
MTL Robust Testing and Verification for LPV Systems

Georgios E. Fainekos and George J. Pappas

Abstract— This paper deals with the robust Metric Temporal
Logic (MTL) testing and verification of linear systems with
parametric uncertainties. This is a very general class of systems
that includes not only Linear Time Invariant (LTI) systems with
unknown constant parameters, but also Linear Time Varying
(LTV) systems and certain classes of nonlinear systems through
abstraction. The two main tools for the solution of this problem
are the approximate bisimulation relations and a notion of
robustness for temporal logic formulas.

I. INTRODUCTION

One of the fundamental problems in model based devel-
opment is how you can guarantee that a model is correct. In
other words, does your design satisfy a set of user-defined
requirements? Even though several industrial platforms offer
tools for automatically testing such models [1], the verifica-
tion problem cannot still be declared as solved. First, because
no testing method can handle all the classes of systems and
user requirements and, second, because the main issue in
the complete verification of models of control systems is the
undecidability of the problem [2].

Therefore, several authors have proposed methods for the
systematic testing of hybrid systems [3]–[5], i.e., systems that
have both continuous and discrete dynamics. Others, inspired
by the success of temporal logics in software model checking
[6], have introduced temporal logics as a formalism for
property based testing of continuous systems [7], [8]. In our
earlier work, we introduced robust simulations [9]–[11] as a
way for testing models of continuous (and hybrid systems)
with coverage guarantees. The concept of robust simulations
has since been applied to other testing frameworks [12], [13],
too. The principal advantage of robust simulations is that
by performing one simulation you can infer the behavior of
a neighborhood of trajectories of the system. Especially in
[9], we demonstrated how robust simulations can be used for
verifying timing requirements expressed in Metric Temporal
Logic (MTL) [14] of linear and nonlinear time invariant
systems.

In this paper, we extend the results of [9] to Linear
Parameter Varying (LPV) [15] systems. LPV systems are
a very general class of systems that can model Linear Time
Invariant (LTI) systems whose parameters are unknown and
possibly time varying, but within certain bounds. In other
words, LPVs can model systems which have parameters that
cannot be precisely determined. Moreover, LPV systems can

This research has been partially supported by NSF CSR-
EHS 0720518. The authors are with the GRASP Laboratory,
University of Pennsylvania, Philadelphia, PA 19104, USA. E-mail:
{fainekos+,pappasg+}@grasp.upenn.edu

capture (through abstraction) certain classes of nonlinear sys-
tems, linear time varying systems and, even, hybrid systems
whose discrete dynamics only depend on time.

The approach we follow is similar to the model reduction
framework proposed in [16]. Our method comprises the
following two steps which are also the contribution of this
paper. First, we approximate the LPV system with an LTI
system by constructing a bisimulation function. Second, we
convert the user requirements into a new “robustified” spec-
ification that must hold on the LTI system. The last step can
be checked by any method that can perform MTL verification
on an LTI system. Here, we use the algorithm that we
introduced in [9] to demonstrate the proposed framework
on two different numerical problems.

We mention in passing that this not the first work that
tries to address the verification and/or testing problem for
dynamical systems with uncertain parameters. However, to
the best of our knowledge, this is the first attempt to do
so for MTL specifications. For example, the authors in [17]
present a framework for the verification of linear circuits
with uncertain parameters with respect to frequency domain
specifications. In [18], a method for constructing Labeled
Hybrid Petri Nets (LHPNs) from simulation traces of a
circuit is presented. Similar to our verification framework,
this approach can also handle varying parameters. Then, the
resulting LHPN is model checked using a variety of methods
proposed by the authors in their previous works.

II. PROBLEM FORMULATION

In this paper, we address the problem of temporal logic
testing and verification of autonomous linear systems with
parametric uncertainties [15], which are commonly referred
to as Linear Parametric Varying (LPV) systems. LPV systems
usually have uncertain or time varying parameters that appear
in the system matrices

ẋ(t) = A(p(t))x(t) p(t) ∈ P x(0) ∈ X0 t ∈ R
y(t) = Cx(t) (1)

where x(t) ∈ Rn, y(t) ∈ Rm, A(p) ∈ Rn×n, C ∈ Rm×n,
X0 ⊆ Rn is the set of initial conditions for the system, which
is a nonempty compact (convex) polyhedral set, R ⊆ R≥0

is the time domain and P ⊂ Rq . Note that the parameter
vector p may be constant but unknown to us or it may be
time varying, that is, p(t) ∈ P . The dependence of A on
the parameters p cannot be arbitrary. In order to derive a
tractable computable solution to our problem, A and p must
satisfy the following assumption.

Assumption 1: The parameter p : R → P must
be a piecewise continuous function and the matrix

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThC15.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3748

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12, 2010 at 15:07 from IEEE Xplore. Restrictions apply.

A : P → Rn×n of system (1) must be a multi-linear
function of the components of p, that is, A(p(t)) =∑1
i1=0

∑1
i2=0 · · ·

∑1
iq=0Ai1,i2,...,iqp

i1
1 (t)pi22 (t) · · · piqq (t),

where pi(t) denotes the i-th component of the vector
function p and Ai1,i2,...,iq ∈ Rn×n are constant matrices.
Moreover, the set P must be an axis-aligned hyper-rectangle,
that is, P := [p

1
, p1]× [p

2
, p2]× . . .× [p

q
, pq].

The fact that p is piecewise continuous and that A is con-
tinuous guarantees that the system (1) has a unique solution
x : R≥0 → Rn for each initial condition x(0) = x0 ∈ X0.
For convenience, we will denote a particular instantiation of
system (1), i.e., a known tuple (A,C,X0, P,R), by Σu. In
our analysis, we will also consider Linear Time Invariant
(LTI) systems that arise from an LPV system Σu under a
constant parameter vector p̂ ∈ P , i.e., p(t) = p̂ for all t ∈ R.
Such systems will be denoted by Σu(p̂). Throughout the
paper, we will use the hat or superscript notation to denote
a point in a set while the letter itself refers usually to a
function. For example, p̂ or p0 refers to a point in P , while
p to a function that takes values in P . Some of the results in
this paper hold for any dynamical system and not just LPV
systems. In these cases, we will refer abstractly to a system
Σ with state trajectories x(t) and observable trajectories y(t).

The set of state trajectories of Σ which are defined over
a time domain [0, T], that is, the solutions x(t) of Σ with
t ∈ R = [0, T], are denoted by ΛT (Σ). If the time domain
is unbounded, then we use the notation Λ∞(Σ) to denote
the set of trajectories x(t) of Σ over the time domain R =
R≥0. When the underlying time domain is not of interest,
we just write Λ(Σ). The set of observable trajectories y(t)
of Σ which correspond to a set of internal trajectories ΛT (Σ)
are denoted by LT (Σ). For example, in the case of an LPV
system Σu, we have LT (Σu) = CΛT (Σu). We similarly
define L∞(Σ) and L(Σ).

In order to reason about the timing properties of systems,
we have to define certain sets of interest in Rm, which is the
set of observable system values. For example, we would like
to know whether all the observable trajectories y(t) ∈ R of a
system attain a value in the set [10,+∞). We do so by using
a set of atomic propositions AP which label subsets of Rm.
In other words, we define an observation map O : AP →
P(Rm) such that for each π ∈ AP the corresponding set is
O(π) ⊆ Rm. Here, P(S) denotes the powerset of a set S.

Metric Temporal Logic (MTL) formulas are built over a set
of propositions, the set AP in our case, using combinations
of the traditional and temporal operators. Traditional logic
operators are the conjunction (∧), disjunction (∨), nega-
tion (¬), implication (→) and equivalence (↔). Some of
the temporal operators, which we will be using here, are
eventually (3I), always (2I), until (UI) and release (RI).
The subscript I imposes timing constraints on the temporal
operators. In this work, we interpret MTL formulas over the
observable trajectories of a given system Σ. Similarly to the
notation for a system Σ, we denote the set of signals1 which

1We prefer the term signals over the term trajectories since these signals
are not generated by a particular system.

are defined over a bounded time domain [0, T] and which
satisfy an MTL formula φ under a map O by LOT (φ). Again,
the subscript ∞ denotes a set of signals defined over an
unbounded time domain, while no subscript implies that we
do not care whether the signals are defined over a bounded
or unbounded time domain.

For such systems and specifications, we formally solve the
following problem.

Problem 1: Given an MTL specification φ built over the
set AP , an observation map O, an LPV system Σu and a
time T , determine whether LT (Σu) ⊆ LOT (φ).

In other words, we try to determine if every behavior of
Σu in the time domain [0, T] is a behavior permitted by
the temporal logic specification φ. The challenges in solving
Problem 1 are twofold. First, we have an infinite number of
initial conditions to verify, i.e., the set X0 and, second, the
parameters of the system are not known in advance, i.e., they
belong to the uncountably infinite set P . The latter problem,
whose solution is the main contribution of this paper (Section
IV-B), is addressed by constructing bisimulation functions
that can take into account parametric system uncertainties.
The former problem is addressed by reducing the verification
problem to MTL verification for LTI systems (Section V)
and, then, applying the framework that we have developed
in our previous work [9].

Example 1: An example instance of Problem 1 is the
verification of the transient behavior of an RLC circuit as
in Fig. 1. Such circuits are used to represent high voltage
transmission lines where the requirement is the protection
of the line against traveling waves or the interconnect in
ultra-deep submicron integrated circuits where we have to
study the interconnect delay. Under the assumption that the
values of r, l and c are constant and known, we can easily
derive (see for example [19]) a set of linear differential
equations ẋ(t) = Ax(t)+buin(t), which form the state space
representation of the RLC circuit. Here, the state vector x
consists of the currents in the inductances (x1, x3, . . . , x9)
and the voltages across the capacitances (x2, x4, . . . , x10).
The goal of the analysis of such systems usually is to study
the transient behavior of the circuit for specific parameter
values and initial conditions under a unit step input function,
i.e., ∀t ∈ R . uin(t) = 1.

However in practical situations, the exact initial conditions
and parameter values might be unknown. For this example,
we will assume that x(0) ∈ X0 =

∏5
i=1({0} × [−α, α]) for

some scalar α > 0 and that r and l are constant and known.
However, c is unknown and possibly time varying such that
c(t) ∈ [c0−β, c0 +β], where c0 > 0 is the nominal value of
the capacitance, and 0 < β < c0 is a scalar. In this case, the
model of the circuit becomes an LPV system : ẋ = A(p)x+b,
where p ∈ [−β, β]5. We need to verify that the voltage at
all the nodes does not exceed 2 voltage units and that the
voltage at the receiving end, i.e., x10 stabilizes within 3 time
units in the range [0.75, 1.25]. Thus, the observable trajectory
of the system is y(t) = [x2(t) . . . x10(t)]T .

3749

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12, 2010 at 15:07 from IEEE Xplore. Restrictions apply.

over an unbounded time domain, while no subscript implies
that we do not care whether the signals are defined over a
bounded or unbounded time domain.

For such systems and specifications, we formally solve
the following problem.

Problem 1 Given an MTL specification φ, an observation
mapO, an LPV system Σu and a time T , determine whether
LT (Σu) ⊆ LOT (φ).

The challenges in solving Problem 1 are twofold. First,
we have an infinite number of initial conditions to verify,
i.e., the set X0 and, second, the parameters of the system
are not known in advance, i.e., they belong to the uncount-
ably infinite set P . The latter problem is addressed by con-
structing bisimulation functions that can take into account
parametric system uncertainties, while the former using the
framework that we have developed in our precious work [7].

Example 1 An example instance of Problem 1 is the verifi-
cation of the transient behavior of an RLC circuit as in Fig.
2. Such circuits are used to represent high voltage transmis-
sion lines where the requirement is the protection of the line
against travelling waves or the interconnect in ultra-deep
submicron integrated circuits where we have to study the
interconnect delay. Under the assumption that the values
of r, l and c are constant and known, we can easily de-
rive (see for example [15]) a set of linear differential equa-
tions ẋ(t) = Ax(t) + buin(t) which form the state space
representation of the RLC circuit, where the state vector x
consists of the currents in the inductances (x1, x3, . . . , x9)
and the voltages across the capacitances (x2, x4, . . . , x10).
The goal of the analysis of such systems is to study the
transient behavior of the circuit for specific parameter val-
ues and initial conditions under a unit step input function
∀t ∈ R . uin(t) = 1.

However in practical situations, the exact initial condi-
tions and parameter values might be unknown. For this ex-
ample, we will assume that x(0) ∈ X0 =

∏5
i=1({0} ×

[−α, α]) for some scalar α > 0 and that r and l are con-
stant and known, but c is unknown and possibly time vary-
ing such that c(t) ∈ [c0 − β, c0 + β] where c0 > 0 is
the nominal value of the capacitance and 0 < β < c0 a
scalar. In this case, the model of the circuit becomes an
LPV system : ẋ = A(p)x + b, where p ∈ [−β, β]5. We
need to verify that the voltage at all the nodes does not ex-
ceed 2 voltage units and that the voltage at the receiving
end, i.e., x10 stabilizes within 3 time units within the range
[0.75, 1.25]. Thus, the observable trajectory of the system is
y(t) = [x2(t) . . . x10(t)]T . �

vin
r l

x1

x2 c
r l

x3

x4 c
r l

x9

x10 c

Figure 1. A ladder network representing a
transmission line with 5 sections.

3 Metric Temporal Logic over Signals

The Metric Temporal Logic (MTL) was introduced in
[17] in order to reason about the quantitative timing proper-
ties of boolean signals. In this section, we review the basics
of propositional MTL.

Definition 1 (MTL Syntax) Let AP be the set of atomic
propositions and I be any non-empty interval of R. The set
ΦAP of all well-formed formulas (wff) is inductively defined
using the following grammar:

φ ::=
 | ⊥ | p | ¬p | φ ∨ φ | φ ∧ φ | φUIφ | φRIφ

where
 and ⊥ are the Boolean constants true and false
respectively and p ∈ AP .

Sometimes for clarity in the presentation, we replace
I with pseudometric expressions, e.g., U[0,1] is written as
U≤1. In the case where I = [0,+∞), we remove the sub-
script I from the temporal operators, i.e., we just write U
and R. When all the subscripts of the temporal operators
are of the form [0,+∞), then the MTL formula φ reduces
to an LTL formula [23]. Comparing the two logics, MTL
is used to reason about the quantitative timing properties,
whereas LTL only about qualitative timing properties.

In this work, Metric Temporal Logic (MTL) formulas
are interpreted over signals. Formally, a signal s is simply a
function s : R→ Rm from a time domain R to some value
in the set Rm. We define the semantics of MTL using the
relation |=. When we write (s,O) |= φ, we mean that the
signal s satisfies formula φ at time 0. If s does not satisfy
formula φ at time t, then we write (s,O)
|= φ. In the fol-
lowing definition, we also use a time shift operator |t on the
signals. The signal s|t′ is defined as s|t′(t) = s(t′ + t).

Definition 2 (MTL Semantics) Let φ ∈ ΦAP be an MTL
formula, O : AP → P(Rm) be an observation map and
s : R → Rm be a signal, then the semantics of φ is defined
by

(s,O) |=

(s,O)
|= ⊥
(s,O) |= p iff s(0) ∈ O(p)

(s,O) |= ¬p iff s(0)
∈ O(p)

3

Fig. 1. A ladder network representing a transmission line with 5 sections.

III. METRIC TEMPORAL LOGIC OVER SIGNALS

Metric Temporal Logic (MTL) was introduced in [14] in
order to reason about the quantitative timing properties of
boolean signals. In this section, we review the basics of
propositional MTL.

Definition 1 (MTL Syntax): Let AP be the set of atomic
propositions, then the set ΦAP of all well-formed formulas
is inductively defined using the following grammar:

φ ::= > | ⊥ | π | ¬π | φ ∨ φ | φ ∧ φ | φUIφ | φRIφ
where > and ⊥ are the constants true and false respectively,
π ∈ AP and I ranges over non-empty intervals of R≥0.

Sometimes for clarity in the presentation, we replace I
with pseudometric expressions, e.g., U[0,1] is written as U≤1.
In the case where I = [0,+∞), we remove the subscript
I from the temporal operators, i.e., we just write U and R.
When all the subscripts of the temporal operators are of the
form [0,+∞), then the MTL formula φ reduces to a Linear
Temporal Logic (LTL) formula [6].

In this work, MTL formulas are interpreted over signals.
Formally, a signal s is simply a function s : R→ Rm from
a time domain R to some value in the set Rm. We define
the semantics of MTL using the relation |=. When we write
(s,O) |= φ, we mean that the signal s satisfies formula
φ at time 0 under the observation map O. If s does not
satisfy formula φ at time 0, then we write (s,O) 6|= φ. In
the following definition, we also use a time shift operator |t
on the signals. The signal s|t′ is defined as s|t′(t) = s(t′+t).

Definition 2 (MTL Semantics): Let φ ∈ ΦAP be an MTL
formula, O : AP → P(Rm) be an observation map and
s : R→ Rm be a signal, then the semantics of formula φ is
defined recursively as

(s,O) |= >, (s,O) |= π iff s(0) ∈ O(π)
(s,O) 6|= ⊥, (s,O) |= ¬π iff s(0) 6∈ O(π)

(s,O) |= φ1 ∨ φ2 iff (s,O) |= φ1 ∨ (s,O) |= φ2

(s,O) |= φ1 ∧ φ2 iff (s,O) |= φ1 ∧ (s,O) |= φ2

(s,O) |= φ1 UIφ2 iff ∃t2 ∈ (I ∩R) . (s|t2 ,O) |= φ2∧
∧ ∀t1 ∈ (0, t2) . (s|t1 ,O) |= φ1

(s,O) |= φ1RIφ2 iff ∀t2 ∈ (I ∩R) . (s|t2 ,O) |= φ2∨
∨ ∃t1 ∈ (0, t2) . (s|t1 ,O) |= φ1

Informally, the formula φ1 UIφ2 expresses the property
that over the signal σ and in the time interval (t + I) ∩ R,
there exists some time that σ makes φ2 true and, furthermore,
for all previous times, σ satisfies φ1. The release operator
φ1RIφ2 states that φ2 should always hold during the interval
(t+ I) ∩R, a requirement which is released if φ1 becomes
true. In the above definition, the intersection with the set

R has been added because we also consider time domains
which are bounded. We can also define the derived temporal
operators eventually 3Iφ = >UIφ and always �Iφ =
⊥RIφ which are self-explanatory.

Formally, the language of φ under a map O is defined as
LO(φ) = {s : R → Rm | (s,O) |= φ} (and similarly for
LOT (φ) and LO∞(φ)). It is easy to see that the sets LO(φ)
and LO(¬φ) form a partition of the underlying signal space.

Example 2: The informal requirement of Example 1 can
now be captured by the MTL formula ψ1 = 2π1∧3≤32π2,
where O(π1) = {ŷ ∈ R5 | ∧5

i=1 |ŷi| ≤ 2} and O(π2) =
{ŷ ∈ R5 | 0.8 ≤ ŷ5 ≤ 1.2}.

IV. ENABLING ROBUST TESTING FOR LPV SYSTEMS

In this section, we present a framework for approximating
or reducing an LPV system into an LTI system. The main
tool behind our approach is the notion of bisimulation
functions [20]. Then, the timing properties of the LTI are
tested – or even verified – using our prior work on the MTL
verification of time invariant systems [9].

A. Approximate Bisimulation Relations

Approximate bisimulation relations [20], as opposed to
bisimulation relations [21], do not require that two trajecto-
ries are identical, but that they remain always close enough.
In the following, we review some of the definitions and
results from Girard and Pappas [20] and, then, we construct
bisimulation functions for LPV systems.

Definition 3 (Bisimulation Relation): A relation Bδ ⊆
Rn1 ×Rn2 is an approximate bisimulation relation of preci-
sion δ between two systems Σ1 and Σ2 if for all (x0

1, x
0
2) ∈

Bδ , ‖y0
1 − y0

2‖ ≤ δ and
1) For all x1 ∈ Λ(Σ1) such that x1(0) = x0

1 there exists
an x2 ∈ Λ(Σ2) such that x2(0) = x0

2 and ∀t ∈ R,
(x1(t), x2(t)) ∈ Bδ .

2) For all x2 ∈ Λ(Σ2) such that x2(0) = x0
2 there exists

an x1 ∈ Λ(Σ1) such that x1(0) = x0
1 and ∀t ∈ R,

(x1(t), x2(t)) ∈ Bδ .
Two systems Σ1 and Σ2 are bisimilar with precision δ (noted
Σ1 ∼δ Σ2) if for all x0

1 ∈ X0
1 , there exists x0

2 ∈ X0
2 such

that (x0
1, x

0
2) ∈ Bδ and vice versa.

Informally, Def. 3 states that for each observable trajectory
y1 of Σ1 there exists an observable trajectory y2 of Σ2 such
that their distance at each point in time remains bounded by
δ and conversely. Another way to think about approximate
bisimulation relations is to observe that they provide us
with a quantifiable bound on how far away are two systems
from being (exactly) bisimilar. Even though approximate
bisimulation relations cannot be computed, they can be
approximated using the notion of bisimulation functions. The
relationship between approximate bisimulation relations and
bisimulation functions is that the former can be characterized
by the level sets of the latter.

Definition 4 (Bisimulation Function): A function F :
Rn1 × Rn2 → R≥0 ∪ {+∞} is a bisimulation function
between Σ1 and Σ2 if for all δ ≥ 0, Bδ = {(x̂1, x̂2) ∈

3750

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12, 2010 at 15:07 from IEEE Xplore. Restrictions apply.

Rn1×Rn2 | F(x̂1, x̂2) ≤ δ} is a δ-approximate bisimulation
relation between Σ1 and Σ2.

A result proved in [20] is that we can compute a tight
upper bound δ such that Σ1 ∼δ Σ2 by solving two games.

Theorem 1: Let F be a bisimulation function between
Σ1 and Σ2 and δ ≥ max{supx0

1∈X0
1

infx0
2∈X0

2
F(x0

1, x
0
2),

supx0
2∈X0

2
infx0

1∈X0
1
F(x0

1, x
0
2)}. If δ has finite a value, then

Σ1 ∼δ Σ2.
In the case of autonomous systems with uncertain param-

eters, as the ones we consider in this paper, a bisimulation
function is any function that satisfies the conditions of the
following theorem.

Theorem 2: Let Σu
1 and Σu

2 be two LPV systems with the
same observation space. Let V : Rn1×Rn2 → R≥0∪{+∞}
be a continuously differentiable function such that for all
(x̂1, x̂2) ∈ Rn1 × Rn2 we have

V(x̂1, x̂2) ≥ ‖C1x̂1 − C2x̂2‖2 (2)

∀p̂1 ∈ P1 .∀p̂2 ∈ P2 .∇V(x̂1, x̂2) ·
[
A1(p̂1)x̂1
A2(p̂2)x̂2

]
≤ 0. (3)

Then, F(x̂1, x̂2) =
√
V(x̂1, x̂2) is a bisimulation function

between Σ1 and Σ2.
Informally, Theorem 2 says that for any system parameters

p̂1 and p̂2 the distance between the observations of the
two systems will remain bounded and, moreover, it will not
increase.

B. Approximating LPV with LTI Systems
The fundamental difficulty in testing an uncertain linear

system Σu is that we have an uncountable number of
parameter values to test both in the set of initial conditions
X0 and in the set of unknown parameters P . This problem
can be alleviated by employing the notion of approximate
bisimilarity which was introduced in the previous section.

Let us assume that we are given an uncertain linear system
Σu and a vector of parameters p̂0 in P . This vector could
be either the nominal operating point of the system, which
is provided along with the model of the system, or we can
uniformly sample a point from the set P . Then, all we need to
do is to find an approximate bisimulation function F between
the systems Σu and Σu(p̂0). If we find one and the game
in Theorem 1 returns a δ which has a finite value, then we
know that Σu(p̂0) can approximate Σu with precision δ and
vice versa. Therefore, we will have essentially reduced the
testing problem for Σu to testing Σu(p̂0).

The next Theorem indicates that such a bisimulation func-
tion F between Σu and Σu(p̂0) can be efficiently computed
despite the fact we have an uncountable number of parameter
values. In the following, the notation EP(Z) denotes the
extreme points of a (convex and bounded) polytope Z. In
particular, for P as in Assumption 1, we have EP(P) =
{(w1, w2, . . . , wq) | wi = pi or wi = pi for all i =
1, 2, . . . , q}.

Theorem 3: Consider a system Σu and a vector p̂0 ∈ P .
If there exists a positive semidefinite matrix M such that
M ≥ Cb and ∀p̂ ∈ EP(P) . ATb (p̂)M +MAb(p̂) ≤ 0, with

Cb =
[
CTC −CTC
−CTC CTC

]
and Ab(p̂) =

[
A(p̂0) 0

0 A(p̂)

]
,

then the function F(x̂) =
√
x̂TMx̂ with x̂ =

[
x̂Ti x̂Tu

]T
is

a bisimulation function between Σi = Σu(p̂0) and Σu = Σu.

The system of equations in Theorem 3 can be efficiently
solved with a semidefinite programming solver. Notice, how-
ever, that the number of equations increases exponentially
with the number of unknown parameters.

If an approximate bisimulation function exists between
Σu and Σu(p̂0), then the next step is to compute how well
Σu(p̂0) approximates Σu by solving the static games in
Theorem 1. As the next proposition establishes, the sup-inf
optimizations in Theorem 1 can be reduced into a number
of quadratic programs.

Proposition 1: Consider a system Σu, p̂0 ∈ P and let

F(x̂i, x̂u) =
√
V(x̂i, x̂u) =

√[
x̂Ti x̂Tu

]
M
[
x̂Ti x̂Tu

]T

be a bisimulation function between Σi = Σu(p̂0) and Σu =
Σu. Then, the solution of the static games

max{maxx0
i∈EP(X0) infx0

u∈X0 V(x0
i , x

0
u),

maxx0
u∈EP(X0) infx0

i∈X0
V(x0

i , x
0
u)} (4)

computes the optimal points x̂∗i and x̂∗u which provide an
upper bound δ ≥ δ∗ = F(x̂∗i , x̂

∗
u) for Theorem 1.

V. MTL ROBUST TESTING AND VERIFICATION

In system verification, we are usually interested in answer-
ing the question whether each trajectory in L(Σ) satisfies a
temporal logic formula φ. In other words, whether L(Σ) ⊆
LO(φ). Note that if the space can be equipped with a metric
and the distance between the two sets L(Σ) and LO(¬φ)
is greater than zero (under the assumption that LO(φ) and
LO(¬φ) form a partition), then the set inclusion L(Σ) ⊆
LO(φ) holds.

Definition 5 (Distance between Sets): Let S1, S2 be sub-
sets of a set X which is equipped with a metric d. Then, the
distance between S1 and S2 is defined as distd(S1, S2) =
inf{d(x1, x2) | x1 ∈ S1, x2 ∈ S2}.

Note that if the two sets intersect, then their distance is
zero. With the previous definition at hand, it is straightfor-
ward to define the robustness degree of a system with respect
to an MTL specification in a similar fashion to the robustness
degree of a signal [22].

Definition 6 (Robustness Degree for Systems): Given
a dynamical system Σ, an MTL formula φ ∈ ΦAP
and a map O : AP → P(Rm), the robustness degree
ε ∈ R≥0 ∪ {+∞} of Σ with respect to the formula φ
is ε = distρ(L(Σ),LO(¬φ)), where ρ is the supremum
metric : ρ(s, s′) = supt∈R{‖s(t)− s′(t)‖}.

According to our definition of robustness, the greater the
distance between the sets L(Σ) and LO(¬φ), the greater
the robustness of the system. Unlike our definition of the
robustness degree for signals [22], the robustness degree for
systems does not provide us with a measure of how robustly
Σ does not satisfy φ when L(Σ) ⊆ LO(¬φ).

Now, assume that we are given two systems Σ1 and Σ2

which are approximately bisimilar with precision δ. Then, for

3751

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12, 2010 at 15:07 from IEEE Xplore. Restrictions apply.

any trajectory in L(Σ1), there exists a trajectory in L(Σ2),
such that their distance remains bounded by δ. Thus, it is easy
to see that for any δ′ > δ, we have L(Σ1) ⊆ Bρ(L(Σ2), δ′).
Here, we use the notation Bd(x, ε) = {y ∈ X | d(x, y) < ε}
and Bd(S, ε) = ∪x∈SBd(x, ε) for some ε > 0, a point x ∈
X and a subset S ⊆ X of a metric space (X, d). Therefore, if
ε = distρ(L(Σ2),LO(¬φ)) > δ′, then we can conclude that
Σ1 satisfies φ since Bρ(L(Σ2), δ′)∩LO(¬φ) = ∅. Formally,
we can state the following result.

Proposition 2: Given a formula φ ∈ ΦAP and a map O :
AP → P(Rm), if Σ1 ∼δ Σ2 and Bρ(L(Σ2), δ) ⊆ LO(φ),
then L(Σ1) ⊆ LO(φ).

The next question that we have to answer is how do
we check the inclusion Bρ(L(Σ2), δ) ⊆ LO(φ)? Instead of
trying to compute the set L(Σ2) and then expanding it by
δ, we follow a different approach. Essentially, we give a δ
robust interpretation to φ – let us denote the resulting map
by Oδ – and we check whether L(Σ2) ⊆ LOδ(φ). The rest
of this section briefly describes the related process. A more
detailed presentation of the “robustification” in the case of
LTL formulas appears in [23].

Intuitively, in order to achieve a robust interpretation of
the specification φ, we have to define a new observation map
Oδ which contracts by δ the areas that must be visited and
expands be δ the regions that must be avoided. In order to
classify the atomic propositions in the input MTL formula
φ according to whether they represent regions that must be
reached or avoided, we introduce an extended set of atomic
propositions AP ε. In detail, we first define two new sets of
symbols AP+ = {π+ | π ∈ AP} and AP− = {π− | π ∈
AP} and, then, we set AP ε = AP+∪AP−. We also define
a translation algorithm pos : ΦAP → ΦAP ε which takes as
input an MTL formula φ and it returns a formula pos(φ)
where the occurrences of the terms π and ¬π have been
replaced by the members π+ and π− of AP ε respectively.

Since we have a new set of atomic propositions, namely
AP ε, we need to define a new map Oε : AP ε → P(Rm) for
the interpretation of the propositions. This is straightforward
: for all ξ ∈ AP ε, we have Oε(ξ) := O(π) if ξ = π+ and
Oε(ξ) := X\O(π) if ξ = π−. Then, the following result is
immediate from the definition of Oε.

Lemma 1: Given a signal s : R → Rm, a formula φ ∈
ΦAP and a map O : AP → P(Rm), we have (s,O) |= φ
iff (s,Oε) |= pos(φ).

The importance of the previous lemma is the following.
Since a formula φ ∈ ΦAP is equivalent to the formula φ′ =
pos(φ) under the mapsO : AP → P(Rm) andOε : AP ε →
P(Rm) respectively, for the rest of the paper we can assume
that the input specification is given without any negation
operators. That is, the next results are given with respect to
a formula φ′ ∈ ΦAP ε and a map Oε : AP ε → P(Rm).
For clarity in the presentation, we denote all MTL formulas
without any negation operator using primed Greek letters,
e.g., φ′, φ′1.

At this point, we have distinguished the regions that must
be avoided (AP−) and the regions that must be reached
(AP+). We proceed to formally define what we mean by

region contraction in order to define our notion of robustness.
Definition 7 (ε-Contraction): Given a radius ε ∈ R≥0 ∪
{+∞} and a subset S of a metric space (X, d), the ε-
contraction of the set S is defined as Cd(S, ε) = {x ∈
X | cl(Bd(x, ε)) ⊆ S}.

Here, the operator cl(S) denotes the closure of a set S ,
that is, the intersection of all closed sets containing S.

Now, the δ-robust interpretation of a given MTL formula
φ can be achieved by simply introducing a new map Oδ :
AP ε → P(Rm). For a given δ ≥ 0, the definition of the
map Oδ is founded on the map Oε as follows : ∀ξ ∈ AP ε,
Oδ(ξ) := cl(Cd(Oε(ξ), δ)).

The following proposition is the connecting link between
the two problems Bρ(L(Σ2), δ) ⊆ LOε(φ′) and L(Σ2) ⊆
LOδ(φ′). Informally, it states that given δ > 0, if a trajectory
y2 of Σ2 satisfies the δ-robust interpretation of the input
specification φ′, then any other trajectory y′2 that remains
δ-close y2 satisfies the same non-robust specification φ′.

Proposition 3: Consider a formula φ′ ∈ ΦAP ε , a map
Oε : AP ε → P(Rm) and a number δ > 0, then L(Σ) ⊆
LOδ(φ′) implies Bρ(L(Σ), δ) ⊆ LOε(φ′) for any dynamical
system Σ.

The advantage of Proposition 3 is that the problem
LT (Σ) ⊆ LOδT (φ′) can be solved using an existing method
such as the one presented in [9]. The next result is immediate
from Lemma 1 and Propositions 2 and 3.

Corollary 1: Given a formula φ ∈ ΦAP and a map O :
AP → P(Rm), if Σ1 ∼δ Σ2 and L(Σ2) ⊆ LOδ(pos(φ)),
then L(Σ1) ⊆ LO(φ).

VI. MTL TESTING OF LPV SYSTEMS AND NUMERICAL
RESULTS

The previous two sections outlined the theoretical results
that comprise the basic building blocks for a framework
for the MTL testing and verification of LPV systems. This
section briefly discusses how these results can be put to-
gether into a practical and efficient testing algorithm and it
concludes with some numerical results.

Assume that we are given an LPV system Σu and an
MTL formula φ (along with the corresponding observation
map O). First, we choose a random vector p̂0 from the set
parameter values P . If a nominal parameter vector p̂0 has
been defined, then we use that instead of a random vector.
Then using Theorem 3, we compute a bisimulation function
F between Σu(p̂0) and Σu. If such a bisimulation function
exists, then the next step is to determine the accuracy of
the approximate bisimulation relation. This is done using
Proposition 1. Note that all the above steps can be effi-
ciently computed within MATLAB c© using the Optimization
ToolboxTM and SeDuMi [24]. Finally, the resulting problem
LT (Σ) ⊆ LOδT (pos(φ)) can be solved using the algorithm
from [9]. Next, we present some numerical examples using
the prototype MATLAB toolbox that we have developed. All
the numerical experiments were performed on a PIII mobile
1.2GHz with 1GB of RAM.

Example 3: Consider the Example 1 with parameter val-
ues r = 2.5, l = 1.25, c0 = 3.75 · 10−3 and β =

3752

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12, 2010 at 15:07 from IEEE Xplore. Restrictions apply.

Instance 1 2 3 4
α 0.01 0.03 0.06 0.1
δ 0.1124 0.1150 0.1198 0.1281
safe

√ √ √ √

of sim. 1 1 33 1057
TABLE I

APPROXIMATION BOUNDS AND VERIFICATION RESULTS FOR THE

PROBLEMS OF EXAMPLE 3.

2 ·10−5. As the nominal parameter value, we pick the vector
p̂0 = [0 0 0 0 0]T . Table I indicates how the approximation δ
between the LPV system and the corresponding LTI system
changes with respect to the parameter α, i.e., the size of
the set of initial conditions X0. The computation time for
the approximation bound δ for this problem size takes about
12 sec in MATLAB. The initial MTL formula ψ1 is given in
Example 2. Table I summarizes the verification results.

The next example demonstrates how the framework can
be used for the MTL verification of nonlinear systems.

Example 4: Consider the following nonlinear system

ẋ1(t) = 0.05 sin2(x2(t))x1(t)− 2.5x2(t)
ẋ2(t) = 0.5x1(t)− x2(t) (5)

with y(t) = x(t) and initial conditions X0 = [0.4, 0.8] ×
[−0.3,−0.1]. The MTL specification we would like to verify
is ψ2 = 2π3 ∧2≥8π4, where O(π3) = R× [−0.6, 0.6] and
O(π4) = [−0.4, 0.4] × [−0.4, 0.4]. Notice that for any x ∈
R, we have sin2(x) ∈ [0, 1]. Thus instead of the nonlinear
system, we can verify the following LPV system

ẋ(t) =
[
0.05p(t) −2.5

0.5 −1

]
x(t) (6)

where p(t) ∈ P = [0, 1]. Formally speaking, system (6)
(exactly) simulates system (5). For the verification, we pick
as nominal parameter value p̂0 = 0.5. For these values,
the upper bound on the approximate bisimulation relation
is δ = 0.2125, which took about 0.93 sec to compute. The
verification process required 13 simulations which took about
6.5 sec of computation time.

VII. CONCLUSIONS

In this paper, we have presented a framework for the Met-
ric Temporal Logic (MTL) testing and verification of Linear
Parameter Varying (LPV) systems. This class of systems
includes linear systems with uncertain parameters and can
abstract some instances of linear time varying, nonlinear and
hybrid systems whose discrete dynamics depend on time.

The main contribution of this paper is the construction
of a bisimulation function that enables the approximation of
an LPV system by a Linear Time Invariant (LTI) system in
an computationally efficient way. Moreover, the results of
this paper have been developed in such a way that allow
the temporal logic verification step to be performed by any
algorithm that can check MTL properties of an LTI system.

In order to deal with more general classes of systems,
we will need to integrate the proposed approach with our
robust testing framework for hybrid automata [11]. Our
future research efforts will be focused along this direction.

REFERENCES

[1] J. Tung, “Using model-based design to test auto embedded software,”
EETimes.com, Sep. 2007.

[2] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” J. Comput. Syst. Sci., vol. 57, no. 1,
pp. 94–124, 1998.

[3] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for validating
hybrid robotic control systems,” in Proceedings of the International
Workshop on the Algorithmic Foundations of Robotics, 2004.

[4] T. Nahhal and T. Dang, “Test coverage for continuous and hybrid
systems,” in CAV, ser. LNCS, vol. 4590. Springer, 2007, pp. 449–
462.

[5] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Hybrid systems: From
verification to falsification,” in CAV, ser. LNCS, W. Damm and
H. Hermanns, Eds., vol. 4590. Springer, 2007, pp. 463–476.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, Massachusetts: MIT Press, 1999.

[7] L. Tan, J. Kim, O. Sokolsky, and I. Lee, “Model-based testing and
monitoring for hybrid embedded systems,” in Proceedings of the 2004
IEEE International Conference on Information Reuse and Integration,
2004, pp. 487–492.

[8] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Proceedings of FORMATS-FTRTFT, ser. LNCS,
vol. 3253, 2004, pp. 152–166.

[9] G. E. Fainekos, A. Girard, and G. J. Pappas, “Temporal logic verifica-
tion using simulation,” in FORMATS, ser. LNCS, vol. 4202. Springer,
2006, pp. 171–186.

[10] A. Girard and G. J. Pappas, “Verification using simulation,” in Hybrid
Systems: Computation and Control (HSCC), ser. LNCS, vol. 3927.
Springer, 2006, pp. 272 – 286.

[11] A. A. Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J. Pappas,
“Robust test generation and coverage for hybrid systems,” in Hybrid
Systems: Computation and Control, ser. LNCS, no. 4416. Springer,
2007, pp. 329–342.

[12] A. Donzé and O. Maler, “Systematic simulation using sensitivity
analysis,” in Hybrid Systems: Computation and Control, ser. LNCS,
vol. 4416. Springer, 2007, pp. 174–189.

[13] F. Lerda, J. Kapinski, E. M. Clarke, and B. H. Krogh, “Verification
of supervisory control software using state proximity and merging,”
in Hybrid Systems: Computation and Control, ser. LNCS, vol. 4981.
Springer, 2008, pp. 344–357.

[14] R. Koymans, “Specifying real-time properties with metric temporal
logic.” Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[15] F. Amato, Robust Control of Linear Systems Subject to Uncertain
Time-Varying Parameters. Springer, 2006.

[16] A. Girard and G. J. Pappas, “Approximate bisimulation relations for
constrained linear systems,” Automatica, vol. 43, no. 8, pp. 1307–1317,
2007.

[17] L. Hedrich and E. Barke, “A formal approach to verification of linear
analog circuits with parameter tolerances,” in DATE. Washington,
DC, USA: IEEE Computer Society, 1998, pp. 649–655.

[18] S. Little, D. Walter, K. Jones, and C. J. Myers, “Analog/mixed-signal
circuit verification using models generated from simulation traces,” in
Proceedings of the 5th ATVA, ser. LNCS, vol. 4762. Springer, 2007,
pp. 114–128.

[19] C. S. Indulkar, “State space analysis of a ladder network representing
a transmission line,” International Journal of Electrical Engineering
Education, vol. 42, no. 4, pp. 383–392, 2005.

[20] A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous systems,” IEEE Trans. Auto. Cont., vol. 52, no. 5, pp. 782–
798, 2007.

[21] G. J. Pappas, “Bisimilar linear systems,” Automatica, vol. 39, no. 12,
pp. 2035–2047, December 2003.

[22] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic
specifications,” in FATES and RV, ser. LNCS, vol. 4262. Springer,
2006, pp. 178–192.

[23] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, Feb. 2009.

[24] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization Methods and Software, vol. 11–
12, pp. 625–653, 1999.

3753

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 12, 2010 at 15:07 from IEEE Xplore. Restrictions apply.

