
Serge Haddad, Fabrice Kordon,
Laure Petrucci, Jean-François

Pradat-Peyre and Nicolas Trèves

Efficient State-Based Analysis
by Introducing Bags

in Petri Nets Color Domains

Research Report LSV-09-07

April 2009

Efficient State-Based Analysis
by Introducing Bags in Petri Nets Color

Domains

Serge Haddad1, Fabrice Kordon2, Laure Petrucci3,
Jean-François Pradat-Peyre2, and Nicolas Trèves4

1 LAMSADE, Université Paris Dauphine, Paris, haddad@lamsade.dauphine.fr
2 LIP6, Université Pierre et Marie Curie, Paris,

{Fabrice.Kordon,Jean-Francois.Pradat-Peyre}@lip6.fr
3 LIPN, Université Paris 13, Villetaneuse, Laure.Petrucci@lipn.univ-paris13.fr

4 CEDRIC, CNAM, Paris, treves@cnam.fr

Abstract. The use of high-level nets, such as coloured Petri nets, is very
convenient for modelling complex controllable systems in order to have a
compact, readable and structured specification. However, when coming
to the analysis phase, using too elaborate types becomes a burden. A
good trade-off between expressiveness and analysis capabilities is then
to have only simple types, which is achieved with symmetric nets. These
latter nets enjoy the possibility of generating a symbolic reachability
graph, which is much smaller than the whole state space and still allows
for exhaustive analysis. In this paper, we extend the symmetric net model
with bags on arcs. Hence, variables can be bags of tokens, leading to more
flexible models. We show that symmetric nets with bags also allow for
applying the symbolic reachability graph technique with application to
deadlock detection and more generally for safety properties.

1 Introduction

Managing large specifications is a challenge to tackle industrial size problems.
This is particularly true when using Petri Nets (PN). Since having a good ex-
pressiveness is important, Coloured Petri Nets (CPN) [12] have been proposed
as a high-level model derived from PNs.

The trade-off between expressiveness of the specification formalism and the
analysis power (and automation) is a crucial and recurrent problem one must
face: the more expressive the specification language, the more difficult the veri-
fication.

CPNs [1, 11] provide an excellent expressiveness through an association with
the ML programming language to use elaborate functions in arc expressions. As
a counterpart, verification can be automated for models relying on complex ML
functions, only by generating the state space. Reduction techniques may hence
become difficult to apply, or even impossible, thus hampering the verification
capabilities for complex systems.

Other extensions, such as algebraic nets [15] or predicate/transition nets [7]
also provide more comfortable notations to model complex systems. However,
the verification capabilities are also tempered with, for reasons similar to those
for CPNs.

On the contrary, Symmetric Nets5 [3] only provide a limited set of colour
functions. Even though the expressive power is the same as CPNs, practical use
is slightly less amenable. Nevertheless, symmetric nets benefit from the definition
of the symbolic reachability graph [4], a very condensed way to store the system
state space. The use of the symbolic reachability graph allows for analysing very
large systems via a model checker.

Furthermore, this graph can be applied in order to perform an efficient con-
trol analysis. This can be done in two ways. Either the model already represents
the controlled system and then safety properties such as deadlock detection can
be directly detected by reachability analysis over the graph. Or (more inter-
estingly) the model represents the yet uncontrolled system with a partition of
states between the environment states and the controller states. Thus, viewing
the graph as a (finite) game between the controller and the environment, the
standard algorithms derived from game theory allow for finding a strategy for
the controller (or decides that there is none). The objective of this game could
be to avoid bad states or more sophisticated ones based on parity, Büchi, Street,
... conditions. Observe that these algorithms are polynomial w.r.t. the size of the
model [14] and thus remain tractable with the help of the reduction provided by
the symbolic approach.

Our modelling and verification experience on complex systems leads to mod-
elling techniques that still permit a similar expressiveness as in CPNs. For ex-
ample, discretisation of functions into the initial (and stable) marking of a place
have been experimented to represent operations and behaviour of physical sys-
tems such as a braking function in a transportation system [6, 2]. However, these
techniques may transform an atomic operation into several ones, thus generating
complexity in the state space.

The aim of our contribution is to enhance the symmetric nets formalism so
as to gain more expressiveness by providing bags manipulation functions. This
extension does not sacrifice the underlying symbolic reachability graph and its
benefits for model checking and control analysis.

Related work

The construction of a reduced state graph based on symmetries of high level
nets was introduced by K. Jensen et al. [10]. However, this technique suffers
two drawbacks. On the one hand, the definition of symmetries is left to the
modeller leading to miss some symmetries, and on the other hand the transition
firing is still managed as the ordinary one. In order to combine the advantages

5 Symmetric Nets were formerly known as Well-Formed Nets, a subclass of high-level
Petri nets. The name “Symmetric Nets” has been chosen in the context of the ISO
standardisation [9].

of automatic symbolic verification of symmetric nets and of the expressiveness
of coloured nets, T. Junttila proposed in [13] a class of nets including a set
of constructors for coloured functions still allowing for automatic detection of
symmetries. However, this approach is also based on the ordinary firing rule
which, in the case of complex operators such as the powerset constructor, leads
to an exponential number (w.r.t. the size of the high-level net) of ordinary firings
from a single marking whereas in similar cases our technique reduces it to a
polynomial number.

The paper is structured as follows. Section 2 formally defines symmetric nets
with bags and illustrates their benefits with an example that points out the in-
terest of the formalism for deadlock detection due to the management of different
kinds of resources. Then, Section 3 shows that the symbolic reachability graph
technique still applies. Finally, section 4 concludes and gives some perspectives
to this work.

2 Symmetric nets with bags (SNB)

2.1 Definitions

Based on the Symmetric Nets (SN) from [3, 13], Symmetric Nets with Bags
(SNB) are formally defined. An example is presented in section 2.2.

Colour domains In symmetric nets, the colour domains are structured.

– Colour domains are called classes and generally represent primitive objects
like processes, jobs, files, resources, etc. Classes are finite sets. For some
models, it is interesting to define a (total) order between colours of a class.
In such a case, a class is said to be ordered. In the example of figure 5, there
are three classes: Count, Jobs and Cores.

– The colours of a class are objects of the same kind but they may have different
behaviours. For instance, a class of jobs may include interactive and batch
jobs. In order to represent such differences, a class is partitioned into static
subclasses. In the example of figure 5, the Cores (resp. Jobs) class is not
partitioned since all cores (resp. jobs) have the same potential behaviour,
while the Count class is completely partitioned since each different element
of this class may explicitly be checked by a transition.

– When modelling, associations between objects are quite usual. For instance,
a core executes a thread of a job and then one needs to memorise such an
association. So more general colour domains are built by cartesian product of
classes. Note that the same class may occur several times in a colour domain
(e.g. a network connection between two machines). Also note that the null
product corresponds to a domain reduced to a single colour {•}.

This leads to the following formal definitions.

Definition 1 (Class and subclass). The set of classes of a symmetric net is
denoted by {C1, . . . , Ck}. The partition of a class Ci is denoted Ci =

⊎
q∈1..si

Ci,q

where si is the number of static subclasses of Ci.

In order to alleviate notations and emphasise the meaning of a class, renam-
ings such as Jobs ≡ C1 are permitted.

We now introduce the Bag notion.

Notations Let C be a set, then a bag (or multiset) over C is a mapping a from C
to IN such that the set (called the support of a) ‖a‖ = {c | a(c) #= 0} is finite. Let
a, b ∈ Bag(C). Then a∪ b is defined by (a∪ b)(c) = a(c) + b(c) and a ≥ b holds
iff ∀c ∈ C, a(c) ≥ b(c). When a ≥ b, a \ b is defined by (a \ b)(c) = a(c) − b(c).
The size of a, denoted size(a), is defined by size(a) =

∑
c∈C a(c). A bag a is

denoted by the symbolic expression
∑

c∈C a(c).c. In this sum, we elide scalars
a(c) = 1 and terms when a(c) = 0 whatever c. For instance, c denotes the bag
reduced to the single item c and

∑
c∈C c denotes the bag equivalent to the whole

set C. Let C and C′ be two sets, then Bag(C) × Bag(C′) may be viewed as
a subset of Bag(C × C′) by mapping 〈b, b′ 〉 onto

∑
c∈C,c′∈C′ b(c)b′(c′)〈c, c′ 〉.

This embedding can be generalised to any cartesian product of sets of bags. For
instance, 〈2c + 3c′, 4c′′ 〉 ≡ 8〈c, c′′ 〉 + 12〈c′, c′′ 〉.

Definition 2 (Colour domain). A colour domain is a cartesian product of
classes and sets of bags over classes. More precisely, a colour domain D can
be written D =

⊗
i∈1..k(Ci)ei ×

⊗
i∈1..k Bag(Ci)e′

i where ei is the number of
occurrences of class Ci in D and e′i the number of occurrences of Bag(Ci) in D.

An item d of a colour domain D =
⊗

i∈1..k(Ci)ei ×
⊗

i∈1..k Bag(Ci)e′

i will

be denoted by d =
⊗

i∈1..k,j∈1..ei
cj
i ×

⊗
i∈1..k,j∈1..e′

i
bj
i with cj

i ∈ Ci and bj
i ∈

Bag(Ci).
Most definitions in this section can easily be restricted to Symmetric Nets

by leaving out the Bags part.
Note that D =

⊗
i∈1..k(Ci)ei ×

⊗
i∈1..k Bag(Ci)e′

i is infinite as soon as some
e′i #= 0. If D is the colour domain of a place, this does not raise any diffi-
culty. Indeed, in a Petri net (resp. a CPN with finite domains) m(p) ∈ IN (resp.
m(p) ∈ Bag(C(p))) and IN (resp. Bag(C(p))) is infinite. The key point w.r.t.
effectiveness is that a marking must have a finite representation which is also the
case for bags of tuples of bags. However if D is the colour domain of a transition,
then the firing rule cannot be applied. Thus, with the help of transition guards
(see definition 7), we restrict the colour domain of a transition to be a finite
subset of D.

Colour functions In high-level Petri nets, arcs are labelled by colour functions
which select tokens in adjacent places depending on the instantiation performed
for the firing.

The simplest colour functions are the projections, denoted Xj
Ci

, i ∈ 1..k,
j ∈ 1..ei, that select one component of a colour ; the successor functions, denoted

Class C is [a, b, c];
Var X in C;

•
Pw Bag(C)

Ps Bag(C)

Pa C

Px C

t

p

<X>

<C.all>

<{X}>

<whole(C)>

Fig. 1. Model illustrating functions

Fig. 2. Result of firing for transition t

with X = a in the model of figure 1

Class C is [a, b, c, d]; Var Y1, Y2 in Bag(C);

a

c

b

db

p1
C

t

Pu C

Pd C
p2

C

<Y1>

<Y2>
<Y1\Y2>

<Y1 U Y2>

Fig. 3. Model illustrating functions

Fig. 4. Result of firing for transition t

with Y 1 = 1.a +1.b and Y 2 = 1.b + 1.c in
the model of figure 3

Xj
Ci
++, i ∈ 1..k, j ∈ 1..ei, that select the successor of a component of a colour ;

and the “global” selections Ci.all =
∑

c∈Ci
c that map any colour to the “sum”

of colours in class Ci.

New colour functions are defined, that operate both on the tokens and on
the “bag” part of the colour domain.

Definition 3 (Basic colour functions). Let Ci be a class and D =
⊗

i∈1..k(Ci)ei×
⊗

i∈1..k Bag(Ci)e′

i a colour domain. Let d =
⊗

i∈1..k,j∈1..ei
cj
i

⊗
i∈1..k,j∈1..e′

i
bj
i .

The basic colour functions deal with colour domains and are defined from D
to Bag(Ci) by :

i: Xj
Ci

(d) = cj
i (for all j such that 1 ≤ j ≤ ei);

ii: Xj
Ci

(d)++ = the successor of cj
i in Ci (Ci is supposed to be ordered and j is

such that 1 ≤ j ≤ ei) ;
iii: Ci.all(d) =

∑
x∈Ci

x and Ci,q.all(d) =
∑

x∈Ci,q
x.

Let bj
i =

∑
x∈Ci

αx.x. Then the basic colour functions for bags produce
a single element which is a bag and are defined from D to Bag(Ci) by:

B-i: Y j
Bag(Ci)

(d) = bj
i (for all j such that 1 ≤ j ≤ e′i) which denotes the

function that dispatches items of a bag;
B-ii: ~Y j

Bag(Ci)
(d) =

∑
x∈Ci|αx=0 1.x (for all j such that 1 ≤ j ≤ e′i) which

denotes the function which produces the complementary of a bag;

B-iii: (Y j
Bag(Ci)

∪Y j′

Bag(Ci)
)(d) =

∑
x∈Ci

(αx + α′
x).x (for all j, j′ such that 1 ≤

j, j′ ≤ e′i) which denotes the union of two bags;

B-iv: (Y j
Bag(Ci)

\Y j′

Bag(Ci)
)(d) =

∑
x∈Ci

max(0, (αx − α′
x)).x (for all j, j′ such

that 1 ≤ j, j′ ≤ e′i) which denotes the difference between two bags.

Note that the all function (iii) is a constant function. It can thus be viewed
as a constant bag and used to define (initial) markings.

Basic colour functions are those of SN. The colour functions ranging over
a class are obtained by linear combinations of basic colour functions (note that
some constraints are required to ensure that the colour functions select a positive
number of tokens). Functions labelled by B are those of SNB.

In order to manipulate bags we also use the operator whole which, applied
to a bag, produces a single bag containing it.

Definition 4 (Whole mapping). Let C be a finite set, wholeC(c) is the map-
ping from C to Bag(C) defined by: given c in C, wholeC(c) = 1.{1.c} ∈ Bag(C).
We extend whole to a mapping from Bag(C) to Bag(Bag(C)) by: given b ∈
Bag(C), wholeC(b) = 1.b ∈ Bag(Bag(C)).

Remark 1. As for SN, when no confusion is possible, the co-domain of colour
functions may be omitted ; for instance, the mappings Y j

Bag(Ci)
will frequently

be denoted Yi or <Y> as in figure 6, and the mappings Xj
Ci

will be denoted

Xj
i , Xi, <X> or by any name (different from all) as in the model of figure 5

where j is used instead of X1
Jobs and k instead of X2

Count. Furthermore, the
whole colour function will frequently be used in colour functions composition
like whole ◦ Y j

Bag(Ci)
, and in this case will be denoted whole(Y j

Bag(Ci)
).

The effect of these functions is illustrated in the net of Figure 1 and one
example of firing for transition t shown in figure 2. Places Px and Pa are typed
by C while places Ps and Pw are typed by Bag(C) and thus hold tokens con-
taining a bag. We also provide a comparison between functions <C.all> and
<whole(C)>.

Figure 3 also illustrates a simple net using the ∪ and \ functions on bags. A
possible transition firing is shown in Figure 4, after which p1 is unmarked.

Definition 5 (Class colour functions). Let Ci be a class and D =
⊗

i∈1..k(Ci)ei×
⊗

i∈1..k Bag(Ci)e′

i a colour domain.
A class colour function f : D −→ Bag(Ci) is a linear combination of

basic colour functions and colour functions for bags such that ∀d ∈ D, ∀c ∈
Ci, f(d)(c) ≥ 0.

We now define the tuple colour functions of a SNB. To do so, we denote C(x),
where x is either a transition or a place, the color domain associated with it (see
definition 9).

Definition 6 (Tuple colour functions). A colour function labelling an arc
between a transition t and a place p is:

i: either a natural number n when C(p) = {•} with ∀c ∈ C(t), n(c) = n.•;
ii: or a tuple f ≡ 〈f1, . . . , fk 〉, when C(p) = Cα1

× . . . × Cαk
where every

fi is a colour function from C(t) to Bag(Cαi
). Then ∀c ∈ C(t), f(c) =

〈f1(c), . . . , fk(c)〉

iii: or a tuple f ≡ 〈f1, . . . , fk, f ′
1, . . . , f

′
k′ 〉, when C(p) = Cα1

× . . . × Cαk
×

Bag(Cα′

1
) . . .×Bag(Cα′

k′
) where every fi is a class colour function from C(t)

to Bag(Cαi
) and f ′

i is the composition of a class colour function from C(t) to
Bag(Cαi

) and the wholeCα′

i

mapping. Let c ∈ C(t): f(c) = 〈f1(c), . . . , fk(c), f ′
1(c), . . . , f

′
k′(c)〉.

Guards Guards are predicates defined over a colour domain. When applied to
a transition, they restrict the corresponding colour domain. They can also be
combined with a tuple colour function as follows. Either the instantiating colour
fulfils the guard and the new colour function behaves as the tuple function whilst
in the other case, the new function returns the empty bag. For instance the
colour function 〈X, Y 〉 produces a token with two components but we cannot
require that X should be different from Y (see definition 7.i). Similarly, the
colour function X selects an item in a class but we cannot require this item to
be selected in a given static subclass (see definition 7.iii). We also want to restrict
the instantiation of a bag variable to be an ordinary set (see definition 7.B.i) or
to constrain the size of the bag instantiation (see definition 7.B.ii).

In order to express such requirements, we introduce guards:

Definition 7 (Guards). A (basic) guard for bags is a boolean mapping de-
fined on a colour domain D =

⊗
i=1..k(Ci)ei ×

⊗
i=1..k′ Bag(Ci)e′

i with bj
i =∑

c∈Ci
αc.c. Let "# be either the = or the < relation. SNB guards are syntacti-

cally built with:

i [X i1
Ci

"# X i2
Ci

](c) equals true iff ci1
i "# ci2

i ;

ii [X i1
Ci

= X i2
Ci
++](c) equals true iff ci1

i is the successor of ci2
i in Ci;

iii [X i1
Ci

∈ Ci,q](c) equals true iff ci1
i belongs to the static sub-class Ci,q.

B.i [Unique(Y j
Bag(Ci)

)](c)equals true iff ∀c ∈ Ci,αc ≤ 1;

B.ii [card(Y j
Bag(Ci)

) "# n](c) equals true iff size(Y j
Bag(Ci)

(c)) "# n;

B.iii [Y j
Bag(Ci)

"# Y j′

Bag(Ci)
](c) equals true iff Y j

Bag(Ci)
(c) "# Y j′

Bag(Ci)
.

More generally a guard is inductively defined by:

– Let g be a basic guard, then g is a guard;
– Let g1, g2 be guards, then g1 ∨ g2, g1 ∧ g2 and ¬g1 are guards.

Remark 2. When a colour function XCi
has been denoted by another symbol,

then this name must be used for the guards.

Definition 8 (General colour function).
Let {fi}1≤i≤n be a family of tuple colour functions, {gi}1≤i≤n a family of

guards, and {αi}1≤i≤n a family of positive integers.
A general colour function f ≡

∑
1≤i≤n[gi]αi.fi is defined by

f(c) ≡
∑

i|gi(c)=true

αi.fi(c)

Some abbreviations of colour expressions are useful for modelling such as the
ord function. Let D = Ce1

1 × . . . × Cek

k and f be a tuple function from D to

some Bag(D). Then: ord(Xj
i).f ≡

∑
1≤q≤si

[Xj
i ∈ Ci,q]q.f . This function allows

the modeller to specify a dynamic multiplicative factor corresponding to the
index of the static subclass to which the colour associated with a variable by
the instantiation process belongs. Its use will be illustrated in the example of
figure 6.

Definition 9 (Symmetric net with Bags). A SNB is a 7-tuple SNB =
〈P, T, Pre, Post, Cl, C,Φ〉 where6:

– P is a finite non-empty set of places;
– T is a finite non-empty set of transitions, T ∩ P = ∅;
– Cl = {C1, . . . , Ck} is the set of classes, each being partitioned into si static

sub-classes (Ci = 3q=1..si
Ci,q); we denote ni = |Ci| and ni,q = |Ci,q|;

– C defines for each place and each transition its colour domain, denoted C(s),
which is a finite cartesian product of classes and of bags of classes;

– Post (resp. Pre) is the forward (resp. backward) incidence mapping which
associates with each pair (p, t) ∈ P × T a general colour function for bags
defined from C(t) to Bag(C(p));

– Φ is a mapping that associates a guard with each transition.

Remark 3. By default, the guard Φ(t) is the constant true.

Definition 10 (Marking). A marking of a SNB is a mapping that associates
with each place p a bag m(p) ∈ Bag(C(p)). The initial marking of a net is denoted
by m0.

Definition 11 (Firing rule). Let m be a marking, t a transition and ct ∈ C(t).
(t, ct) is firable at m (denoted m[(t, ct)〉) iff:

1. the guard associated with t evaluates to true for ct (i.e. Φ(t)(ct) = true)
2. ∀p ∈ P , m(p) ≥ Pre(p, t)(ct).

When m[(t, ct)〉, the firing of t instantiated by ct leads to marking m′ de-
fined by: ∀p ∈ P , m′(p) = m(p) − Pre(p, t)(ct) + Post(p, t)(ct). Given a SNB,
Reach(SNB, m0) denotes the set of all reachable markings from marking m0.

2.2 The multi-thread example

Let us now consider the example of a multi-core processor. This kind of processor
is based on the following assumptions:

– a job may be multi-threaded;
– a job is assigned to a subset of cores;
– among the cores a master one is associated with the job itself while the other

cores are slave ones;
– the set of cores is partitioned according to some hardware configuration;
– all threads associated with one job are assigned to slave cores simultaneously;
– every core can manage simultaneously a fixed maximal number of threads

(denoted in the sequel by MaxThreadsPerCore).

6 When bags are omitted, the definition holds for SN.

The SN model In figure 5, a job is initially generated by transition GenJobs. A
triple containing the job number, the number of corresponding threads and the
master core is put to wait for being handled in place JobsWait. This corresponds
to the execution of an initialisation phase. Note that place JobsGen contains the
different configurations that can occur in the system (marking M – for example
<1,2>+<2,3> means that job 1 has two threads and job 2 has three threads).

class
 Count is 1..3;
 Jobs is 1..4;
 Cores is 1..4;
domain
 JK is <Jobs, Count>;
 JKC is <Jobs, Count, Cores>;
 CJKC is <Cores, Jobs, Count, Cores>;
var
 j in Jobs;
 x, x1, x2, x3, z in Cores;
 k in Count;

M

M'

K'K Conf2
Cores

Conf1
Cores

TermThreads
JKC

JobsGen
JK

JobsWait

JKC

GenJobs

lb2TC1 lb2TC2 lb3TC1 lb3TC2

FreeCores
Cores

AllocatedCores
CJKC

JobEnds

TEnds

<z>

<z>

<j,k,z>

<x,j,k,z>
<x>

<x1>+<x2>

<x1>+<x2>+<x3> <x1>+<x2>
<x1>+
<x2>+
<x3>

<x1,j,3,z>+ <x2,j,3,z>+<x3,j,3,z>

<x1>+
<x2>+
<x3>

<x1,j,3,z>+ <x2,j,3,z>+<x3,j,3,z>

<x1>+
<x2>+
<x3><x1,j,2,z>+

<x2,j,2,z>

<x1>+
<x2><x1,j,2,z>+

<x2,j,2,z>

<x1>+<x2>

<j,3,z>
<j,3,z><j,2,z>

<j,2,z>

<j,k,z>

<j,k>

ord(k).<j,k,z>

<j,k>

Fig. 5. The multi-thread system modelled with a SN

class
 Count is 1..3;
 Jobs is 1..4;
 Cores is 1..4;
domain
 JK is <Jobs, Count>;
 JKC is <Jobs, Count, Cores>;
 CJKC is <Cores, Jobs, Count, Cores>;

M

M'

K''
Configs

Bag(Cores)

JobEnds

TermThread
JKC

AllocatedCores
CJKC

TEnds

FreeCores
Cores

LbThreads

[card(Y1)=ord(k) and
Y1 <= Y2]

JobsWait
JKC GenJobs

JobsGen
JK

<j,k><j,k,z>

<j,k,z>

<Y1,j,k,z>

<x,j,k,z>

<j,k,z>

ord(k).<j,k,z>

<j,k><Y1>

<x>

<whole(Y2)>

<z>

<z>

var
 j in Jobs;
 x, z in Cores;
 k in Count;
 Y1, Y2 in bag(Cores);

Fig. 6. The multi-thread system modelled with a SNB

Then, depending on the number of threads required, one of the four transi-
tions lbkTCi assigns k cores with configuration i to the k threads. These cores,
having the same configuration as described in Conf1 and Conf2 (the initial
markings of these places are respectively K and K′), are removed from the set
of FreeCores (with initial marking M’= MaxThreadsPerCore × <Cores.all>).

XXX Laure, je pense placer ICI le discours sur l’expression de K et K’ sous
la forme de sous classes dynamiques.

The information logged with the AllocatedCores is a 4-tuple with the slave
core, the job identifier, the number of threads for this job, and the master core.
This allows for ensuring a clean termination at a later stage. When a thread ex-
ecution is finished (transition TEnds), the slave core becomes free again. When
all threads have finished, a final phase takes place: the terminated threads (place

TermThreads) are discarded by transition JobEnds and the master core is re-
leased, terminating the job execution.

One can note that there is a possible deadlock in this model when master
threads consume cores that cannot then be allocated to slave threads. In the
net, this case corresponds to too many occurrences of GenJobs preventing the
firing of any lbkTCi transition.

This example reveals a major drawback of Symmetric Nets, represented by
the U-shape in the upper part of figure 5. We must duplicate the transitions
in order to capture the consumption of a variable number of tokens. It means
that, if we change the Count colour domain (denoting the number of threads
to associate with a given job), we must adapt the series of transitions lbkTCi .
This is not very convenient for modellers. Furthermore, the system cannot be
parameterised easily, which is a problem.

The SNB model A new version for the multi-threads example is shown in
figure 6. The modified part is framed.

One can note that the numerous transitions lbkTCi in the net of figure 5
are now expressed using a single transition: LbThreads. Configurations are now
stored in one place: Configs that contains Bag(Cores) tokens. Let us note that
the marking of Configs, K′′ = {K} ∪ {K′}.

A bag of cores Y1 is selected among the free cores, with the same cardinality
as the number of threads to execute (this is specified in the guard of transition
LbThreads with formula card(Y1)=ord(k)). For the transition to be fired, an
available configuration where Y1 <= Y2 (i.e. ‖Y 1‖ ⊆ ‖Y 2‖) must be found (this
is expressed by the second term of the guard).

The job ends when all corresponding threads are terminated, and they are
removed simultaneously from place TermThread as in the Symmetric Net version
of the example.

3 Symbolic reachability graph for SNB

The symbolic reachability graph aims at reducing the reachability graph size
(thus rendering verification amenable) by regrouping some “equivalent” mark-
ings into symbolic markings and using a symbolic firing rule compatible w.r.t.
the normal firing rule. Thus, many properties of the model, like accessibility,
boundness or liveness can directly be checked on the symbolic reachability graph,
allowing for the analysis of larger specifications.

3.1 Symbolic markings

Symbolic markings are based on the notion of admissible permutations in the set
of colour classes. An admissible permutation is a family σ = {σi}i∈I such that
a permutation σi of Ci fulfils: 1) ∀Ci,q , σi(Ci,q) = Ci,q i.e., any item of a static
subclass Ci,q of Ci is mapped to an item of the same subclass and 2) if Ci is an

ordered class then admissible permutations are restricted to rotation (the order
of an ordered class cannot be modified).

Given these restrictions, the action of a permutation σ on a colour c of a place
p, c =

⊗
i∈I,j∈1..ei(p) cj

i ∈ C(p), is defined by σ(c) =
⊗

i∈I,j∈1..ei(p) σi(c
j
i). We

can define the action of σ on a marking m by ∀p ∈ P, ∀c ∈ C(p),σ.m(p)(σ(c)) =
m(p)(c). Note that the enabling rule for a transition is preserved when applying
an admissible permutation on a marking and on a transition occurrence:

m[(t, c)〉m′ ⇐⇒ σ.m[(t,σ(c))〉σ.m′

Thus, markings obtained with the application of a permutation for a given
marking m are “equivalent” in terms of behaviour. Therefore an equivalence class
of markings can be defined: m ∼ m′ ⇐⇒ ∃σ|σ.m = m′, yielding equivalence
classes named symbolic marking and denoted M.

The first problem is the representation of a symbolic marking. Describing an
equivalence class of a set with its own elements is obviously very expensive in
terms of storage and brings no advantage w.r.t. the explicit reachability graph. To
tackle this problem, a first approach [10, 13] represents an equivalence class with
one of its elements (i.e. a marking). This method reduces the storage requirement
for markings but does not provide any saving w.r.t. the state transitions issued
from these markings.

An alternative approach [3] consists in a symbolic representation of both
the markings (inside an equivalence class) and the transitions issued from these
markings. Observe that the number of transitions issued from a marking of a SN
may be exponential w.r.t. the size of the SN and thus, the symbolic firing rule
is mandatory in order to manage large models.

3.2 Symbolic marking representation

Let m be an explicit marking. Roughly speaking, we first partition every static
subclass (Ci,q) such that inside the partition, two colours have the same distribu-
tion of token components corresponding to the class Ci for m. Then, forgetting
the identities of colours inside any partition but memorizing the size of this
partition leads to our symbolic marking representation.

More formally, we define for every class Ci a set of dynamic subclasses
{Zj

i }1≤j≤mi
such that every Zj

i has two attributes: its cardinality (card(Zj
i))

and the index of the static subclass it belongs to (d(Zj
i)). Given these partitions,

the symbolic marking (mark) is represented as an ordinary marking where the
dynamic subclasses are substituted to colours. The following definition formalises
the characteristics of a symbolic marking representation.

Definition 12 (Symbolic marking representation).
A symbolic marking representation of a SNB, M = 〈m, card, d, mark 〉 is

defined by:

– m : I 9→ IN∗ defines the number of dynamic subclasses for every class Ci.
m(i) is also denoted mi and Ĉi = {Zj

i | 0 < j ≤ mi} denotes the set of
dynamic subclasses of Ci.

– card :
⋃

i∈I Ĉi 9→ IN∗ denotes the size of every dynamic subclass.

– d :
⋃

i∈I Ĉi 9→ IN∗ denotes the index of the corresponding static subclass to
which every dynamic subclass belongs. Hence d and card fulfil the following
constraints:

1. d(Zj
i) ∈ {1, . . . , si} i.e. d(Zj

i) is the index of a static subclass of Ci.

2.
∑

d(Zj
i)=q card(Zj

i) = ni,q: the size of a static subclass is the sum of the

sizes of the dynamic subclasses that belong to it.

3. ∀i ∈ I, ∀1 ≤ j < j′ ≤ mi, d(Zj
i) ≤ d(Zj′

i): the dynamic subclasses are
ordered w.r.t. the order of static subclasses.

– mark associates with every place p a symbolic content:
mark(p) ∈ Bag(

⊗
i∈I(Ĉi)ei(p)

⊗
i∈I Bag(Ĉi)e′

i(p)). Then, dynamic subclasses
act as colours for ordinary markings.

The semantics of a symbolic marking representation is a set of equivalent
ordinary markings.

Definition 13 (Symbolic representation semantics).
Let M be a symbolic marking representation. Then the set !M" of associated

ordinary markings is defined by m ∈ !M" iff:

– ∀i ∈ I, ∃αi : Ci 9→ Ĉi ; αi distributes the colours among the dynamic
subclasses. As usual, we linearly extend αi to a mapping from Bag(Ci) to
Bag(Ĉi).

– ∀Zj
i ∈ Ĉi, |α

−1
i (Zj

i)| = card(Zj
i) ; these mappings must preserve the size

constraints.
– ∀Cj

i ,α−1
i (Zj

i) ⊆ Ci,d(Zj
i) ; these mappings must preserve the static subclass

constraints.
– ∀p ∈ P , ∀c ∈ C(p) with

c =
⊗

i∈I,j∈1..ei(p) ci,j

⊗
i∈I,j∈1..e′

i(p) bi,j:

m(p)(c) = mark(p)(
⊗

i∈I,j∈1..ei(p) αi(ci,j)⊗
i∈I,j∈1..e′

i(p) αi(bi,j))

the marking of a place must be preserved by the symbolic transformation.

– When Ci is ordered, ∀Zj
i ∃c ∈ α−1

i (Zj
i) such that αi(!c) ∈ Z

(j mod mi)+1
i

and ∀c′ ∈ α−1
i (Zj

i), c′ #= c,αi(c′) ∈ Zj
i ; the instantiation via αi of dynamic

subclasses must preserve the order of Ci.

It must be emphasized that different representations yield the same set of
explicit markings. However, it is possible to define and compute a canonical
representation as developed in the next subsection. Roughly speaking, a symbolic
representation is canonical if the number of dynamic subclasses is minimal and
the numbering of dynamic subclasses ensures that the representation is minimal
w.r.t. some lexicographic ordering.

+ ... +

1
1 Z1

1Cp

q1 C Cq2

t

<C.All>

<Y> <~Y>

[Unique(Y)]

= C = n1

Z1
2Z1

1

Z1
1 =

<C.All>

<~Y><Y>

[Unique(Y)]
t k < n1

=1
2Z n1−k

Z1
1

+ ... + n1
Z1Z1

1

Z1
1t()

Z1
2Z1

1+t()

+ ... +Z1
1 k

Z1t()

Z1
1 Z1

n1+ ... +t()

Z1
1 = =Z1

2 = = 1... Z1
n1

Z1
n1Zk

1Z1
1 Z1

k+1

splitting

Class C is 1..N;

canonization

t

<C.All>

<Y> <~Y>

[Unique(Y)]

= =Z1
2 = = 1... Z1

n1

symbolic firings
....

<C.All>

<Y> <~Y>

[Unique(Y)]
t

+ ... +

Z

Fig. 7. Example of symbolic firing

3.3 Symbolic firing rule

The second step in the symbolic reachability graph construction is the design
of a symbolic firing rule for symbolic markings. Our goal is to “produce” and
“consume” dynamic subclasses instead of colours. A dynamic subclass is selected
for each occurrence of a class in the colour domain. However, assume that we
instantiate variable Xj

Ci
with the dynamic subclass Zk

i . Such an instantiation is

sound iff card(Zk
i) = 1 (meaning that this subclass is reduced to a single colour).

Furthermore, the instantiation of Y j
Bag(Ci)

should require to select 1) only a

subset of colours in some Zk
i and 2) to select colours from different Zk

i . Thus in
order for the symbolic rule to correspond to the explicit firing rule, we need to
preprocess a symbolic representation M. The goal of this preprocessing, called
splitting, is to produce M′ such that !M" = !M′" and the cardinality of every
dynamic subclass of M′ is 1.

Once this splitting has been performed, the transition is fired as in defini-
tion 11 with dynamic subclasses instead of colours; this leads to a new symbolic
marking. However, this firing includes an optimisation step that reduces the
number of possible instantiations.

Before defining formally the optimisation, we illustrate it on figure 7. It
first shows the symbolic marking obtained after the splitting. Applying usual
instantiation, variable Y could be associated with any bag

∑
j∈J Zj

1 for any
J ⊆ {1, ..., n1}, n1 being the maximal cardinality of dynamic subclasses in
Y j

Bag(Ci)
. This would lead to 2n1 different firings.

However, we require that if a dynamic subclass Zj
1 occurs in Y then any Zj′

i

with j′ < j also occurs in Y . This restriction does not eliminate any associated
explicit firing due to the semantics of symbolic markings. Now, the number of
different firings is only n1. This constraint can be generalised to any number of
variables occurring in a transition by an arbitrary order over these variables.

In this case, let Zj
i , Zj′

i obtained by the splitting of the same dynamic subclass
with j′ < j. We require that if Zj

i occurs in the instantiation of a variable,

then Zj′

i occurs either in the instantiation of the same variable or of a previous
variable. We emphasize that this reduction is impossible with the approach in [10,
13].

The last step is the canonisation of the representation. The whole process is
now formally described.

We will successively:

– Define canonical symbolic representations such that if !M" = !M′" for
M,M′ canonical then M = M′.

– Design an algorithm that takes a symbolic representation M as input and
outputs the canonical representation M′ such that !M" = !M′".

– Design an algorithm that takes a symbolic representationM and a transition
t as inputs and and produces the symbolic firings of t starting from M.

A first step consists in detecting when two dynamic subclasses Zj
i and Zj′

i

may be merged. It is equivalent to check that, in any place p and in any given

occurrence of Ĉi in Ĉ(p), Zj
i can be substituted by Zj′

i leaving mark(p) un-

changed, and that in any given occurrence of Bag(Ĉi) in Ĉ(p), any item of

Bag(Ĉi) occurring in mark(p) has the same weight w.r.t. Zj
i and Zj′

i . Hence, we
define a permutations check that supports the first control. Then, we introduce
the notion of mergeable dynamic subclasses and describe how to merge them.
When merging is not possible anymore, we are dealing with maximally grouped
symbolic representations.

Definition 14 (Checking permutation). Let M be a symbolic marking rep-

resentation, Zj
i and Zj′

i two dynamic subclasses of M such that d(Zj
i) = d(Zj′

i).
When Ci is ordered, let j′ = (j mod mi) + 1 and let p be a place with C(p) =⊗

i∈I(Ci)ei(p)
⊗

i∈I Bag(Ci)e′

i(p).
A family of permutations σ = {σi,e}i∈I,1≤e≤ei(p) of M where σi,e is a per-

mutation of Ĉi, checks equivalence between Zj
i and Zj′

i w.r.t. p if it fulfils:

– ∀i′ #= i, ∀e,σi′,e is the identity over Ĉi′ .

– ∀1 ≤ e ≤ ei(p),σi,e is either the identity over Ĉi or the permutation of Zj
i

and Zj′

i .

Let

mark(p) =
P

c∈supp(mark(p)) ac.(
N

i∈I,1≤e≤ei(p) Z
jc,i,e

i
N

i∈I,1≤e≤e′
i
(p)

P

1≤l≤mi
bc,i,e,lZ

l
i)

then

σ.mark(p) =
P

c∈supp(mark(p)) ac.(
N

i∈I,1≤e≤ei(p) σi,e(Z
jc,i,e

i)
N

i∈I,1≤e≤e′
i
(p)

P

1≤l≤mi
bc,i,e,lZ

l
i)

We denote by Ω(M, Zj
i , Zj′

i , p) the set of these families of permutations.

Definition 15 (Mergeable dynamic subclasses). Let M be a symbolic mark-
ing representation, Zj

i and Zj′

i two dynamic subclasses of M such that d(Zj
i) =

d(Zj′

i). When Ci is ordered, let j′ = (j mod mi) + 1. Then Zj
i and Zj′

i can be
merged if ∀p ∈ P ,
with C(p) =

⊗
i∈I(Ci)ei(p)

⊗
i∈I Bag(Ci)e′

i(p)

and

mark(p) =
P

c∈supp(mark(p)) ac.(
N

i∈I,1≤e≤ei(p) Z
jc,i,e

i
N

i∈I,1≤e≤e′
i
(p)

P

1≤l≤mi
bc,i,e,lZ

l
i)

the following two conditions are fulfilled:

– ∀σ ∈ Ω(M, Zj
i , Zj′

i , p),σ.mark(p) = mark(p).
– ∀e, bc,i,e,j = bc,i,e,j′ .

Notations In order to alleviate the notations we denote the attributes mi, card,
d, mark of a symbolic marking M′ (resp. σ.M) by m′

i, card′, d′, mark′ (resp.
σ.mi, σ.card, σ.d, σ.mark).

Definition 16 (Dynamic subclasses merging). Let M be a symbolic mark-

ing representation and Zj
i and Zj′

i two dynamic subclasses of M such that Zj
i

and Zj′

i can be merged. Then the symbolic marking representation M′ obtained

by merging Zj
i and Zj′

i (with j < j′) is defined by the following transformations:

– card′(Zj
i) = card(Zj

i) + card(Zj′

i),

– for every every j′′ > j′, card′(Zj′′−1
i) = card(Zj′′

i) and d′(Zj′′−1
i) = d(Zj′′

i),
– m′

i = mi − 1,
– mark′ is obtained by:

1. deleting every tuple where Zj′

i occurs, and then,

2. substituting Zj′′

i such that j′′ > j′ in every tuple with Zj′′−1
i .

Definition 17 (Maximally grouped representation). Let M be a symbolic
marking representation, then M is maximally grouped if one cannot merge any
pair of dynamic subclasses of M.

Assume that two symbolic representations are maximally grouped and that
they denote the same set of ordinary markings. Then the set of dynamic sub-
classes are “isomorphic”. However, due to permutations of subclasses, they may
be different. In order to obtain unicity, we must distinguish one of these permu-
tations. This selection is based on a total ordering between such representations.
So the next definitions introduce symbolic permutations which operate on sym-
bolic representations and define a total order based on repeated use of order
constructors for cartesian products and the Bag operator.

Definition 18 (Symbolic permutation). Let M be a symbolic marking rep-
resentation, then σ = {σi}i∈I is a symbolic permutation of M if for every i ∈ I,
σi is a permutation of Ĉi. Furthermore, when Ci is ordered then σi is a rotation.

Definition 19 (Permutation of a symbolic representation). Let M be a
symbolic marking representation, let σ = {σi}i∈I be a symbolic permutation of
M. Then the symbolic marking representation σ.M is defined by:

– The number of dynamic subclasses is unchanged. ∀i ∈ I σ.mi = mi

– σ.card(σi(Z
j
i)) = card(Zj

i) and σ.d(σi(Z
j
i)) = d(Zj

i)

– σ.mark is obtained by substituting in every tuple σi(Z
j
i) to Zj

i for every i
and every j.

Notations

– The set of places P is enumerated as P ≡ {p1, . . . , pr}.
– Given two ordered sets E, F , we order E ⊗ F by the lexicographic order on

pairs denoted (i, j) < (i′, j′).
– Given an ordered set E, we order Bag(E) by

∑
e∈E xe.e <

∑
e∈E ye.e if

there exists e such that xe < ye and for every e′ < e, xe′ = ye′ .

Note that by iterating these orderings, symbolic place markings with the same
symbolic subclasses can be compared (as will be done in the next definition).

Definition 20 (Order of symbolic representation). Let M,M′ be two
symbolic marking representations. Then M < M′ if one of the following condi-
tions holds:

– ∃i ∈ I mi < m′
i ∧ ∀j < i mj = m′

j

– ∀i ∈ I mi = m′
i and

∃i ∈ I ∃j ≤ mi card(Zj
i) < card′(Zj

i) and

∀i′ ∈ I ∀j (i′, j′) < (i, j) ⇒ card(Zj′

i′) = card′(Zj′

i′)
– ∀i ∈ I mi = m′

i and
∀i ∈ I ∀j ≤ mi card(Zj

i) = card′(Zj
i) and

∃i ∈ I ∃j ≤ mi d(Zj
i) < d′(Zj

i) and

∀i′ ∈ I ∀j (i′, j′) < (i, j) ⇒ d(Zj′

i′) = d′(Zj′

i′)
– ∀i ∈ I mi = m′

i and
∀i ∈ I ∀j ≤ mi card(Zj

i) = card′(Zj
i) and

∀i ∈ I ∀j ≤ mi d(Zj
i) = d′(Zj

i) and
∃i ≤ r mark(pi) < mark′(pi) ∧ ∀i′ < i mark(pj) = mark′(pj)

Definition 21 (Canonical representation). Let M be a symbolic marking
representation. Then M is canonical if it is maximally grouped and for every
symbolic permutation σ, M < σ.M.

Proposition 1. Let M,M′ be two canonical symbolic representations. Then:
!M" = !M′" ⇒ M = M′

We now informally present the canonisation procedure.

1. Given a symbolic representation M we merge dynamic subclasses as much
as possible. This step has a polynomial time complexity w.r.t. the size of M.
At the end of this stage the symbolic representation is maximally grouped.

2. Given a maximally grouped symbolic representation M, we determine a
symbolic permutation σ such that σ.M is minimal among the set of such
symbolic representations. This step has an exponential time complexity w.r.t.
the size of the symbolic marking and more precisely w.r.t. the mi. In [5], an
implicit search is proposed that happens to be efficient in practical cases.

The symbolic firing mimics the ordinary firing. However in order to define it
consistently, dynamic subclasses must be reduced to singletons. This is the aim
of the next definition.

Definition 22 (Splitting marking). Let M be a symbolic marking represen-
tation. The symbolic marking representation M′ obtained by splitting each dy-
namic subclass Zj

i into the set of dynamic subclasses {Zj,k
i }, k = 1..card(Zj

i) is
defined by the following transformations:

– m′
i = |Ci|

– d′(Zj,k
i) = d(Zj

i)
– card′(Zj,k

i) = 1
– mark′ is obtained by: substituting Zj

i in each place where it appears by∑
k=1..card(Zj

i) Zj,k
i .

Observe that the index of a static subclass is now a pair (j, k). So we order
pairs with the lexicographic order (j, k) < (j′, k′) iff j < j′ ∨ (j = j′ ∧ k < k′).
We denote the set of indices for class Ci by Indi. In the following definition, we
introduce requirements about the order of the first occurrence of a subclass in
the binding of variables. This requirement implicitely assumes that for a class
Ci, the variables are ordered as follows: X1

i , X2
i , . . . , Y 1

Bag(Ci)
, Y 2

Bag(Ci)
, . . .

Definition 23 (Symbolic transition instantiation). Let t be a transition
and let M be a splitted symbolic marking representation. A symbolic instantiation
of t w.r.t. M is a family of pairs of mappings {(λi,λ

′
i)}i∈I which bind every Xj

i

(resp. Y j
Bag(Ci)

) to a dynamic subclass Z
λi(j)
i (resp. a bag of dynamic subclasses

∑
(k,l)∈Indi

λ′i(j)(k, l)Z(k,l)
i) via the choice of an index (resp. a bag of indices):

– λi : {1..ei} 9→ Indi,
– λ′i : {1..e′i} 9→ INIndi

Furthermore the mappings should verify the following constraints:

1. The guard of t must be fulfilled (interpreting subclasses as colours).

2. If Zk,l
i first occurs in the binding of Xj

i then for any l′ < l, Zk,l′

i first occurs

in the binding of Xj′

i for some j′ < j. More formally :
∀i ∀j ∈ {1..ei} :
(k, l) = λi(j) ∧∀j′ < j (k, l) #= λi(j′)
⇒ ∀l′ < l ∃j′ < j (k, l′) = λi(j′)

3. Assume Zk,l
i first occurs in the binding of Y j

Bag(Ci)
, i.e.

λ′i(j)(k, l) > 0 ∧ ∀j′ < j λ′i(j
′)(k, l) = 0

∧∀j′ (k, l) #= λi(j′)

Then for any l′ < l, Zk,l′

i occurs before Zk,l
i , or Zk,l′

i and Zk,l
i occur simul-

taneously but the coefficient of Zk,l′

i in the bag associated with the binding of

Y j
Bag(Ci)

is smaller than or equal to the coefficient of Zk,l
i i.e.:

– either ∃j′ (k, l′) = λi(j′)
– either ∃j′ < j λ′i(j

′)(k, l′) > 0
– or none of the other conditions is satisfied and

0 < λi(j)(k, l′) ≤ λi(j)(k, l)

The first requirement leads to a finite number of useful instantiations while
the other requirements avoid different equivalent instantiations that could have
been produced by permutations (given i, k) over sets {l | Zk,l

i }. This requirement
often yields an exponential reduction of the number of instantiations.

Definition 24 (Symbolic firing rule). Let t be a transition, M a symbolic
marking representation, and {λi,λ

′
i}i∈I a symbolic instantiation of t. The sym-

bolic marking obtained by firing t w.r.t. {λi,λ
′
i}i∈I in M is obtained in four

steps:

1. Split M w.r.t. definition 22;
2. Check if t is enabled in M w.r.t. {λi,λ

′
i}i∈I (interpreting subclasses as

colours).
3. If the firing is possible compute the new symbolic marking representation M′

which is identical to M except for mark: mark′ is obtained by applying the
incidence mappings on mark

4. Compute a canonical representation with the procedure previously given.

Example Our approach preserves the use of symbolic states together with bag
functions. For example, let us consider the model of figure 5 with M ′ containing 4
available cores, and M containing 4 configurations (two requiring two additional
cores and two requiring three additional cores). If there is at least 3 occurrences
of GenJobs prior to any occurrence of lbiTCj , the system will inevitably become
deadlocked in the following configuration: there is no token in either Allocated-
Cores or FreeCore — one symbolic state.

In the SNB of figure 6, the same configuration is the single symbolic state
representing a deadlock.

Hence, thanks to the use of symmetries on bags, the complexity of the sym-
bolic reachability graph is not increased. In some cases, the symbolic reachability
graph may even be smaller for SNB than for SN.

4 Conclusion

In this paper, we have extended the symbolic reachability graph and its related
symbolic firing to Symmetric Nets with bags in tokens (SNB) as introduced
in [13].

SNB have two main advantages. First, the use of bags in Symmetric nets
allows for easier and more readable modelling. The Petri net specification can
thus be parameterised without changes in its structure (e.g. adding places or
transitions). Hence, the specifier does not have to concentrate on choosing tricks
or duplicating large parts of nets. Moreover, these could lead to bad choices that
would hamper the analysis capabilities.

Second, it enables the use of the symbolic reachability graph technique, thus
allowing for analysing large Petri nets. Our approach maintains a low complexity
on the symbolic reachability graph constructions, contrary to previous works
like [10, 13].

To achieve this goal, we provide a new consistent set of definitions for SNB.
We show on an example in figure 6 the advantages of SNB for a more concise
modelling : a single transition corresponds to several similar ones in the SN model
of figure 5. Then, we define for SNB the symbolic reachability graph structure
and the associated optimised firing rule.

We plan to soon develop within the CPN-AMI Petri net environment (http:
//move.lip6.fr/software/CPNAMI/) [8] both the extended formalism, the adap-
tation of the symbolic reachability graph and the game-based algorithms for
control synthesis.

References

1. M. Beaudouin-Lafon, W. Mackay, M. Jensen, P. Andersen, P. Janecek, H. Lassen,
K. Lund, K. Mortensen, S. Munck, A. Ratzer, K. Ravn, S. Christensen, and
K. Jensen. CPN/Tools: A Tool for Editing and Simulating Coloured Petri Nets
ETAPS Tool Demonstration Related to TACAS. In LNCS Springer Verlag, editor,
Tools and Algorithms for the Construction and Analysis of Systems, 7th Interna-
tional Conference, TACAS 2001, volume 2031, pages 574–577, 2001.

2. F. Bonnefoi, L. Hillah, F. Kordon, and G. Frémont. An approach to model varia-
tions of a scenario: Application to Intelligent Transport Systems. In Workshop on
Modelling of Objects, Components, and Agents (MOCA’06), Turku, Finland, June
2006.

3. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Transactions on Com-
puters, 42(11):1343–1360, 1993.

4. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic reachability
graph for coloured Petri nets. Theoretical Computer Science, 176(1–2):39–65, 1997.

5. Giovanni Chiola, Claude Dutheillet, Giuliana Franceschinis, and Serge Haddad. On
well-formed coloured nets and their symbolic reachability graph. In Kurt Jensen
and Grzegorz Rozenberg, editors, Procedings of the 11th International Conference
on Application and Theory of Petri Nets (ICATPN’90). Reprinted in High-Level
Petri Nets, Theory and Application. Springer Verlag, Advances in Petri Nets, 1991.

6. A. de Groot, J. Hooman, F. Kordon, E. Paviot-Adet, I. Vernier-Mounier,
M. Lemoine, G. Gaudiere, V. Winter, and D. Kapur. A survey: Applying for-
mal methods to a software intensive system. In 6th International Symposium on
High-Assurance Systems Engineering, pages 55–64. IEEE Computer Society, 2001.

7. H.J. Genrich and K. Lautenbach. System modeling with high-level Petri-nets. In
Theoretical Computer Science, number 13, pages 103–136, 1981.

8. A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet, X. Renault, and
Y. Thierry-Mieg. New features in CPN-AMI 3 : focusing on the analysis of complex
distributed systems. In 6th International Conference on Application of Concur-
rency to System Design (ACSD’06), pages 273–275, Turku, Finland, June 2006.
IEEE Computer Society.

9. L. Hillah, F. Kordon, L. Petrucci, and N. Trèves. PN standardisation : a survey.
In International Conference on Formal Methods for Networked and Distributed
Systems (FORTE’06), volume 4229, pages 307–322, Paris, France, September 2006.
Springer Verlag, LNCS.

10. P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. Reachability trees for
high-level petri nets. Theoretical Computer Science, Vol 45, (3):261–292, 1986.
NewsletterInfo: 27.

11. K. Jensen, L. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. STTT, 9(3-4):213–254, 2007.

12. Kurt Jensen. Coloured Petri nets and the invariant-method. Theor. Comput. Sci.,
14:317–336, 1981.

13. Tommi Junttila. On the symmetry reduction method for Petri Nets and similar
formalisms. PhD thesis, Helsinki University of Technology, Espoo, Finland, 2003.

14. H. Klauck. Algorithms for parity games. In Automata, Logics, and Infinite Games,
volume 2500 of LNCS, pages 107–129. Springer, 2002.

15. Wolfgang Reisig. Petri nets and algebraic specifications. Theoretical Computer
Science, 80:1–34, 1991. NewsletterInfo: 38,39.

