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Abstract— In the context of dynamic optimization, plant
variations necessitate adaptation of the input profiles in order
to guarantee both feasible and optimal operation. For those
problems having path constraints, two sets of directions can
be distinguished in the input space at each time instant: the
so-called sensitivity-seeking directions, along which a small
input variation does not affect the active path constraints;
the complementary constraint-seeking directions, along which
a variation affects the path constraints. Hence, three selective
input adaptations are possible, namely, adaptation along each
set of input directions and adaptation of the switching times be-
tween arcs. This paper considers parametric variations around
a nominal optimal solution and quantifies the influence of these
variations on each type of input adaptation.

Index Terms— Parametric optimal control, change in optimal
inputs, second-order sufficient conditions, constraint-seeking
and sensitivity-seeking directions, change in switching times.

I. INTRODUCTION

Optimal operation of dynamic processes subject to oper-
ational constraints falls into the scope of dynamic optimiza-
tion. Dynamic optimization is useful in the process industry
for reducing production costs, improving product quality,
and meeting strict safety requirements and environmental
regulations.

In nominal dynamic optimization, the uncertainty in pro-
cess operation is discarded. That is, the optimal input profiles
are calculated off-line using numerical optimization and are
applied to the process in an open-loop manner. Such a pro-
cess operation can be highly sensitive to process uncertainty,
which includes plant-model mismatch, process disturbances
and variations in initial conditions. This situation is compli-
cated by the fact that a sufficiently accurate process model
can rarely be obtained in practice.

This paper considers plant-model mismatch in the form
of parametric variations. If some parameters deviate from
their nominal values, a change in optimal inputs is required
to maintain optimality and meet operational constraints. In
practice, it is rarely possible to adapt all parts of optimal
input profiles, nor is this necessary from a performance
viewpoint. Highest priority should be given to the selective
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adaptation that results in acceptable performance loss com-
pared to optimal operation of the perturbed process.

These considerations provide a strong motivation for the
development of selective input-adaptation strategies. For
problems comprising path constraints, possibly of the mixed
input-state type, this paper proposes the novel concept of
distinguishing, at each time instant, between two sets of
directions in input space: the so-called sensitivity-seeking
directions, along which a small input variation causes no
change in the value of the active path constraints, and
the directions orthogonal to them, called constraint-seeking
directions, along which a variation does affect the path con-
straints. This way, three complementary input adjustments
are obtained, namely, adaptation along each set of input
directions and adaptation of the switching times between
successive arcs (in the presence of multiple arcs). An im-
portant contribution of this paper concerns the derivation of
quantitative expressions for the three types of input variations
caused by parametric variations.

A possible application of these results is in the field of
a recently developed methodology called NCO tracking [1],
which converts a constrained optimization problem into a
feedback control problem and uses process measurements to
enforce optimality. Because not all parts of the input profiles
can or need to be adapted, the ability to assess selective-
adaptation strategies is indeed key in developing practical
NCO-tracking controllers.

The outline of the paper is as follows. The mathemati-
cal formulation of the parametric optimal control problem
is given in Section II, which also presents the necessary
conditions of optimality. In Section III, the sensitivity- and
constraint-seeking directions are defined. Quantitative ex-
pressions of the optimal input variations in the constraint-
and sensitivity-seeking directions and in the arc switching
times, caused by small parametric variations around a nom-
inal solution, are derived in Sections IV and V, respectively.
Section VI presents an illustrative example. Finally, Sec-
tion VII concludes the paper and proposes future research
directions.

II. PARAMETRIC OPTIMAL CONTROL PROBLEM

The following parametric optimal control problem in the
parameters θ, subject to the mixed control-state inequality
path constraints Ω, with given initial time t0 and terminal
time tf , is considered (OC(θ)):

ẋ(t) = f(t,x(t),u(t),θ); x(t0) = h(θ), (1)
Ωi(t,x(t),u(t),θ) ≤ 0, i ∈ IΩ, (2)
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min
u

ψ(tf ,x(tf),θ)+

∫ tf

t0

φ(t,x(t),u(t),θ)dt, (3)

where u(t) ∈ IR
nu , x(t) ∈ IR

nx , and IΩ := {1, . . . , nΩ}.
Let the nominal values of the system parameters be θ0,

and let (u∗,x∗) be an optimal pair for the problem OC(θ0).
The following first-order necessary conditions of optimality
must hold almost everywhere (a.e.) in [t0, tf ] [2]:

0 = Hu(t,x∗(t),u∗(t),λ∗(t),µ∗(t),θ0), (4)

where λ∗ and µ∗ are vector functions satisfying:

λ̇∗(t) = −Hx(t,x∗(t),u∗(t),λ∗(t),µ∗(t),θ0), (5)
λ∗(tf) = ψx(tf ,x

∗(tf),θ0),

0 = µ∗

i (t)Ωi(t,x
∗(t),u∗(t),θ0), ∀i ∈ IΩ, (6)

and the Hamiltonian function, H, is defined as

H(t,x,u,λ,µ,θ) := φ(t,x,u,θ) + λT
f(t,x,u,θ)

+ µT
Ω(t,x,u,θ).

The key assumptions throughout the paper are that (i)
the nominal optimal inputs u

∗ consist of finitely many arcs,
and (ii) the second-order sufficiency conditions (SOSC) for
differentiability of the optimal solution, as described in [3]
and [4], hold. In particular, the Hamiltonian function is
assumed to be regular, which implies that the optimal inputs
u
∗ are continuous in [t0, tf ].
During process operation, the value of the system parame-

ters can deviate from their nominal values θ0. To compensate
for the effect of such variations, it becomes necessary to
adapt the input profiles in such a way that they satisfy the
optimality conditions for the perturbed problem.

III. CONSTRAINT- AND SENSITIVITY-SEEKING
DIRECTIONS

In this section, we characterize the constraint- and
sensitivity-seeking directions in input space for small pertur-
bations in the neighborhood of the nominal optimal inputs.

Let the structure of the nominal optimal inputs be such
that the constraint Ωi is active on Ni disjoint intervals
[aiki

, biki
] ⊂ [t0, tf ], ∀ki ∈ {1, . . . , Ni}. Hence, for i ∈ IΩ

and for all t ∈ Ti := {[ai1, bi1], . . . , [aiNi
, biNi

]}, we have:

Ωi(t,x
∗(t),u∗(t),θ0) = 0.

The time instants aiki
and biki

are labeled the switching times
associated with the constraint Ωi.

Note that there might be overlap between some (or all)
of the intervals {[ai1, bi1], . . . , [aiNi

, biNi
]} for various con-

straints i ∈ IΩ. Hence, different numbers of constraints may
be active at different time instants. The vector of active con-
straints at time t will be denoted by Ω

a(t,x∗(t),u∗(t),θ0).
When the number of active constraints at time t, nΩa(t),

is larger than zero but less than the number of inputs nu,
two sets of directions can be distinguished in the input
space depending on whether or not the active constraints
are modified by taking an infinitesimal step along these
directions.

Definition 1 (Sensitivity- and Constraint-seeking Directions):
A direction in the input space IR

nu along which an
infinitesimal variation from the nominal inputs u

∗(t) at
a given time t does not modify the active constraints
Ω

a(t,x∗(t),u∗(t),θ0) is called a sensitivity-seeking
direction at t. All the remaining directions in IR

nu

orthogonal to the set of sensitivity-seeking directions are
called constraint-seeking directions at t.

From the regularity condition in SOSC, we see that the
Jacobian matrix Ω

a
u

must be full rank at u
∗(t) a.e. in [t0, tf ].

As proposed in [5], the singular value decomposition (SVD)
of the Jacobian matrix Ω

a
u can be used to compute the

constraint- and sensitivity-seeking directions:

Ω
a
u(t,x∗(t),u∗(t),θ0) = U(t)Σ(t)V(t)T ,

where Σ(t) is a (nΩa × nu) matrix function of the form

Σ(t) =
[

Σc(t) 0nΩa×(nu−nΩa )

]

with

Σc(t) :=









σ1(t)
. . .

σnΩa (t)









.

U(t) and V(t) are nΩa × nΩa and nu × nu orthogonal
matrix functions. Writing V(t) as

[

Vc(t) Vs(t)
]

, where
Vc(t) and Vs(t) are nu×nΩa and nu× (nu−nΩa) matrix
functions gives

Ω
a
u
(t,x∗(t),u∗(t),θ0) = U(t)Σc(t)Vc(t)

T , (7)

along with the identities:

Vc(t)
T
Vc(t) = InΩa ,

Vs(t)
T
Vs(t) = I(nu−nΩa ),

Vc(t)
T
Vs(t) = 0nΩa×(nu−nΩa ),

Vs(t)
T
Vc(t) = 0(nu−nΩa )×nΩa .

(8)

Property 2 (Constraint- and Sensitivity-seeking Directions):
The columns of the orthogonal matrices Vc(t) and Vs(t)
span the subspaces of constraint- and sensitivity-seeking
directions at time t, respectively.

Based on Property 2, input-variation functions ξu :
[t0, tf ] → IR

nu can be split, at each time t, as:

ξu(t) = Vc(t)ξ
u

c (t) + Vs(t)ξ
u

s (t),

with ξ
u

c : [t0, tf ] → IR
nΩa and ξ

u

s : [t0, tf ] → IR
nu−nΩa

standing for the projections of ξu in the constraint- and
sensitivity-seeking subspaces, respectively. Using (8), these
latter functions are obtained as:

ξu

c (t) = Vc(t)
T ξu(t),

ξu

s (t) = Vs(t)
T ξu(t).

(9)
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IV. VARIATIONS IN CONSTRAINT- AND
SENSITIVITY-SEEKING DIRECTIONS

In this section, we derive expressions for the first-order
variations in optimal inputs along both the constraint-seeking
and sensitivity-seeking directions, as caused by small varia-
tions of the parameters θ in the directions ξθ.

Let us assume that, when the parameters change from θ0

to θ̃(η) := θ0+ηξθ, with |η| � 1, the optimal inputs change
from u

∗ to ũ
∗, i.e., ũ

∗ is the optimal input for the perturbed
problem. Let us denote by x̃

∗, λ̃
∗

, and µ̃∗ the corresponding
perturbed states, adjoints and multiplier functions.

The SOSC ensure that the solution of the optimal control
problem is differentiable with respect to η at η = 0,
a.e. in [t0, tf ]. Therefore, there exists δ > 0 such that
∀η ∈ Bδ(0), a first-order approximation of the 4-tuple
(x̃∗(t; η), ũ∗(t; η), λ̃

∗

(t; η), µ̃∗(t; η)) is obtained as:

x̃
∗(t; η) = x

∗(t) + ηξx(t) +O(η2),

ũ
∗(t; η) = u

∗(t) + ηξu(t) +O(η2),

λ̃
∗

(t; η) = λ∗(t) + ηξλ(t) +O(η2),

µ̃∗(t; η) = µ∗(t) + ηξµ(t) +O(η2).

(10)

Moreover, the vector functions ξu, ξx, ξλ and ξµ obey
the following linear two-point-boundary-value problem (TP-
BVP) a.e. in [t0, tf ]:1

ξ̇
x

(t) = fx[t]ξx(t) + fu[t]ξu(t) + fθ[t]ξθ, (11)

ξx(t0) = hθ(θ0)ξ
θ,

0 = Hux[t]ξx(t) + Huu[t]ξu(t) + Huλ[t]ξλ(t) (12)

+ Huµ[t]ξµ(t) + Huθ[t]ξθ,

ξ̇
λ
(t) = −Hxx[t]ξx(t) −Hxu[t]ξu(t) (13)

−Hxλ[t]ξλ(t) −Hxµ[t]ξµ(t) −Hxθ[t]ξθ,

ξλ(tf) = ψxx[tf)ξ
x(tf) + ψxθ[tf)ξ

θ,

0 = diag(Ω[t])ξµ(t) + diag(µ∗(t))
{

Ωx[t]T ξx(t)

+Ωu[t]T ξu(t) + Ωθ[t]T ξθ
}

. (14)

Note that the continuity of x
∗ and λ∗ in [t0, tf ] ensures that

the variation functions ξx and ξλ are themselves continuous
in [t0, tf ], including at the switching times. On the other
hand, the variation functions ξu and ξµ may be discontin-
uous at the switching times; for the input variation ξuk , for
instance, the following relation holds at the switching time
t∗ki

:

ξuk (t∗+ki
) = ξuk (t∗−ki

) +
[

u̇∗k(t∗+ki
) − u̇∗k(t∗−ki

)
]

ξtki , (15)

where ξtki stands for the variation in switching time (see
Section V).

1For sake of notational simplicity, the following compact notation is used
subsequently:

y[t] := y(x∗(t), u∗(t), λ∗(t), µ∗(t), θ0),

ỹ[t] := y(x̃∗(t), ũ∗(t), λ̃
∗

(t), µ̃∗(t), θ̃).

By combining (12) and (14), and after basic algebraic
manipulations, one obtains:
[

ξu(t)

ξµ(t)

]

=

[

A1(t)

A2(t)

]

ξλ(t) +

[

B1(t)

B2(t)

]

ξx(t) +

[

C1(t)

C2(t)

]

ξθ,

(16)

where
[

A1(t)

A2(t)

]

:= −M(t)−1

[

Huλ[t]

0

]

,

[

B1(t)

B2(t)

]

:= −M(t)−1

[

Hux[t]

diag(µ∗(t))Ωx[t]T

]

,

[

C1(t)

C2(t)

]

:= −M(t)−1

[

Huθ[t]

diag(µ∗(t))Ωθ[t]T

]

,

and

M(t) :=

[

Huu[t] Huµ[t]

diag(µ∗(t))Ωu[t]T diag(Ω[t])

]

.

In particular, M(t) is known to be nonsingular a.e. in [t0, tf ]
from the SOSC.

Next, the generalized backward sweep method is applied
to eliminate ξ

λ from (16) [6]. By setting

ξλ(t) = S
x(t)ξx(t) + S

θ(t)ξθ, (17)

and substituting it in (13), it can be shown, after appropriate
rearrangements using (16), that S

x(t) and S
θ(t), called the

sweep matrices, must satisfy the following Riccati differen-
tial equations:

Ṡ
x(t) = − S

x(t)Hxλ[t] −Hxλ[t]T S
x(t) −Hxx[t]

− {Hxu[t] + S
x(t)Hλu[t]}K

x(t),

S
x(tf) =ψxx(tf),

(18)

and

Ṡ
θ(t) = − S

x(t)Hθλ[t] −Hxλ[t]T S
θ(t) −Hxθ[t]

−
{

Hxu[t] + S
θ(t)Hλu[t]

}

K
θ(t),

S
θ(tf) =ψxθ(tf),

(19)

where

K
x(t) :=

[

K
x
1 (t)

K
x
2 (t)

]

=

[

A1(t)

A2(t)

]

S
x(t) +

[

B1(t)

B2(t)

]

,

K
θ(t) :=

[

K
θ
1 (t)

K
θ
2 (t)

]

=

[

A1(t)

A2(t)

]

S
θ(t) +

[

C1(t)

C2(t)

]

.

(20)

Using (17) in (16) gives:

ξu(t) = K
x

1 (t)ξx(t) + K
θ
1(t)ξθ,

ξµ(t) = K
x

2 (t)ξx(t) + K
θ
2(t)ξθ.

(21)

In turn, ξu(t) can be substituted in (11) to compute ξx(t)
as a function of ξθ only:

ξ̇
x

(t) = {fx[t] + fu[t]Kx

1 (t)} ξx(t)

+
{

fθ[t] + fu[t]Kθ
1 (t)

}

ξθ,
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with the initial conditions ξ
x(t0) = hθ(θ0). The solution

of this inhomogeneous linear differential equation can be
written as

ξ
x(t) = Ξ(t)ξθ, (22)

where

Ξ(t) := Φ(t− t0)hθ(θ0)

+

∫ t

t0

Φ(t− τ)
{

fθ[τ ] + fu[τ ]Kθ
1 (τ)

}

dτ,

and Φ(t) satisfies

Φ̇(t) = {fx[t] + fu[t]Kx

1 (t)}Φ(t); Φ(0) = Inx
. (23)

In summary, the expressions linking the first-order variations
in inputs, states, adjoints and multipliers to the parameter
variations can be written collectively as:











ξx(t)

ξu(t)

ξλ(t)

ξµ(t)











=





















Inx

K
x
1 (t)

S
x(t)

K
x
2 (t)











Ξ(t) +











0nx×nθ

K
θ
1(t)

S
θ(t)

K
θ
2(t)





















ξθ. (24)

Next, we need to express the variations ξu(t) in terms
of variations along the constraint- and sensitivity-seeking
directions.

• Input Variation ξu

c along Constraint-seeking Directions:

The path constraints must be satisfied by both the nominal
and perturbed optimal inputs. Hence, the first variation of the
path constraints perturbed in the direction (ξx(t), ξu(t), ξθ)
at (x∗(t),u∗(t),θ0) must be zero:

0 =
∂

∂η
Ω̃

a
[t]

∣

∣

∣

∣

η=0

= Ω
a
x[t]ξx(t) + Ω

a
u[t]ξu(t) + Ω

a
θ[t]ξθ.

Using (7), (9) and (24), this equation can be rearranged as

{Ωa
x
[t]Ξ(t) + Ω

a
θ[t]} ξθ = −U(t)Σc(t)Vc(t)

T ξu(t),

= −U(t)Σc(t)ξ
u

c (t).

From (7), it is seen that U(t)Σc(t) = Ω
a
u
[t]Vc(t) and

Ω
a
u[t]Vc(t) is always invertible. Therefore,

ξu

c (t) = −{Ωa
u
[t]Vc(t)}

−1 {Ωa
x
[t]Ξ(t) + Ω

a
θ[t]} ξθ. (25)

• Input Variation ξ
u

s along Sensitivity-seeking Directions:

Both the nominal and perturbed optimal inputs must also
satisfy the optimality conditions (4), i.e., the first variation
of Hu at (x∗(t),u∗(t),λ∗(t),µ∗(t),θ0) in the direction
(ξx(t), ξu(t), ξλ(t), ξµ(t), ξθ) must be zero:

0 =
∂

∂η
H̃u[t]

∣

∣

∣

∣

η=0

=Hux[t]ξx(t) + Huu[t]ξu(t) + Huλ[t]ξλ(t)

+ Huµ[t]ξµ(t) + Huθ[t]ξθ.

Substituting the values of ξx(t), ξλ(t) and ξµ(t) from (24)
and rearranging gives

ξu(t) = −Huu[t]−1
{

Zx(t)Ξ(t) + Zθ(t)
}

ξθ,

where

Zx(t) := Hux[t] + Huλ[t]Sx(t) + Huµ[t]Kx

2 (t),

Zθ(t) := Huθ[t] + Huλ[t]Sθ(t) + Huµ[t]Kθ
2(t).

The nonsingularity of Huu along the nominal solution
follows directly from the SOSC (strict Legendre-Clebsch
condition). Finally, using (9), one obtains:

ξu

s (t) = −Vs(t)
THuu[t]−1

{

Zx(t)Ξ(t) + Zθ(t)
}

ξθ.

(26)

V. VARIATIONS OF SWITCHING TIMES

Consider the switching time t∗ki
associated with the con-

straint Ωi in the nominal optimal solution. Without loss
of generality, suppose that Ωi[t

∗−

ki
] < 0 and Ωi[t

∗+
ki

] =
0, i.e., t∗ki

is an entry time for that constraint. From the
differentiability of the optimal solution with respect to η at
η = 0 (SOSC), there exists δ > 0 such that, ∀η ∈ Bδ(0),
a first-order approximation of the switching time for the
perturbed optimal system t̃∗ki

is as follows:

t̃∗ki
(η) = t∗ki

+ ηξtki + o(η). (27)

Following the ideas in [7], define uuc as the unconstrained
inputs obtained by extrapolating the input trajectories beyond
the switching instant t∗ki

in such a way that they still satisfy
the same optimality conditions as at t∗−ki

. Let the state
trajectories corresponding to uuc be denoted by xuc, and
define the functions ωi and ω̃i as

ωi[t] := Ωi(t,x
∗

uc(t),u
∗

uc(t),θ0),

ω̃i[t] := Ωi(t, x̃
∗

uc(t; η), ũ
∗

uc(t; η), θ̃(η)).

Note that ωi[t
∗+
ki

] = 0 and ω̃i[t
∗+
ki

+ ηξtki ] = 0, ∀η ∈
Bδ(0), which leads to

0 =
∂

∂η
ω̃i[t

∗+
ki

]

∣

∣

∣

∣

η=0

=(ωi)t[t
∗+
ki

]ξtki + (ωi)x[t∗+ki
]
{

ξxuc(t
∗+
ki

) + ẋ(t∗+ki
)ξtki

}

+ (ωi)u[t∗+ki
]
{

ξuuc(t
∗+
ki

) + u̇(t∗+ki
)ξtki

}

+ (ωi)θ[t∗+ki
]ξθ,

= {(ωi)t + (ωi)xẋuc + (ωi)uu̇uc}t
∗+

ki

ξtki

+
{

(ωi)xξ
x

uc + (ωi)uξ
u

uc + (ωi)θξ
θ
}

t∗+

ki

.

Hence, assuming, as in [7], that ω̇i is non-zero at t∗+ki
gives:

ξtki = −
1

ω̇i

{

(ωi)xξ
x

uc + (ωi)uξ
u

uc + (ωi)θξ
θ
}

t
∗+

ki

.

Since, by construction, the unconstrained inputs uuc are
continuous across the switching time t∗ki

, so are the response
trajectories xuc, and the corresponding variations are them-
selves continuous:

ξuuc(t
∗+
ki

) = ξuuc(t
∗−

ki
), and ξxuc(t

∗+
ki

) = ξxuc(t
∗−

ki
).

Moreover, the unconstrained inputs being the same as the
nominal optimal inputs up to t∗−ki

, one can write:

ξuuc(t
∗−

ki
) = ξu(t∗−ki

), and ξxuc(t
∗−

ki
) = ξx(t∗−ki

),
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that is,

ξtki = −
1

ω̇i

{

(ωi)xξ
x + (ωi)uξ

u + (ωi)θξ
θ
}

t
∗−

ki

.

Finally, expressing ξx(t∗−ki
) and ξu(t∗−ki

) from (24) gives

ξtki = −
1

Ω̇i[t
∗−

ki
]

{

Gx(t)Ξ(t) + Gθ(t)
}

t
∗−

ki

ξθ, (28)

where

Gx(t) := (Ωi)x[t] + (Ωi)u[t]Kx

1 (t),

Gθ(t) := (Ωi)θ[t] + (Ωi)u[t]Kθ
1(t).

Notice the analogy among (25), (26) and (28).

VI. ILLUSTRATIVE EXAMPLE

Consider the following parametric optimal control prob-
lem with one input variable and one path constraint:

min
u

∫ 1

0

(

x2
1(t) + x2

2(t) + 0.005u2(t)
)

dt, (29)

s.t. ẋ1(t) = x2(t); x1(0) = 0,

ẋ2(t) = −x2(t) + θ u(t); x2(0) = −0.2,

x2(t) − u(t) + 0.5− 8(t− 0.5)2 ≤ 0, 0 ≤ t ≤ 1,

where θ stands for the uncertain system parameter, with
nominal value θ0 = 1.

This problem is first solved using a direct sequential
approach [8] with a piecewise-affine input parameterization
on 90 non-equal time stages. The nominal optimal input
u∗ for Problem (29) consists of 3 arcs: an interior arc,
followed by a boundary arc, and finally another interior arc.
The optimal input is depicted in the top plot of Figure 1,
while the path constraint is shown in the bottom plot. The
corresponding optimal cost value and switching times t∗1 and
t∗2 are reported in Table I.

TABLE I
OPTIMAL NOMINAL SOLUTION: COST VALUE AND SWITCHING TIMES.

Cost t∗
1

t∗
2

θ0 = 1 6.628 10−3 0.157 0.880

Regarding the methodology presented in Sections IV and
V, one can calculate the variation functions ξu, ξx, ξλ and
ξµ following a variation of the system parameter θ such that
ηξθ = 1. The input variation ξu(t) can be split into the
contributions ξu

c (t) and ξu
s (t) (Figure 2). With a single input

and the constraint active only in [t∗1, t
∗

2], the functions ξu
c (t)

and ξu
s (t) are not defined for all t in [t0, tf ]. Observe that the

variation is much larger in the sensitivity-seeking direction
than in the constraint-seeking direction. The discontinuity
in input variation at t∗1 and t∗2 is a consequence of the
discontinuity in the time derivative of the optimal input
— see (15) and Figure 1. Moreover, the variations of the
switching times t∗1 and t∗2 are computed as:

ξt1 ≈ −0.1090, and ξt2 ≈ 0.0567,
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Fig. 1. Optimal nominal solution: optimal input (red solid line) and path
constraint (blue dotted line).

an indication that the switching time t∗1 decreases, while t∗2
increases for 0 < η � 1.

To illustrate the effect of selective input adaptation, a
scenario is considered next wherein the system parameter
θ is decreased by 25% (i.e., ηξθ := −0.25). A strategy
that selectively adapts the input profile along the sensitivity
seeking direction as well as the switching times is shown
in Figure 3; that is, no adaptation is made in the constraint
seeking directions. Also shown in this figure are the nominal
input profile along with the optimal input profile for the
perturbed system for θ̃ = 0.75.

The lower plot in Figure 3 shows that the path constraint
is satisfied in each case. In terms of performance, it is found
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Fig. 2. Variation of the optimal input for ηξθ = 1: input variation along
the constraint-seeking directions (dashed line) and the sensitivity-seeking
directions (solid line).
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Fig. 3. Comparison of results of selective input adpatation with those of
perturbed and nominal optimal systems: input profile (top plot) and path
constraint (bottom plot).

that the selective adaptation strategy yields a cost of 5.910×
10−3, which is fairly close to the optimal cost for perturbed
system, which is 5.836×10−3, in comparison to the nominal
cost of 7.534 × 10−3. Accordingly, much of the optimality
loss incurred by the parametric variation can be recovered
without the need to adapt the input profile along constraint-
seeking directions.

VII. CONCLUSIONS

Plant variations cause changes in the solution of optimal
control problems. This paper has considered parametric
variations and quantified these changes under the assumption
of SOSC.

When the number of active constraints at a given time is
less than the number of inputs, there exist input directions
along which an infinitesimal step from the nominal values
does not modify the active constraints. These directions have
been labeled sensitivity-seeking directions. The remaining
directions in IR

nu that are orthogonal to the set of sensitivity-

seeking directions have been labeled constraint-seeking di-
rections. Orthogonal bases for the subspaces spanned by both
sets of directions at a given time can be obtained from the
singular value decomposition of the Jacobian matrix Ω

a
u(t).

The SOSC ensure that the optimal solution is differen-
tiable, thus leading to a first-order approximation of the
perturbed solution in its neighborhood. Based on this ap-
proximation, the input variations along the constraint- and
sensitivity-seeking directions can be quantified. These input
variations are found to be proportional to the parameter
variations.

The third element of change in optimal inputs corresponds
to variations of the switching times between arcs. By ex-
trapolating the optimal inputs beyond the switching times so
that they still satisfy the same optimality conditions as before
switching, an expression for the variations in switching times
has been obtained. These variations are also found to be
proportional to the parameter variations.

Future directions of research will be to analyze how
selective adaptation strategies translate in terms of perfor-
mance improvement. To this end, the expressions derived
in this paper for input variations along the constraint- and
sensitivity-seeking directions as well as for variations in
switching times will be particularly useful in quantifying
respective cost variations. By making additional analysis,
the same ideas will also be extended to singular optimal
control problems as well as to problems involving terminal
constraints. It is foreseen that such analysis will help develop
preferential adaptation schemes for these various types of
optimal control problems.
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