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Abstract— We study the problem of link scheduling for
discrete-time agents to achieve average consensus in finite
time under communication constraints. We provide necessary
and sufficient conditions under which finite time consensus is
possible. Furthermore, we prove bounds on the consensus time
and exhibit provably optimal communication policies. We also
discuss the dual problem of designing communication schedules
given a fixed consensus-time requirement.

I. INTRODUCTION

Multi-agent systems have attracted much attention in the

past few years [1], [2]. The general research focus in this

area is designing decentralized control laws to achieve certain

global objective. For example, in classical consensus prob-

lems [3], groups of agents try to agree upon certain quan-

tities such as their positions, environment temperature, etc.,

through the exchange of data with their neighbors. In multi-

vehicle formation control problems [4], a group of vehicles

try to main a certain desired formation by communicating

with neighboring vehicles. Other examples include behavior

of swarms [5], sensor network data fusion [6], unmanned

aerial vehicles (UAVs), attitude alignment of satellite clus-

ters, etc. [7], [8].

In this paper we consider the finite time average consensus

problem. That is, we try to find efficient algorithms such

that a collection of n agents reach consensus on the average

of their initial values in finite time. Although our main

focus is on the consensus time, we note that there are many

other figures of merit for evaluating consensus algorithms.

For example, robustness to imperfect communication and

random distances. Issues such as communication delays and

changes in the communication topology over time have been

examined by Olfati-Saber et al. [9] and Ren et al. [10].

Rate of convergence is widely used as a measure of

performance [11], [12] in consensus problems. Many tools

that are used to derive and analyze the performance of

consensus algorithms come from graph theory [13]. Graphs

(possibly time-varying) provide an efficient representation of

the communication topology between the group of agents,

with each node representing an individual agent, and an edge

representing the information link between a pair of agents.

Distributed average consensus algorithms [3] in general have

infinite time to reach consensus and its rate of convergence

is given by the second smallest eigenvalue, λ2, of the

corresponding graph Laplacian. By optimally choosing how

much weight each node should set for neighboring nodes’

values, Yang et al. [14] sped up the rate of convergence,

while trading-off robustness. Xiao et al. [15] provided sim-

ilar results using convex optimization techniques but in

a discrete-time setting. Olfati-Saber et al. [16] introduced

additional communication links into the network and created

small world networks to speed up the rate of convergence.

When finite-time consensus is possible, time to reach

consensus is used as a measure of performance. Cortes

[17] studied the application of non-smooth gradient flows

for finite time consensus. Wang and Xiao [18] considered

a finite-time state consensus problem for continuous-time

multi-agent systems and provided two protocols for those

agents reaching consensus. By employing finite-time Lya-

punov functions, they derived conditions which guarantee

that consensus is reached in finite-time when the two pro-

tocols are used. They also provided upper bounds on the

time to reach consensus. Sundaram and Hadjicostis [19],

[20] considered the discrete-time consensus problem and

presented a method for each node achieving consensus in

a finite number of times by linearly combining its own past

values. Their approach requires that each node has sufficient

computation capability. In many cases, computing the the

optimal weighting matrix is computationally intractable.

Unlike most of the aforementioned results and approaches,

the consensus algorithms proposed in this paper consisting

of optimally designing the communication schedule between

agents. That is, we specify the time varying communication

topology at each instance in time. The main contributions of

this paper are summarized as follows.

• We provide necessary and sufficient conditions for

finite-time consensus.

• We analyze the scenarios of finite-time consensus under

communication constraints, and provide bounds on the

time to reach consensus.

• We provide several consensus algorithms, including

ones that are provably optimal, i.e., they achieve the

derived lowerbounds on the time to reach consensus.

The rest of the paper is organized as follows. In Section II,

we provide the precise mathematical description of our prob-

lem. Then in Section III, we consider the scenario that only

one pair of agents is allowed communicate at any given time.

We provide a lower bound on the time to reach consensus and

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeC19.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1982

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:59:06 UTC from IEEE Xplore.  Restrictions apply. 



an algorithm that achieves this lower bound. In Section IV,

we generalize the results to many communicating agents.

Again, we provide a lower bound on the time to reach

consensus as well as algorithms that achieve the lower bound.

Furthermore, we give necessary and sufficient conditions

for the general finite-time consensus problems. Finally, in

Section V, we consider the dual problem: what are the

communication requirements to achieve consensus under a

given time constraint?

II. PROBLEM STATEMENT

Consider a collection of n nodes: V = {0, 1, . . . , n −
1}. Let xi(t) denote the value of node i at time t. For

conciseness, we define x(t) = [x0(t), . . . , xn−1(t)]
T
∈ R

n.

At each discrete time step t, the communication topology

is specified by an undirected graph G(t) = (V, E(t)) where

each edge e ∈ E(t) denotes a communication link between

two nodes and we allow for multiple edges.

For each node i ∈ V , define Ei(t) as the set of edges

incident on node i. The node values evolve according to:

xi(t + 1) =
xi(t)

|Ei(t)|+ 1
+

∑

j : (i,j)∈Ei(t)

xj(t)

|Ej(t)|+ 1
(1)

where | · | denotes the cardinality of a set.

Define a communication schedule S = {E(0), E(1), . . .}
as a sequence of edge sets. Given a schedule S, its consensus

time is

tc(S) = max
x(0)∈Rn

min

{

t : xi(t) =
1

n

n−1
∑

i=0

xi(0)

}

Clearly, not all schedules have finite consensus times.

If for all E(t) ∈ S, we have |E(t)| ≤ k then we call S a

k-edge schedule. Define Sk as the set of all k-edge schedules.

Since it’s often costly to establish communication links, we

view k as a communication constraint and define

tc(Sk) = min
S∈Sk

tc(S)

and investigate the following:

• What are the conditions on n and k for a finite tc(Sk)?
• When it is finite, how does the consensus tc(Sk) time

vary with k?

• Can we characterize efficient consensus schedules?

III. SINGLE-EDGE SCHEDULES

We begin with a study of consensus times for single edge

schedules S1 when n is a power of 2.

Using a potential function argument, we can show that

tc(S1) ≥ (n log n)/2. But first, we require a brief informa-

tion theory interlude.

A. Preliminary: Change of Entropy by Averaging

Let p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) be n-

dimensional probability vectors. Let H(p) = −
∑

i pi log pi

denote the binary entropy function. Unless otherwise spec-

ified, all log’s are base-2 and we adopt the convention that

0 log 0 = 0.

Because H(·) is concave (see Theorem 2.7.3 in [21]),

H

(

p + q

2

)

≥
1

2
H(p) +

1

2
H(q)

by Jensen’s Inequality. So if we replaced both p and q by

their average, the total entropy does not decrease:

∆H ≡ 2 H

(

p + q

2

)

− (H(p) + H(q)) ≥ 0.

Let D(p‖q) =
∑

i pi log(pi/qi) denote the Kullback-

Leibler divergence between p and q. We have

D(p‖(p + q)/2) =
∑

i

pi log
pi

(pi + qi)/2

=
∑

i

pi +
∑

i

pi log
pi

pi + qi

≤ 1

where the last inequality is because pi ≤ pi + qi so

log(pi/(pi +qi)) ≤ 0. Now, we can upperbound the increase

in entropy due to averaging:

∆H = 2 H

(

p + q

2

)

− (H(p) + H(q))

= −2
∑

i

(

pi + qi

2
log

pi + qi

2

)

+
∑

i

pi log pi +
∑

i

qi log qi

=
∑

i

[

− (pi + qi) log
pi + qi

2

+pi log pi + qi log qi

]

=
∑

i

[

pi

(

log pi − log
pi + qi

2

)

+qi

(

log qi − log
pi + qi

2

)

]

=
∑

i

pi log
pi

(pi + qi)/2
+ qi log

qi

(pi + qi)/2

= D

(

p

∥

∥

∥

∥

p + q

2

)

+ D

(

q

∥

∥

∥

∥

p + q

2

)

≤ 2

Lemma 1. The change in total entropy, ∆H , due to the

averaging of two probability vectors is bounded by

0 ≤ ∆H ≤ 2

We remark that

∆H = 2 · JS(p,q) = D

(

p

∥

∥

∥

∥

p + q

2

)

+ D

(

q

∥

∥

∥

∥

p + q

2

)

where JS(p,q) is the Jensen-Shannon divergence, a sym-

metrized version of the Kullbeck-Leibler divergence.
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B. Lowerbound

Recall that x(t) = [x0(t)x1(t) · · · xn−1(t)]
T
∈ R

n

denotes the node values at time t. For each node i, we can

express its value at time t as

xi(t) = pi(t)
Tx(0)

where pi(t) is a n-dimensional probability vector. Intuitively,

pi(t) represents the weighted contributions of x(0). Initially,

for all i,
xi(0) = pi(0)Tx(0) = eT

i x(0)

where ei is the i-th column of the n × n identity matrix.

When consensus is reached at some time, say tc,

xi(tc) = pi(tc)
Tx(0) =

1

n
1Tx(0)

for all i. Define φi(t) , H(pi(t)) and φ(t) ,
∑n

i=1 φi(t)
so that

φ(tc) = n H
(

n−11
)

= n log n.

Note that φi(0) = 0. Since each averaging operation in-

creases the total entropy by at most 2 (Lemma 1), we need

at least (n log n)/2 such operations to reach φ(tc).

Theorem 2.

tc(S1) ≥
n log n

2
.

Since k vertex disjoint edges can increase entropy by at

most 2k, we can generalize this lowerbound:

Theorem 3. If the k edges are vertex disjoint, then

tc(Sk) ≥
n log n

2k

C. Upperbound

Consider the following scheduling algorithm for single

edge consensus when the number of nodes is a power of

2.

Algorithm 1: SINGLEEDGECONSENSUS

Input: {x1, x2, . . . , xn}
Output: For all i, xi = n−1

∑n
j=1 xj

for i = 0 to log n− 1 do1

foreach a, b ∈ {0, 1, . . . , n− 1} such that2

a⊕ b = 2i do

M = (xa + xb)/23

xa = M4

xb = M5

end6

end7

The “⊕” in the algorithm denotes bit-wise XOR. The

overall runtime of this strategy is (n log n)/2 as the outer for

loop executes log n times and the inner loop executes n/2
times. This gives us an upperbound on the required consensus

time:

Theorem 4. When n is a power of 2,

tc(S1) ≤
n log n

2
.

If k is also a power of 2 and k ≤ n/2, we can generalize

this result to k vertex-disjoint edges at a time:

Theorem 5. When n is a power of 2 and k is a power of 2,

tc(Sk) ≤
n log n

2k
.

Proof. The factor of k speedup occurs in the inner loop of

Algorithm 1. Instead of performing consensus on 1 pair of

vertices at a time, we can average k pairs. So the inner loop

now requires n/2k steps while the outer loop remains the

same.

The correctness of Algorithm 1 follows by recognizing

that it is essentially a recursive algorithm which divides a

size n problem into 2 problems of size n/2.

If k is not a power of 2 but k ≤ n/2. We can omit

some edges to get a runtime of (n log n)/2ml+1 where

ml = ⌊log2 k⌋. In the inner loop, we schedule only 2ml

edges to get:

Theorem 6. When n is a power of 2 and k ≤ n/2

n log n

2−mu+1
≤ tc(Sk) ≤

n log n

2−ml+1

where ml = ⌊log2 k⌋ and mu = ⌈log2 k⌉. Notice that when

k is a power of 2, the bounds are tight.

Proof. Since 2mu ≥ k, we can lowerbound tc(Sk) for k
edges by the consensus time for 2mu edges.

D. General n

To understand the behavior when n is not a power of 2,

let’s first examine the case where n is prime.

Lemma 7. If n is a prime greater than 2, then one cannot

achieve finite time consensus with S1.

Proof. By contradiction, suppose that finite time consensus

is possible. Consider initial node values:

xi(0) =

{

n if i = 0

0 otherwise

At any time t > 0, the values of each node is in the form of

n a/2b for some a, b ∈ Z
+ ∪ {0}. At consensus time tc, we

have xi(tc) = 1 so n a/2b = 1 for some a, b ∈ Z
+ ∪ {0}.

This means

n a = 2b

which implies that n is a power of 2, contradicting the

primality of n.

From the proof of Lemma 7 we can see that any n which

is not a power of 2 will not work with single edge consensus.
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IV. k-EDGE SCHEDULES

Using the same approach as Lemma 7, we can get a

necessary condition for finite time consensus:

Theorem 8 (Necessity). Let p > 2 be the largest prime that

divides n. If p > k + 1, then discrete time consensus is not

possible.

Proof. Suppose that finite time consensus is possible. Con-

sider initial node values:

xi(0) =

{

n if i = 0

0 otherwise

At any time t > 0,

xi(t) = n
a

2j2 3j3 · · · kjk (k + 1)jk+1

for some a ∈ Z
+ and j2, . . . , jk+1 ∈ Z

+∪{0}. At consensus

time, xi(tc) = 1 so we have

n a = 2j2 3j3 · · · kjk (k + 1)jk+1

since p divides n, this implies that one of {2, 3, . . . , k, k+1}
divides p, contradicting the primality of p.

For sufficiency, let p be the largest prime that

divides n with p ≤ k + 1 and consider the following

scheduling algorithm that achieves consensus in finite time:

Algorithm 2: CONSENSUS

Input: k, {x0, x1, . . . , xn−1}
Output: For all i, xi = n−1

∑n−1
j=0 xj

if k ≥
(

n
2

)

then1

Form n-clique with
(

n
2

)

edges2

else if n 6= prime then3

q ← smallest prime factor of n4

Index the nodes by xi,j where 0 ≤ i < q and5

0 ≤ j < n/q
for i← 0 to q − 1 do6

Consensus(k, {xi,0, xi,1, . . . , xi,n/q−1})7

end8

for j ← 0 to (n/q)− 1 do9

Consensus(k, {x0,j , x1,j , . . . , xq−1,j})10

end11

else if (k ≥ n− 1) and (n = prime) then12

Consensus(k, {x1, x2, . . . , xn−1})13

Place n− 1 edges between x0 and x114

Consensus(k, {x1, x2, . . . , xn−1})15

else16

Error: Finite time consensus not possible (Theorem17

8).
end18

Correctness: The base case of k ≥
(

n
2

)

(lines 1-3)

is easy: we have enough edges to form a n-clique thus

guaranteeing consensus in one step. Lines 3-11 represents

a divide-and-conquer strategy: breaking down the problem

into q subproblems of size n/q and n/q subproblems of size

q. Since n is not prime, the division is always possible. This

leaves us with lines 12-16. After execution of Line 13, the

node values are of the form:

xi =

{

a if i = 0

b if 1 ≤ i < n

for some a, b ∈ R. After Line 14, we have

xi =











1
n a + n−1

n b if i = 0
n−1

n a + 1
n b if i = 1

b if 2 ≤ i < n

Notice that

1

n− 1

n−1
∑

i=1

xi =
1

n− 1

(

n− 1

n
a +

1

n
b + (n− 2) b

)

=
1

n
a +

n− 1

n
b

so the node values are correct after Line 15.

Runtime: First, assume that we know the prime factoriza-

tion of n so that Line 4 of the algorithm executes in O(1)
time. The solution to the recurrence

A(k) = 2 A(k − 1) + 1

is A(k) = O(2k). The solution to the recurrence

B(n) = q B(n/q) + (n/q)B(q)

≤ (n/q)B(n/q)

is B(n) = O(n log n). These recurrences can be solved using

any standard techniques (e.g. Chapter 4 of [22]).

To analyze Algorithm 2, we let T (n) denote its runtime

on n nodes. We have the following recurrence

T (n) =

{

2 T (n− 1) + 1 if n ≤ k + 1

q T (n/q) + (n/q)T (q) otherwise

Using solutions of A(k) and B(n). We have that

T (n) = O(2k n log n)

Even if we did not have the prime factorization of n, we

can execute Line 4 in time O(k). Because of Theorem 8, we

only need to check n against all primes that are ≤ k+1. This

introduces a factor of k slow down and brings the run-time

down to O(k 2k n log n). To summarize everything:

Theorem 9. Let p > 2 be the largest prime that divides n,

then tc(Sk) <∞ if and only if p ≤ k + 1. When it is finite

tc(Sk) = O(n log n)

Here, we treat k as a constant.

The exponential dependency on k is a result of Lines

12-15. Algorithm 2 proves the existence of finite time

consensus schedules. We have not attempted to optimize it.

Depending on the values of n and k, we can often remove

the exponential dependence on k. More development on this

subject can be found in the concluding discussions.
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V. DISCUSSION

Instead of asking for the minimum time required with a k-

edge schedule, we can also ask about the edge requirements

under a time constraint.

As an example, if we require that all nodes reach consen-

sus in a single step, each node must have degree n−1. That

is, a node must be able to see all other nodes. Since there

are n nodes total, each with degree n−1, we require at least

n(n−1)/2 =
(

n
2

)

edges. This lowerbound is clearly feasible

since a complete graph on n nodes achieves consensus in a

single time step.

Lemma 10. To reach consensus in a single step, we need
(

n
2

)

edges.

As stated previously, Algorithm 2 is not optimized. There

are often scenarios where runtime can be greatly reduced.

For example, in Section III, we showed matching upper and

lower bounds for the special case of n being a power of 2.

We can generalize this as follows:

Theorem 11. If k =
(

m
2

)

and n = mq for some q ∈ Z
+,

then

tc(Sk) ≤ q mq−1 =
n logm n

m
Assuming that the conditions in the Theorems 11 are true,

the following scheduling algorithm achieves the upperbound:

Algorithm 3: CONSENSUS

Input: k, {x0, x1, . . . , xn−1}
Output: For all i, xi = n−1

∑n−1
j=0 xj

if k ≥
(

n
2

)

then1

Form n-clique with
(

n
2

)

edges2

else3

Index the nodes by xi,j where 0 ≤ i < n/m and4

0 ≤ j < m
for i← 0 to (n/m)− 1 do5

Consensus(k, {xi,0, xi,1, . . . , xi,m−1})6

end7

for j ← 0 to m− 1 do8

Consensus(k, {x0,j , x1,j , . . . , x(n/m)−1,j})9

end10

end11

Runtime: Since we have enough edges to form a m-

clique, lines 5-7 takes n/m time steps. Let T (n) denote the

runtime of the algorithm on n = mq nodes, then we have

the following recurrence

T (n) =
n

m
+ m T

( n

m

)

which we can solve using any standard techniques (e.g.

Chapter 4 of [22]) to show the correct runtime.
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