
HAL Id: hal-00772281
https://inria.hal.science/hal-00772281

Submitted on 10 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observavility Brunovsky Normal Form: Multi-Output
Linear Dynamical Systems

Driss Boutat, Frédéric Kratz, Jean-Pierre Barbot

To cite this version:
Driss Boutat, Frédéric Kratz, Jean-Pierre Barbot. Observavility Brunovsky Normal Form: Multi-
Output Linear Dynamical Systems. American Control Conference, ACC09, IEEE, Jun 2009, St.
Louis, MO, United States. �hal-00772281�

https://inria.hal.science/hal-00772281
https://hal.archives-ouvertes.fr


Observavility Brunovsky Normal Form:

Multi-Output Linear Dynamical Systems

Driss Boutat, Frédéric Kratz and Jean-Pierre Barbot

Abstract— This paper gives the sufficient and necessary
conditions to guarantee the existence of a linear change of co-
ordinates to transform a multi-output linear dynamical system
(modulo a nonlinear term depending on inputs and outputs) in
the observability Brunovsky canonical form.

I. INTRODUCTION

For a single output dynamical linear system the

observability rank condition is a necessary and sufficient

condition to transform it into the Brunovsky observability

normal form. In this last form, it is possible to use classical

observer such that [8] observer and, [5] observer. For

multi-input linear dynamical systems these condition were

given by [3]. For multi-output linear dynamical systems,

to our knowledge, there does not exist in literature an

equivalent result. However, for multi-output nonlinear

dynamical systems there are several works on the topic. All

this works dealt with the so-called : Observer linearization

error dynamic. This last notion was first addressed by [6]

for dynamical systems with a single output. [7] gave, for a

multi-output nonlinear system, the sufficient conditions to

solve the observer linearization error problem even with a

diffeomorphism on the outputs.

[11] gave the sufficient and necessary conditions to solve the

linearization problem for multi-output nonlinear systems.

After these two important works in the field of observers,

other interesting research was followed, we can quote for

examples: [1], [2], [4], [10].

Even if the results, obtained in the works quoted above,

can be used for multi-output linear dynamical systems.

In this paper, we will provide in an algebraic way the

necessary and sufficient conditions which ensure existence

of a linear change of coordinates to transform a multi-output

linear system into the Brunovsky normal form. This paper

is outlined as follows. In the next section, we give the

notations and the problem statement. In section 3, we

recall well-known facts about a matrix and deduce a first

preliminary result. In section 4, we will state our main

result. In section 5, we provide an algorithm to compute the

linear change of coordinates.

D. Boutat and F. Kratz are with ENSI de Bourges, Insti-
tut PRISME, 88 Boulevard de Lahitolle, 18020 Bourges, France.
driss.boutatfrederic.kratz@ensi-bourges.fr.

J.P. Barbot is with ECS/ENSEA, 6 Avenue du Ponceau, 95014 Cergy-
Pontoise, France. barbot@ensea.fr

II. NOTATION AND PROBLEM STATEMENT

Consider the following multi-output dynamical system:

ẋ = Ax + γ(y, u) (1)

y = Cx (2)

where:

• x ∈ Rn are the state variables, y = (yi)1≤i≤m are the

outputs and u is an input,

• A is a n × n matrix and γ is a vector depending on

input and outputs

• C =





C1

C2

..

Cm





is a m × n matrix with linearly independent components.

Before, to state the problem to solve here, let us recall the so-

called observability indices for dynamical systems (1-2). For

this, without loss of generality, we will assume throughout

this paper the following.

We assume that the pair (1-2) is observable thus, the

following observability rank condition:

rank





C

CA

..

CAn−1



 = n

is fulfilled.

Now, let us define s0 = rank[C] = m, and by induction:

sk = rank





C

CA

..

CAk−1



 − sk−1.

The following definition is drawn from [9].

Definition 1: We call observability indices of the dynam-

ical system (1-2) the integers given for 1 ≤ s ≤ m by:

ri = card{sj ≥ i for j ≥ 0}.
By definition, we have r1 ≥ r2 ≥ . . . ≥ rm and from the

observability rank condition II, we have obviously:

r1 + . . . + rm = n.

By reordering the outputs (yi)1≤i≤m, we can assume that

for 1 ≤ i ≤ m output yi has index ri. Thus we have:



•

rank








C1

...

Cm





C1A

..

C1A
r1−1

C2A

..

C2A
r2−1

..

CiA

..

CiA
ri−1





= r1 + r2 + . . .+ ri +m− i, (3)

•

CiA
ri =

i∑

k=1

rk∑

j=1

pi,k,jCkAj−1 +

m∑

k=i+1

qi,kCk. (4)

The problem that we will answer here can be stated as

follows.

Problem 1: Find the necessary and sufficient algebraic

conditions for the existence of a linear change of coordinates

z = Mx such that the dynamical system (1-2) becomes:

żi = Aizi + βi(u, z1,r1
, · · · , z1,rm

) (5)

z1,r1
= y1 (6)

zi,ri
= yi +

i−1∑

j=1

αi,jyj for 2 ≤ i ≤ m (7)

where Ai =





0 · · · 0 0
1 · · · 0 0
...

. . .
...

...

0 · · · 1 0





ri×ri

,

and zi = (zi,j)1≤j≤ri
for 1 ≤ i ≤ m.

We will say that a dynamical system under (5-7) form is in

the Brunovsky observability canonical normal form modulo

an input-output injection.

In the (5-7) form , we can use the well-known Lunberger

observer with nonlinear input and output terms:

˙̂zi = Aiẑi − K(y − ŷ) + βi(u, ẑ1,r1
, · · · , ẑ1,rm

) (8)

where for all 1 ≤ i ≤ m we set yi = zi,ri
and K is the gain.

Remark 1: If the case of system (1-2) without noise is

perfectly resolved by 8 it is not the case for noisy systems

For example, if the output measurement is corrupted by the

noise and the output acts quadratically in term then a bias

appears.

III. MATHEMATICAL BACKGROUND

In this section, we recall some facts about the structure

of a given n × n matrix ℑ.

A matrix ℑ is said to be cyclic if there exists a vector

v ∈ Rn such that the following family:

{v,,..,ℑn−1v}

is a basis of Rn. This last fact is also equivalent to

saying that the minimal polynomial of ℑ is equal to its

characteristic polynomial.

Therefore, for a cyclic matrix ℑ, if we denote its transpose

by A = ℑT then, for A we need only to have a single

output y = Cx where C = vT such that the pair (A, C)
fulfils the observability rank condition. Thus,

rank





C

CA

..

CAn−1



 = n. (9)

In this case, the following linear change of coordinates

transforms the dynamical system (1-2) into the form (5-7)

(m = 1):

zn = Cx (10)

zn−k = CAkx +

k∑

i=1

pn−iCAk−ixfor1 ≤ k ≤ n − 1 (11)

where (pi)0≤i≤n−1 are the coefficients of the characteristic

polynomial of A :

PA(s) = p0 + p1s + ... + pn−1s
n−1 + sn (12)

and the vector field β(y, u) = (βi(y, u))1≤i≤n is given by:

βn = −pn−1y + Cγ(y, u)

βn−k = −pn−(k+1)y

+

k∑

i=1

pn−iCAi−1γ(y, u) + CAkγ(y, u)for1 ≤ k ≤ n − 1

To finish, take the derivative of z1 given in (11), we obtain:

ż1 = CAnx +

n−1∑

i=1

pn−iCAn−ix + ϕ(y, u). (13)

Therefore, by Cayley-Hamilton’s theorem, we deduce from

(12) expression that:

ż1 = −p0y + ϕ(y, u) = β1(y, u).

Now, if a matrix ℑ is not cyclic, then we need more outputs

to have the observability rank condition. Precisely, if the

Frobenius normal form or rational canonical form of A

contains p blocs then we need at least m ≥ p outputs to

have the observability rank condition. Indeed, assume that

the matrix

A = bloc diag [F1, .., Fm]

where Fi for 1 ≤ i ≤ m are the Companion matrices.

The characteristic polynomial M1 of F1 is the minimal

polynomial of A, and for 2 ≤ i ≤ m the characteristic

polynomial Mi of the bloc Fi devised the characteristic

polynomial Mi−1 of the bloc Fi−1 such that:

PA = M1....Mp.

Moreover, if we denote by ri the degree of Mi, then

r1 + .. + rm = n.



It is well-known that there exists a family of vectors

{vi,1 for 1 ≤ i ≤ m} such that the family {vi,j =
Bjvi,1 for 1 ≤ i ≤ m and 0 ≤ j ≤ ri − 1} is a

basis of Rn. If we set

Ei = span{vi,j for 0 ≤ j ≤ ri − 1}

then it is a A-invariant vector subspace. Thus, AEi ⊆ Ei

and we have:

Rn = E1 ⊕ . . . ⊕ Em.

Let us sst

Ci = vT
i,1 for 1 ≤ i ≤ m

then, we have the following preliminary result:

Claim 1: ideal case

Assume A is cyclic and the output yi = Ci = vT
i,1, then there

exists a linear change of coordinates which transforms the

dynamical system (1-2) into the form (5-7) with αi,j = 0 in

the relation (7).

Proof: For 1 ≤ i ≤ m we have ℑEi ⊆ Ei which

implies that:

CiA
ri =

ri∑

j=1

pi,jCkAj−1. (14)

This last equation plays the part of Cayley-Hamilton’s theo-

rem in the single output m = 1. Therefore the linear change

of coordinates is given as in the beginning of this section for

m = 1. For each 1 ≤ i ≤ m, we set:

zi,ri
= Cix and, for 1 ≤ k ≤ ri − 1

zi,ri−k = CAkx +

k∑

j=1

pi,n−jCAk−jx

IV. GENERAL CASE

In this section, we assume that the number m of the

outputs is great or equal to the number p of Frobinus blocs

of the matrix A. As above (ri)1≤i≤m are the observability

indices of (1-2). Under assumption II and relations (3-4), we

have the following preliminary result.

Lemma 1: There exists a linear change of coordinates

which transforms the dynamical systems (1-2) into the fol-

lowing form:

żi = Aizi + βi(u, z1,r1
, · · · , z1,rm

) (15)

z1,r1
= y1 (16)

zi,ri
= yi −

i−1∑

j=1

rj−ri∑

k=1

pi,j,rj−kCjA
rj−ri−kx (17)

for 2 ≤ i ≤ m

Proof: For sake of clarity, we will give the proof for

m = 2. Recall from equation (4) that we have:

C1A
r1 =

r1−1∑

j=1

p1,1,jC1A
j−1 + q1,2C2

C2A
r2 =

r1−1∑

j=1

p2,1,jC1A
j−1 +

r2−1∑

j=1

p2,2,jC2A
j−1.

Now, it is easy to see that the following change of coordi-

nates:

z1,r1
= C1x,

z1,r1−k = C1A
kx −

k∑

j=1

p1,j,r1−jC1A
k−jx,

and

z2,r2
= C2x −

r1−r2∑

j=1

p2,r1−jC1A
j−1x

z2,r2−k = C2A
kx −

k∑

j=1

p2,j,ri−jC2A
k−jx

−

r1−r2∑

j=1

p2,1,r1−jC1A
k+j−1x

do the work.

Remark 2: The dynamics (15) in lemma 1 are in the form

sought in (5). However, the outputs are not in the form of

(5). Indeed, for 2 ≤ i ≤ m the ith output yi depends on the

formers output y1, . . . , yi−1 and some of their derivatives as

we saw it in formula (17).

Now, we can deduce the following result from lemma 1.

Corollary 1: Assuming hypothesis II and relation (3) then

there exists a linear change of coordinates which solves the

problem 1 if and only if equation 4 is in the following form:

CiA
ri =

i∑

k=1

ri∑

j=1

pi,k,jCkAj−1 +

m∑

k=i+1

qi,kCk. (18)

Thus, for 2 ≤ i ≤ m we have pi,k,j = 0 for all 2 ≤ k ≤ i

and j > ri.

V. CHANGE OF COORDINATES

In this section, we will give the algorithm to compute the

change of coordinates. Let the following family of vectors

{τ1,i}1≤i≤m defined by the following algebraic equations :

CjA
k−1τi,1 = 0 for j < i and 1 ≤ k ≤ ri (19)

CiA
k−1τi,1 = 0 for 1 ≤ k ≤ ri (20)

CiA
ri−1τi,1 = 1 (21)

CjA
k−1τi,1 = 0 for j > i and 1 ≤ k ≤ rj . (22)

Now, we set for all: τj,i = CiA
jτ1,i for 1 ≤ i ≤

m and 1 ≤ j ≤ ri−1. By the observability rank condition

the family {τj,i} is a basis of Rn. Let



θ =





C1

C1A

..

C1A
r1−1

C2

..

Cm

..

CmArm−1





and let

Λ =
[

θτ1,1, ..., θτr1,1, θτ1,2, ..., θτrm,m

]

Now set M = Λ−1θ
Lemma 2: The change of coordinates z = Mx transforms

the dynamical system (1-2) into the form given in lemma 1.

Proof: Let us set for 1 ≤ i ≤ m for 1 ≤ j ≤ ri:

Mτi,j = ∂
∂zi,j

. Now, take the derivative in the direction ∂
∂zi,j

of ż = Mẋ. We obtain for 1 ≤ i ≤ m for 1 ≤ j ≤ ri − 1:

∂

∂zi,j

Mẋ = MAτi,j

= Mτi,j+1 =
∂

∂zi,j+1
.

Therefore, by integration, the dynamic (1) in the new coor-

dinates has the form (5) and the outputs have the form (17).

Now, we will give the equivalent condition (18) of corol-

lary 1 by means of the vectors τi,j .

Corollary 2: Condition (18) is equivalent to the following:

for all 1 ≤ i ≤ m − 1 such that j < i and rj > ri

CjA
kτi,1 = 0 for rj − ri < k ≤ rj (23)

Remark 3: Condition (23) means that for 2 ≤ i ≤ m

output yi do not depend on the derivatives of outputs yj for

j < i.

VI. DISCUSSION ON THE NONLINEAR DYNAMICAL

SYSTEMS

Consider a multi-output nonlinear dynamical system in the

following form:

ẋ = f(x) (24)

y = h(x). (25)

where f is a smooth vector field and h a smooth function

with m-linearly independent components on a neighborhood

of 0 such that f(0) = 0 and h(0) = 0. Let us assume the

regular observability rank condition1. More precisely, if h =
(hi)1≤i≤m then, as for the linear case, there exist integers

r1 ≥ r2 . . . rm (for more details see for example [7]) such

that: rank{dh1, dLfh1, .., dL
r1−1

f h1, .., dhm, .., dL
rm−1

f h1} =

m. In [11], we can fund corresponding vector fields

{τi,1}1≤i≤m by the same equations as in (19-20). Thus:

equations :

dLk−1
f hj(τi,1) = 0 for j < i and 1 ≤ k ≤ ri

dLk−1
f hi(τi,1) = 0 for 1 ≤ k ≤ ri

dLri−1
f hi(τi,1) = 1

dLk−1
f jτi,1 = 0 for j > i and 1 ≤ k ≤ rj .

1locally weakly observable without singularity, i.e. fixe observability
index

And then, we define:

τi,j = [τi,j+1, f ] for 1 ≤ j ≤ ri − 1.

where the [, ] means the Lie bracket. Now, the main differ-

ence between the nonlinear and the linear case is that for the

nonlinear case, we assume in lemma 1 and corollary 2 that

vector fields τi,j commute:

[τi,j , τk,s] = 0. (26)

This last condition is always fulfilled in the linear case

because the vector fields τi,j are constant. Now, for condition

(23) is the same for both case linear one and nonlinear one.

To summer, the important thing to keep in mind is:

• Condition (26), which is always fulfilled in the linear

case, ensures the existence of the coordinate change in

which the dynamic is in form (5),

• Condition (23), ensures that the outputs in the new

coordinates are only functions of the outputs in the

former coordinates.

To end this discussion, we can say that the corollary (1)

provide a necessary condition for the multi-output nonlinear

dynamical systems. Indeed, if we set:

A =
∂f

∂x
(0) itslinearpartat 0

C =
∂h

∂x
(0) itslinearpartat 0

then, the existence of change of coordinates which transforms

the nonlinear dynamical system (24-25) into the canonical

form (5-6) implies the existence of a change of coordinates

which transforms the linear part (A, C) into the canonical

form (5-6). Obviously, it is only a necessary condition,

because this does not guarantee that the linear part is only

function of y and u.

VII. CONCLUSION

This paper dealt with the Brunovsky observability normal

form for a multi-output linear dynamical system. Then, it

gave a comparison between with the stated result and the

well-known results in the nonlinear case.
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