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Delay-Independent Stabilization for Teleoperation

with Time Varying Delay

Hiroyuki Fujita and Toru Namerikawa

Abstract— This paper deals with the stability for nonlinear
teleoperation with time varying communication delays. The pro-
posed method is passivity-based controllers with time varying
gains which depend on the rate of change of time varying delay.
In our proposed method, stability condition is independent of
the magnitude of the communication delay and the damping
of the system. The delay-independent stability is shown via
Lyapunov stability methods. Several experimental results show
the effectiveness of our proposed teleoperation.

I. INTRODUCTION

Teleoperation is the extension of a person’s sensing and

manipulation capability to a remote location and it has

been tackled by researchers in control theory and robotics

over the last few decades. A teleoperation is a dual robot

system which a remote slave robot tracks the motion of a

master robot that is commanded by a human operator. To

improve the task performance, information about the remote

environment is needed. In particular, force feedback from

the slave to the master, representing contact information,

provides a more extensive sense of telepresence. When this

is applied, teleoperation is said to be controlled bilaterally

[1].

In bilateral teleoperation, the master and the slave manip-

ulators are coupled via a communication network and time

delay occurs in transmission of data between the master

and slave site. It is well known that the delays in a close

loop system can destabilize an otherwise stable system.

Recently, essential research interest is attracted by using

the Internet as a communication network for teleoperation.

Using the internet for communication line provides obvious

benefits in terms of low cost and availability. However, this

communication line caused time varying delays due to such

factors as congestion, bandwidth or distance. These varying

delays may degrade performance or even result in an unstable

system. We refer to [1] for a detailed survey of the various

schemes developed for the problem of bilateral teleoperation

and their stability analysis. Therefore, we restrict ourselves

to the discussion of passivity-based methods in bilateral

teleoperation.

Stabilization for a teleoperation with constant delays has

been achieved by scattering transformation based on the idea

of passivity [2]. Then, the additional structure with position

feedforward/feedback controls has proposed to improve the

position coordination and force reflection performance [3],
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[4]. In [5], [6], [7], the P or PD-type controller without scat-

tering transformation has been proposed which guarantees

the stability for the constant communication delay. In these

methods, the position coordination and force reflection have

also been achieved by explicit position feedforward/feedback

control. In these methods, however, teleoperation with time

varying delays has not been guaranteed the stability.

Several researchers have addressed a problem of the tele-

operation with time varying delays and several control meth-

ods based on scattering transformation have been reported.

Some preliminary results are contained in [8], [9]. In [10],

a simple modification of the scattering transformation has

been proposed. The modification is inserting time varying

gains which depend on the rate of change of time delay

into the communication block to guarantee the passivity. In

[11], then, a explicit position feedforward control was added

to improve the position coordination. In [11], however, the

position control gain is not possible to design arbitrarily,

because it is limited to the damping of the system. This

is a severe constraint for position coordination. In [12],

it have proposed control methods without the scattering

transformation. The proposed strategies were a couple of

simple PD-type controllers. However, the position control

gains depend on the upper bound of round-trip delay. When

we use the internet as a communication network, we assume

that the round-trip delay increase unpredictably. This may

cause destabilization of teleoperation system.

In this paper, we propose the control strategy for nonlinear

teleoperation with time varying delay. The proposed method

is a novel passivity based controller that introduces the time

varying gains [10], [11] to the conventional passivity based

controller [7], [13]. In the proposed control strategy, stability

condition is independent of the magnitude of the time delay

and the damping of the system. So we can design control

parameters appropriately. Using Lyapunov theory, the delay-

independent stability of the origin is shown. Experimental

results show the effectiveness of our proposed method.

II. DYNAMICS OF TELEOPERATION

In this paper, we consider a pair of nonlinear robotic
systems coupled via communication line with time varying
delay. Assuming absence of friction or other disturbances,
Euler-Lagrange equations of motion for a n-link master and
slave robot are given as
(

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + Bmq̇m = τm + JT
mFop

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + Bsq̇s = τs − JT
s Fenv

(1)

where the subscript “m” and “s” denote the master and the

slave index, qm, qs ∈ Rn×1 are the joint angle vectors, q̇m,
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q̇s ∈ Rn×1 are the joint velocity vectors, τm, τs ∈ Rn×1 are

the applied torques, Fop ∈ Rn×1 is the operator force vector

applied to the master by human operator, Fenv ∈ Rn×1

is the environmental force vector acting on the slave robot

when in contacts the environment, Mm, Ms ∈ Rn×n are the

inertia matrices, Cmq̇m, Csq̇s ∈ Rn×1 are the centripetal and

Coriolis torques and Bm, Bs ∈ Rn×n are the damping of

the system. Below, we list here fundamental properties of the

master and slave robots [14] that we use in the subsequent

analysis

Property 1: The inertia matrix Mi(q) (i = m, s) is

symmetric positive definite matrix which verifies

λmI ≤ Mi(qi) ≤ λMI (2)

where λm (λM < ∞) denotes the strictly positive minimum

(maximum) eigenvalue of Mi for all configurations qi.

Property 2: Under an appropriate definition of the matrix

Ci, the matrix Ṁi − 2Ci is skew symmetric.

Property 3: The Coriolis and centrifugal terms

Ci(qi, q̇i)q̇i verify

‖Ci(qi, q̇i)q̇i‖ ≤ c0‖q̇i‖
2 (3)

for some bounded constant c0 > 0.

For the human operator and the remote environment, we

assume that

Assumption 1: The human operator and the remote envi-

ronment can be modeled as passive system.

Under above assumption, the human operator is described as

follows
∫ t

0

−FT
op(ξ)rm(ξ)dξ ≥ 0 (4)

And the remote environment is described as follows
∫ t

0

FT
env(ξ)rs(ξ)dξ ≥ 0 (5)

where rm, rs ∈ Rn×1 are the input vectors to the operator

and the environment, respectively.

Assumption 2: The operator and the environmental force

are bounded by functions of the signals rm and rs respec-

tively.

For the communication line, we assume that the forward

and backward communications are delayed by the functions

of time varying delay Tm(t) and Ts(t) as follows

Assumption 3: Tm(t), Ts(t) are continuously differen-

tiable functions and satisfy as follows

0 ≤ Ti(t) < ∞, |Ṫi(t)| < 1, |T̈i(t)| < ∞ i = m, s

where Ṫi(t) are the rate of change of delays. Moreover,

Ṫm(t) can be measured at the slave site and Ṫs(t) can be

measured at the master side. In [12], the detector of the rate

of change delay is proposed.

In addition, for stability analysis as follows we assume that

Assumption 4: All signals belong to L2e, the extended L2

space.

III. CONTROL OBJECTIVES

In [11], [12], stability condition is restricted by the mag-

nitude of the the communication delay and the damping of

the system. So we would like to design the control inputs

τm and τs to achieve as follows

Control objective 1: The teleoperation system with time

varying delay is stable in dependent of the magnitude of the

communication delay and the damping of the system.

And we would like to design to achieve the minimal level

of transparency as follows

Control objective 2: The synchronization of teleoperation

is achieved when the communication delays are constant and

the slave is allowed to move freely.

Control objective 3: The static contact force in slave side

is accurately transmitted to the human operator in the master

side with q̈i = q̇i = 0 when the communication delays are

constant.

IV. CONTROL DESIGN

In order to achieve the delay-independent stability for

teleoperation system, we design the master and slave robot

controller.

A. Feedback Passivation

The master and slave robot inputs are given as,
(

τm(t) = −MmΛq̇m(t) − CmΛqm(t) + Bmqm + Fm(t)

τs(t) = −MsΛq̇s(t) − CmΛqs(t) + Bsqs + Fs(t) (6)

where Λ = diag(λ1, · · · , λn) ∈ Rn×n is a positive definite

diagonal control gain matrix and Fm and Fs are the addi-

tional inputs required for synchronized control in the next

section. Substituting (6) into (1), the master and slave robots

dynamics are represented as
{

Mmṙm(t) + Cmrm(t) = Fop + Fm

Msṙs(t) + Csrs(t) = −Fenv + Fs
(7)

where the vectors rm and rs are the new outputs of the mas-

ter and slave robots. They are defined by linear combinations

of the joint angle and the joint velocity vectors as
{

rm = q̇m + Λqm

rs = q̇s + Λqs
(8)

Then we have the following lemma.

Lemma 1: Consider the systems described by (7). We

define the inputs of master and slave robot dynamics as

F ′

m = Fm + Fop and F ′

s = Fs − Fenv and the outputs

as rm and rs respectively. Then, the systems with the above

inputs and outputs are passive if there is a constant β such

that
∫ t

0

rT
i (ξ)F ′

i (ξ)dξ ≥ −β i = m, s. (9)

Proof: Proof is straightforward. See [14].

Thus, using feedback passivation as (6), the master and

slave robot dynamics are passive with respect to the new

outputs (8) which contain both the joint angle and velocity

vectors. The teleoperation, therefore, can be controlled in the

passivity framework for the joint angle and velocity signals

by new output.
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Fig. 1. Teleoperation System

B. Synchronized Control Law Considering Time Varying

Communication Delays

We propose the following synchronized control low con-

sidering time varying delay,

{

Fm(t) = K
{

ds(t)rs(t − Ts(t)) − rm(t)
}

Fs(t) = K
{

dm(t)rm(t − Tm(t)) − rs(t)
} (10)

where K ∈ Rn×n is a positive definite diagonal control

gain matrix and dm(t), ds(t) ∈ Rn×n are positive diagonal

time varying gain matrices depending on Ṫm(t) and Ṫs(t)
as follow







dm(t) =
√

1 − Ṫm(t) · I

ds(t) =
√

1 − Ṫs(t) · I
(11)

where I ∈ Rn×n is unit matrix. The proposed synchronized

control low considering time varying delay is shown in Fig.

1. Substituting (10) into (7), the closed loop systems can be

described as
{

Mmṙm + Cmrm = Fop + K
{

ds(t)rs(t − Ts(t)) − rm

}

Msṙs + Csrs = −Fenv + K
{

dm(t)rm(t − Tm(t)) − rs

}

(12)

V. STABILITY ANALYSIS

In this section, we analyze the proposed synchronized

control law considering time varying communication delays.

Theorem 1: Consider the system described by (12). Then,

under Assumptions 1-4, the teleoperation system is delay-

independent stable and the new outputs of master and slave

robots via time varying gains error are asymptotically stable.

This theorem shows that Control objective 1 is achieved.
Proof: Define a function for the system with respect to

state vector x(t) = [rT
m(t) rT

s (t)]T as

V (x, t)= r
T
m(t)Mmrm(t) + r

T
s (t)Msrs(t)

+

Z t

t−Tm(t)

r
T
m(ξ)Krm(ξ)dξ +

Z t

t−Ts(t)

r
T
s (ξ)Krs(ξ)dξ

+2

Z t

0

n

F
T
env(ξ)rs(ξ)

o

dξ + 2

Z t

0

n

−F
T
op(ξ)rm(ξ)

o

dξ

(13)

First, we prove that the function V is positive semi-definite.

In (13), Mm and Ms are positive definite (by Property 1), K

is positive semi-definite and the operator and the environment

are passive (by Assumption 1). Thus, the function V is

positive semi-definite. The derivative of this function V along

solution trajectories of the system with the Property 2 is

given by

V̇ =2ds(t)r
T
mKrs(t − Ts(t)) − 2rT

mKrm

+2dm(t)rT
s Krm(t − Tm(t)) − 2rT

s Krs

+rT
mKrm−

(

1 − Ṫm(t)
)

rT
m(t − Tm(t))Krm(t − Tm(t))

+rT
s Krs−

(

1 − Ṫs(t)
)

rT
s (t − Ts(t))Krs(t − Ts(t)).

(14)

Substituting (11) into (14), we can get

V̇ =2

√

1 − Ṫs(t)r
T
mKrs(t − Ts(t)) − 2rT

mKrm

+2

√

1 − Ṫm(t)rT
s Krm(t − Tm(t)) − 2rT

s Krs

+rT
mKrm−

(

1 − Ṫm(t)
)

rT
m(t − Tm(t))Krm(t − Tm(t))

+rT
s Krs −

(

1 − Ṫs(t)
)

rT
s (t − Ts(t))Krs(t − Ts(t)).

(15)

The above equation is easily transformed into the following
equation

V̇ =−{rm−ds(t)rs(t − Ts(t))}
T
K{rm−ds(t)rs(t − Ts(t))}

−{rs−dm(t)rm(t − Tm(t))}T
K{rs−dm(t)rm(t − Tm(t))} .

(16)

Thus, the derivative of the Lyapunov function V̇ is negative

semi-definite. Since V is lower-bounded by zero and V̇ is

negative semi-definite, we can conclude that the signals rm,

rs are bounded by using Lyapunov theory. Moreover (16)

shows rm(t) − ds(t)rs(t − Ts(t)) and rs(t) − dm(t)rm(t −
Tm(t)) ∈ L2. Note that Laplace transform of (8) yields

strictly proper, expotentially stable, transfer functions be-

tween rm, rs and qm, qs are given as

Qi(s) =







1

s+λ1

· · · 0
...

. . .
...

0 · · · 1

s+λn






Ri(s) (17)

where “s” is the Laplace variable, the Ri(s) and Qi(s) are

the Laplace transform of the ri and qi respectively. Since

rm, rs ∈ L∞ and (17), the outputs of system will have

the property q̇m, qm, q̇s and qs ∈ L∞. Consequently, the

teleoperation system is delay-independent stable.

Furthermore, we show that the new outputs of master and

slave robots via time varying gains errors are asymptotically

stable. From Assumption 2, the operational and environmen-

tal force are bounded by the function of the rm, rs as Fop,

Fenv . From (10), it is easy to see that Fm, Fs ∈ L∞. Then,

we can get that τm, τs ∈ L∞. From (1), Property 1 and

3, the master and slave robot accelerations are bounded as

q̈m, q̈s ∈ L∞. They show ṙm, ṙs ∈ L∞. The derivative of
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rm(t) − ds(t)rs(t − Ts(t)) is given by

d

dt

{

rm(t) −

√

1 − Ṫs(t)rs(t − Ts(t))

}

= ṙm(t) −
1

2

(

1 − Ṫs(t)
)

−
1

2

(

−T̈s(t)
)

rs(t − Ts(t))

−
(

1 − Ṫs(t)
)

3

2

ṙs(t − Ts(t)) (18)

Using Assumption 3 and ri, ṙi ∈ L∞, the above equation
d
dt
{rm(t) − ds(t)rs(t − Ts(t))} ∈ L∞. Similarly,

d
dt
{rs(t) − dm(t)rm(t − Tm(t))} ∈ L∞. This implies

that the new outputs of master and slave robots via time

varying gains errors are asymptotically stable as follow

lim
t→∞

{rm(t) − ds(t)rs(t − Ts(t))}

= lim
t→∞

{rs(t) − dm(t)rm(t − Tm(t))} = 0 (19)

(see [15]).

In our proposed control strategy, although the teleoperation

system is delay-independent stable, the position coordination

can not be achieved under time varying delay. But if commu-

nication delay is constant, our proposed control structure is

equivalent to reference [13]. In this case, therefore, the posi-

tion coordination and the static force reflection are achieved

(see [7], [13]). This means that Control objective 2 and

Control objective 3 are achieved. So our proposed method

append delay-independent stability under time varying delay

to the control method in [13].

Remark 1: In our proposed method, not only velocity

signals but also position signals are scaled by the time

varying gains unlike [12]. So, when the delayed change is

several times, it is insufficient for the performance of the

force reflection and the master-slave position coordination.

In our proposed method, however, stability condition is in-

dependent of the magnitude of the communication delay and

the damping of the system. So, unlike references [11], [12],

the gains of our proposed control law can be selected at the

appropriate values and stability of our proposed teleoperation

system is guaranteed for unpredictable delay increase.

VI. EVALUATION BY CONTROL EXPERIMENTS

In this section, we verify the efficiency of the proposed

teleoperation methodology. The experiments were carried out

on a pair of identical direct-drive planar 2 links revolute-joint

robot as shown in Fig. 2. The inertia matrices and the Coriolis

matrices are identified

Mm = Ms =

[

θ1 + 2θ3 cos(q2) θ2 + θ3 cos(q2)
θ2 + θ3 cos(q2) θ2

]

Cm = Cs =

[

−θ3 sin(q2)q̇2 −θ3 sin(q2)(q̇1 + q̇2)
θ3 sin(q2)q̇1 0

]

θ1 = 0.366[kgm2 ], θ2 = −0.0291[kgm2 ], θ3 = 0.0227[kgm2 ]

A remote environment is using a hard aluminium wall

covered by a rubber on the slave side as shown in Fig. 3. We

also measure the operational and the environmental torque

using the force sensors. For implementation of the controllers

��	�
�����


�	�

������


�
��

�
�������
�


Fig. 2. Experimental setup

Fig. 3. Remote environment and slave

and communication line, we use a dSPACE system (dSPACE

Inc.) and 2.5 [ms] sampling rate is obtained.

To show the relationship between the magnitude of the

communication delay and the performance, the experiments

have been carried out with two versions of artificial time

varying communicaition delays as

• Small time delays shown as Fig. 4

• Large time delays shown as Fig. 5

In normal times, the magnitude of the small time delays

are 0.2 [s] and the magnitude of the large time delays are 0.7

[s]. But we consider unpredictable delay increase caused by

using the internet as a communication line, the time delays

increase temporarily 0.3 [s] in about 9-15 [s] and 18-24 [s].

Under these conditions, the time varying gains dm(t) and

ds(t) are shown as Fig. 6.

The controller parameters K and Λ are selected as

K =

[

2.5 0
0 1.3

]

, Λ =

[

5.7 0
0 4

]

(20)

Two kind of experimental conditions are given as follow

• Case 1: The slave moves without any contact.

• Case 2: The slave moves in contact with environment.

Fig. 7 shows the results of Case 1 with small time

varying delays and Fig. 9 shows the results of Case 1 with

large time varying delays. They exemplify time responses

of joint angle and operational torque signals. These figures

illustrate that the proposed teleoperation is delay-independent

stable and when the communication delay increase severely,
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the teleoperation is stable. Moreover, The joint angles of

the slave virtually track the joint angles of the master.

Because when the communication delay is constant, the

master-slave position coordination is achieved. On the other

hand, comparing Fig. 7 with Fig. 9, it is explicit that the

operational torque is bigger in case of the large time delays.

This means operational performance degradation in case of

the large time delays. So, our proposed method guarantees

that the teleoperation is delay-independent stable, but the

operational performance depends heavily on the magnitude

of the communication delays.

Fig. 8 shows the results of Case 2 with small time

varying delays and Fig. 10 shows the results of Case 2 with

large time varying delays. They illustrate time resoponses

of joint angle signals and operational, environmental torque

signals. These figures demonstrate when the slave robot is

contacting the environment, the proposed teleoperation is

stable and the contact force is almost reflected to the operator.

So the operator can perceive the environment through the

torque reflection. Because when the communication delay is

constant, the static force reflection is achieved.

VII. CONCLUSIONS

In this paper, we proposed the control strategy for nonlin-

ear teleoperation system with time varying communication

delay. The proposed method was a novel passivity based

controller that introduces the time varying gains [10], [11]

to the conventinal passivity based controller [7], [13]. In

the proposed control strategy, the stability condition was

independent of the magnitude of the communication delay

and the damping of system. So we could design control

parameters appropriately. Using Lyapunov stability methods,

the delay-independent stability of origin was shown. Finally,

several experimental results showed the effectiveness of our

proposed framework.
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Fig. 7. Time responses in Case 1 (small time delays)
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Fig. 8. Time responses in Case 2 (small time delays)
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Fig. 9. Time responses in Case 1 (large time delays)
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Fig. 10. Time responses in Case 2 (large time delays)
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