atb ß p2 atbd and

1	 1

	

M(t) = ”	 •p 1 atb p2  atb

where p1 , 2 atb = —(wn atb ± jÈ1 — Nn atb.

=
	 1	 wn atb

Patb
2a1 — (2  b wn atb ( wn atb

Qatb = 2(wn atbP(t)

with

A(P(t)) 
= awn, (t) + 1b ±Éaw^ (t) — 1b 2

 + 4(2 wn (t)

4 w? (t)a1 — (2 b

rc(M(t)) = sup 
awn (t) + 1b

t>-t0 2wn (t)È1 — (2

A (Q(t)) = 2 (wn (t) A (P (t))

and the exponent of the norm-bound on the trajectory
envelope is given by

	

c3	 (wn (t)

	

u=
2c2 	 t>to rc 2 (M(t))

Figures 1-3 illustrate a numerical example with ( = 0.707
and wn (t) as shown in Figure 1. Figure 2 and 3 show the
elements of Patb and Qatb. Figure 4 contains a plot of
rc (wn ) and a plot of u (wn ) . -%

V. CONCLUSION AND FUTURE WORK

In this paper a method has been developed for constructing a
quadratic Lyapunov function for an exponentially stable
LTV system using a PD-eigenstructure for the system. The
result establishes a relationship between Lyapunov first and
second methods, providing explicit upper and lower bounds
on the Lyapunov function using the singular values of the
inverse PD-modal matrix, and an upper bound on the time-
derivative of the Lyapunov function using the (negative)
real-part of the PD-eigenvalue having the smallest
magnitude (the slowest mode). An estimate of the
exponential envelope of state trajectory is given in terms of
condition number of the PD-modal matrix, which
determines the peaking, and using the real-part of slowest
PD-eigenvalue and the largest singular value of the PD-
modal matrix, which determines the exponential decay rate.
Illustrative examples are given to show the utility of the
result, and to demonstrate fallacy of the frozen-time
eigenvalue based stability analysis for LTV systems.

The main result of this paper can be used in further
development of the differential algebraic spectral theory
(DAST) and DAST-based control techniques such as the
trajectory linearization control. It can also be used to extend
many known Lyapunov control techniques for time-
invariant systems to time-varying systems. Moreover, it can
be used to develop real-time implementable theoretic
stability metrics for adaptive control of LTV and
linearizable nonlinear time-varying systems.
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