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Abstract— Microalgae have the potential to produce enough
biofuels to meet the current US fuel demands. In order to
achieve this potential, photobioreactors (PBRs) need to be
developed that are efficient, scalable, and affordable. Models
are an analytical tool that can be used to evaluate various
PBRs. In this article, a dynamic model is developed for growing
microalgae in a vertical flat panel photobioreactor (PBR) that
may be used to measure PBR efficiency for various architectures
independent of scale. The growth model is used to estimate the
microalgae growth and byproduct production and consumption
as a function of incident light. A feed-forward controller is
developed that uses the estimated amount of CO2 consumed
to determine the amount of additional CO2 to add to the
system during photosynthesis. An overall controller structure
that uses both feed-forward and feedback control is presented
for growing microalgae inside a PBR.

I. INTRODUCTION

Microalgae can convert carbon dioxide (CO2) into storage

lipids that can be refined into biofuels. More CO2 is being

produced now than in previous years, and there is limited

supply of fossil fuels in the world. Under the right conditions,

microalgae will utilize the excess CO2 being produced by

human activity to produce lipids that may help supplement

the limited fuel supply. There are two control objectives

to this process, namely maximizing biomass growth and

maximizing storage lipid production (i.e., the lipids that are

favorable for biofuel production). The focus of this article is

on improving biomass production by regulating key variables

(e.g., pH, dissolved CO2, dissolved O2, and temperature).

While the use of models and controllers to improve lipid pro-

duction are not discussed here, lipid production was achieved

through the use of an appropriate microalgae strain [1].

A program of research sponsored by the National Re-

newable Energy Laboratory from 1978-1996 estimated that

microalgae could produce lipids at the rate of 7,000 - 15,000

gallons/acre/year [2], almost 100X the current productivity of
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lipids from soy, at roughly 50-100 gallons/acre/year [1]. This

means that microalgae could meet 50% of all transport fuel

needs of the United States while using only 1.1% to 2.5% of

the existing US cropping area [1]. While this is encouraging,

there have been numerous problems with scaling up to a

large production scale [3]. The primary challenge has been to

design a PBR that is able to utilize intense light and maintain

appropriate gas concentrations at a commercial scale (c.f.,

[1], [3], [4], [5], [6], [7], [8], [9].

Various PBR configurations (e.g., bubble columns, race-

way ponds, and flat panel reactors) have been studied in

[8]. Each configuration has its advantages and disadvantages.

The trade-offs are finding reactors that utilize high light

intensities well, can remove produced dissolved oxygen well,

and scale well. A variety of linear and nonlinear models have

been developed to address this for tubular reactors (c.f., [4],

[5], [6], [7], [9], [10], [11], [12], [13], [14], [15]). However,

there has been significantly less publications on flat panel

reactors, which is the style of reactor addressed in this paper.

Model based controls have been developed in [9], [16], [17],

[18], [19], [20]. Most of these papers model growth as a

function light using a Monod kinetics model. The Monod

model describes how bacteria go through an exponential,

linear, and decaying growth phases as they consume their

nutrients. This idea is extended to how microalgae grow in

a light limited closed PBR. This is an entirely empirical

model that works well for some situations. In this paper,

a scalable model is developed that addresses these phases

by considering the physics of microalgae growth inside a

vertical flat panel PBR that was developed at Solix Biofuels.

The microalgae growth rate is modeled as a function of

incident light. Based on the light driven dynamic growth

model, an estimate of the amount of CO2 required for

photosynthesis may be delivered as a feed-forward (FF)

control input to the PBR. A feedback controller is used to

maintain a constant pH, which is also regulated using input

CO2. A photo of the actual PBR used for these experiments

is shown in Figure 1.

II. METHOD

In this section, an overall growth model is developed that

may be used as a FF controller for pH regulation. The

model is primarily physics-based with a few parameters that

are fit from data. For the most part, these fitted parameters

are efficiency parameters that may be used to compare the

performance of different operating conditions and various

PBR configurations.

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThA10.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 2301



�

Fig. 1. Photobioreactor Test Bed at Solix Biofuels in Fort Collins, Colorado

A. Photobioreactor Setup

Fig. 1 shows one of the PBR test beds at Solix Biofuels

in Fort Collins, Colorado. In the larger PBR bath (on the

left), there are four PBRs. Each PBR consists of vertical flat

panels submerged in the bath. Sensors are placed throughout

the PBR to measure the amount of dissolved O2 (DO), pH,

and optical density (OD). The OD sensor correlates well to

dry mass and was used to measure microalgae accumulation.

Input gas streams of pure CO2 and air are continuously

delivered through mass flow controllers (MFCs). These gas

streams are then mixed and bubbled through the flat panels.

This sparging is used to maintain elevated levels of dissolve

CO2 by regulating to a lower pH, remove DO produced by

photosynthesis, and to mix the microalgae, which determines

the light/dark cycle. The bath provided structure for the

vertical flat panels and was used to regulate the temperature

of the microalgae inside the vertical flat panels.

B. Overall Dynamic Model

There are three main subsystems that interact with each

other, namely the incident light to the PBR, the microalgae

cells that suspended in the media, and the media itself. The

amount of incident light that the microalgae can utilize is

a function of sun position and the amount mixing. As the

microalgae grow, they interact with the media to remove

nutrients and dissolved carbon while releasing dissolved

oxygen. A gas mixture of air and CO2 is bubbled through

the media to maintain the appropriate dissolved carbon level

and to remove the produced dissolved oxygen through mass

transfer. Since the amount of nutrients and dissolved gases

in the media will effect the growth rate, these parameters

are fed back from the media (water chemistry) model to the

microalgae (photosynthesis) model. These phenomenon are

captured in the overall PBR model in Fig. 2 that contains

the three major subsystems, namely the light subsystem

(red), the photosynthesis subsystem (green), and the water

chemistry subsystem (blue). The details of each subsystem

are described in the remainder of this section.
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Fig. 2. Overall PBR Model.

All of the inputs to the model, except sunlight, may be

commanded. This makes the control problem interesting,

since sunlight is the main input that drives photosynthesis,

yet enters the system as an exogenous input. Therefore,

the control objective is to adjust the other parameters to

maximize sun utilization.

C. Incident Light Subsystem

About 45% of the full spectrum of light is photosyntheti-

cally active radiation (PAR) which is the amount of light (in

the 400nm to 700nm range) available for photosynthesis on

earth. The incident light subsystem determines the amount

of PAR that will reach the microalgae, which is a function of

the number of PAR photons that enter the PBR bath, mixing,

and PBR geometry. This may be expressed as

IPAR = f1(PARbath, mixing, geometry). (1)

The amount of PAR that enters the bath is a function

of both the direct and diffuse light that are incident on the

PBR bath, which was measured with a PAR sensor. For the

model verification presented in this paper, the mixing (i.e.,

gas flow rate) and geometry were held constant. Therefore,

the following simplified model of equation (1) was used.

IPAR = ηPBRPARsensor (2)

Here, ηPBR is the efficiency of the PBR for a given mixing

and geometry. The variable PARsensor is the number of PAR

photons measured by the PAR sensor. Currently, the term

ηPBR is absorbed into the PAR utilization constant KPAR in

the next section. Therefore, IPAR = PARsensor is used for

the current growth model. However, as more information

becomes available about the effects of mixing and geometry,

2302



it will be incorporated into calculating a more accurate IPAR

term.

D. Growth Subsystem

The growth subsystem models the dynamics of the mi-

croalgae as they utilize photons from the sun, CO2, and

nutrients to produce O2 and more microalgae. The rate at

which microalgae grow depends on their ability to utilize the

incident light and on the availability of nutrients. Assuming

there are ample nutrients available, microalgae growth is

primarily a function of input light. When there is an absence

of light, the microalgae respire (i.e., utilize O2 and stored

carbon as an energy source, which releases CO2). Respiration

results in a loss of biomass. In the presence of light, the

microalgae will both evolve O2 as they assimilate carbon

from dissolved CO2 and respire O2 as they consume stored

carbon; however, the growth from carbon assimilation will

often dominate the metabolic process1. When the culture

is sparse, there are an excess number of PAR photons that

are not being utilized. Under this condition, microalgae will

grow exponentially, since the produced algal mass will not be

limited by available photons. At some point, the algal density

will become great enough that all of the incident light will be

utilized. At densities greater than this, the microalgae growth

rate will be linear. As the density continues to increase, a

smaller fraction of the microalgae will be able to receive the

amount of light required for photosynthesis and respiration

will be the dominant metabolic activity. As this happens, the

total microalgae growth in the PBR will cease and eventually

begin to decay. In the model, this feature is captured by

saturating the density in the growth term. When the density

gets above a critical density, labeled mdense, the amount of

growth resulting from photosynthesis becomes linear while

the density lost due to respiration remains exponential. These

effects are described by the following nonlinear differential

equation.

ṁalgae = Pm̄algae − Rmalgae (3)

where

P = KPARIPAR

m̄algae = min(malgae, mdense) (4)

mdense = f(malgae, mixing, geometry)

The state variable malgae is the amount of microalgae

inside the PBR and its derivative, namely ṁalgae, is the

growth rate of microalgae inside the PBR. The productivity

parameter P is the specific growth rate at a given sun

intensity. The term KPAR is the sun utilization parameter

that converts incident light, namely IPAR, into microalgae

growth rate, and the constant R is the rate of biomass

loss due to respiration in the dark. The microalgae also

respire while exposed to sunlight, so the respiration term is

still appropriate during growing times. However, the rate of

respiration is known to be greater during sunlight exposure.

1Microalgae contain the enzyme Rubisco that will utilize both CO2 and
O2 as substrates.

This discrepancy is hard to measure directly. Instead, it

is wrapped into the KPAR parameter (i.e., photorespiration

results in a smaller sun utilization parameter). Finally, the

parameter mdense is critical density above which the growth

becomes linear.

As microalgae grow, they consume carbon, which they get

from dissolved CO2 and other nutrients from their surround-

ings while releasing O2. In general, microalgae biomass is

50% carbon by dry weight [1]. A mole of CO2 has a mass

of 44 grams and 12 of these grams come from carbon. Based

on these premises, the expression that 1 gram of microalgae

can fix 1.83 grams of CO2 may be derived as follows

44gCO2/mol

12gC/mol

0.5gC

galgae
=

11

6

gCO2

galgae
= 1.83

gCO2

galgae
. (5)

A simplified equation for photosynthesis is given by

12H2O + 6CO2 + light −→ C6H12O6 + 6O2 + 6H2O (6)

This equation states that for every gram of CO2 consumed,

there is a gram of O2 produced. While this is true, it does

not account for all of the O2 that is produced. This results

from the fact that O2 molecules come from splitting water,

which provide energy for all of the metabolic processes

inside the microalgae. Therefore, there is not a one-to-one

correspondence of O2 molecules produced to CO2 molecules

fixed. The excess energy that is not used to fix CO2 is used

for other metabolic processes such as fixing nutrients from

the surrounding media and cell repair. This is often echoed

in the literature by the fact that it takes 8 photons of light to

produce one O2 molecule, but that it takes 8-12 photons of

light to assimilate a CO2 molecule (c.f., [21]). Assuming that

10 photons of light are required to fix one CO2 molecule,

the amount of O2 produced will be

32gO2
/molO2

44gCO2
/molCO2

8 molO2

10molCO2

11

6

gCO2

galgae
= 1.07

gO2

galgae
. (7)

Based on these assumptions, the CO2 consumption rate

and O2 produced rate may be expressed in terms of the

growth rate. In particular, the mass production and consump-

tion rates of CO2 and O2, respectively, are

ṁCO2(g/L/h) = 1.83ṁalgae(g/L/h) (8)

ṁO2(g/L/h) = 1.07ṁalgae(g/L/h), (9)

In general, the relationships may be expressed as

ṁCO2(mass/time) = KCO2
ṁalgae(g/L/h) (10)

ṁO2(mass/time) = KO2
ṁalgae(g/L/h), (11)

where, KCO2
and KO2

are the amount of gas con-

sumed/produced per mass of microalgae growth and may

be in units other than grams gas per gram microalgae. An

example of this is when the amount of CO2 is measured in

standard liters per minute (SLPM). Let VPBR(L) be the volume

of the PBR in liters and using the fact that there are 1.808

grams of CO2 (gCO2) per standard liter (SL), then KCO2
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may be expressed as

ṁCO2(SLPM) =
1h

60min

SL

1.808gCO2

VPBR(L)1.83
gCO2

galgae

ṁalgae

=
1.83VPBR(L)

1.808 · 60
ṁalgae(g/L/h) (12)

E. Water Chemistry Subsystem

The water chemistry subsystem models both the dissolved

gases and nutrients available to the microalgae in the media.

The dissolved gases are a function of both the gases being

delivered in by the MFCs and the internal gases being con-

sumed and generated by the microalgae. The main purpose

of sparging is to regulate the concentrations of dissolved O2

and dissolved CO2 through mass transfer. In general, the

gas transfer rates may be modeled locally as a first order

dynamic system. Due to the distributed nature of the system,

the model would require many cascaded first order systems,

which is common with process models. This phenomenon

may be essentially captured by using a first order plus dead

time model [22], which is the method used here.

When the media in the PBR is at equilibrium with air,

there is about 7mg/mL of dissolved O2 in the media, which is

maintained through sparging when there is no growth. During

high growth periods, dissolved O2 will build up in the system

and is eventually purged at night. This is described by the

following dynamic model.

ṁDO(t) =
wsparge

τDO

(mDO,gas(t − τd,gas) − mDO(t)) + ṁO2
(t)

(13)

Here, wsparge is the flow rate of gas into the PBR, τDO is

the lag time for mass transfer of DO between the media and

sparging bubbles, mDO,gas is the DO level that the media

will equilibrate to, and ṁO2
is the rate of oxygen produced

through photosynthesis. When sparging is turned off (i.e.,

wsparge = 0), then DO will build up in the system at the rate

that it produced by photosynthesis. Once sparging is turned

back on, the DO levels will equilibrate back to mDO,gas with

a lag time of τDO

wsparge
. The input gas stream is an air plus CO2

gas stream where the amount of added CO2 varies. This

variation may change the equilibrium valve mDO,gas. There

is a delay from when the CO2 concentration changes and

when the new gas mixture arrives at the media, which is

captured by the delay τd,gas. For the model presented in this

paper, it was assumed that mDO,gas = 7 mg/mL independent

of the CO2 concentration

An analogous method may be used to model the dissolved

inorganic carbon (DIC), which is given in eqn (14).

ṁDIC(t) =
wsparge

τDIC

(mDIC,gas(t− τd,gas)−mDIC(t))− ṁCO2
(t)

(14)

Here, mDIC,gas is the CO2 gas concentration required for a

specific pH. As CO2 is removed from the media through

photosynthesis (i.e., ṁCO2
), the value of mDIC,gas will be

increased to help replace the consumed CO2. Therefore, this

value is always changing during active growth to maintain

a constant pH. Due to the distributed nature of the system,

there is a delay of τd,gas between when the commanded CO2

concentration changes and when the CO2 reaches the media.

As CO2 dissolves in the media, it breaks down into

different species, namely aqueous CO2 (CO2(aq)), carbonic

acid (H2CO3), bicarbonate (HCO−

3 ), and carbonate (CO2−
3 ).

The combination of all of these species make up the total

DIC. The amount of aqueous CO2, namely CO2(aq), is a

function of temperature and pressure, which is governed

by Henry’s Law. Based on the DIC and Henry’s law, the

following chemical equilibrium is reached.

CO2(aq) + H2O ⇋ H2CO3 ⇋ H
+

+ HCO
−

3 ⇋ 2H
+

+ CO
2−
3

(15)

The amount of each of carbonic acid, bicarbonate, and

carbonate species determines the pH. As pH increases the

equilibrium shifts to the left and to the right as the pH

decreases. As microalgae grow, CO2(aq) is removed from

the surrounding media, which causes the equilibrium to shift

to the left and the pH to rise. Some strains of microalgae will

also utilize bicarbonate as a carbon source. The microalgae

still require CO2, which they get by splitting bicarbonate

into H+ + HCO−

3 ⇋ CO2 + OH−. The release of the OH−

also causes the pH to increase. It is unclear which method

of carbon assimilation dominates the pH increase.

The addition of dissolved CO2 decreases the pH of the

media. Since it can take 2-3 seconds for carbon to completely

dissolve and only a fraction of the input CO2 dissolves before

leaving the vent, there are some dynamics associated with

the pH in the media, which are captured by the first order

dynamics (transfer function) in eqn (16). The pH model is

linearized about a pH of 7.3.

˙pH(t) =
1

τpH

(KpHmDIC(t) − pH(t)) (16)

Here, τpH is the lag time associated with the DIC settling

into the appropriate species and KpH is the conversion factor

from DIC to pH units.

CO2 is not the only factor affecting pH. Others have found

that pH is also affected by calcium carbonate precipitation

in the media and nitrogen assimilation, excess cation influx,

excess anion flux, and organic assimilation and excretion

by the microalgae [23]. However, CO2 input is the main

controllable and measurable variable which has the most

significant effect on pH. This characteristic creates some

challenges involving the separate control of CO2 and pH,

which is a topic of ongoing research.

F. Feed-forward Controller

One of the applications of the model is determine the

amount of CO2 that is required by the microalgae and to

supply it via FF CO2 control. Recall that the rate of CO2

consumption is directly related to growth rate. This was given

in eqn 10. This CO2 consumption rate may be used as a

FF input CO2 flow rate to the PBR. In practice, there is a

nominal CO2 flow rate that is required to maintain pH, which

is labeled ṁCO2(media). The overall FF controller input is

given by

uFF
CO2

= ṁCO2(growth) + ṁCO2(media) (17)
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As with most FF control, a feedback controller is used to cor-

rect for model differences and to reject system disturbances.

For the setup here, a PI controller was used to provide the

feedback correction based on the desired and measured pH.

An overall block diagram of the controller is shown in Fig. 3.

Feedforward 

Controller

PI+ + PBR
pH 

setpoint

pH 

measured

CO2
flowrate+

-

+

+

PAR

FF
u

2CO

Fig. 3. pH Regulation using a Feed-forward plus Feedback Controller

III. EXPERIMENT

The 644 L PBR used for the following experiment is

shown in Fig. 1. The PBR had four panels that were 17m

long, 0.33m high, and 0.03m thick. For the experiment de-

scribed here, the microalgae strain Nannochloropsis oculata

was used. The goal was to grow the microalgae culture up

to maximum density in the shortest amount of time. Enough

nutrients were provided at the beginning of the batch to

make sure that the microalgae were not substrate limited.

A combination of FF and feedback controller was used to

regulate the CO2 delivery as described in Section II-F.

A. Model Parameters

A PAR sensor was used to measure the sun intensity at

the bath. The methods outlined in Section II-C were used

to determine the amount of light that entered the PBR bath

in units of mol
m2hour . Since the mixing and orientation were

held constant, the term ηPBR in eqn 2 was grouped into the

growth parameter KPAR.

The microalgae were able to utilize most of the light at low

cell densities; however, as the density increased, the growth

rate became linear. This is described by the saturation of

m̄algae in eqn 4. For the experiments here, the biomass units

have been normalized so that mdense = 1.

For the growth model used here, the temperature, nutrients,

pH, O2 concentration, and CO2 concentration were regulated

externally. O2 removal was regulated by air sparging and

the CO2 concentration was maintained by regulating the pH.

Therefore, the primary factor that affected growth was the

PAR from eqn 2. The model parameter KPAR in eqn 4

captures the light utilization in units of m2

mol . This parameter

contains the effects of all of the variables that were held

constant like mixing, orientation, temperature, nutrients, pH,

and dissolved O2 and CO2. This parameter along with the FF

controller parameter KCO2
were fit using a nonlinear least

squares optimization.

The rate of respiration in the dark was calculated by

examining the rate of respiration over multiple nights. This

was accomplished take two points during the night and

TABLE I

VARIABLES USED IN FEED-FORWARD CONTROLLER

Variable Description

ṁalgae Modeled Growth Rate (OD/hour)

u
F F
CO2

FF CO2 Commanded Input

KPAR Light Utilization (m2/mol)

R Rate of Respiration in the Dark (OD/hour)

KCO2
CO2 Utilization (volume CO2/OD)

assuming exponential decay. For example, if malgae(0) is

the dry mass at 11pm at night (assuming that sunset is well

before 11pm) and malgae(5) is the dry mass at 4am the

next day (assuming that sunrise is well after 4am), then the

following holds

malgae(5) = malgae(0)e−5R, (18)

and R may be calculated directly. By repeating this process

over many days and averaging the results, a nominal R value

was obtained. The FF controller parameters are given in

TABLE I.

A feedback PI controller was used to maintain the pH

at 7.3. The controller gains were empirically tuned. An anti-

windup digital PI controller was implemented to both prevent

windup and to limit the controller actuation to the limits of

the MFCs.

IV. RESULTS AND DISCUSSION

Due to some software issues, only a feedback controller

was implemented on the actual PBR shown in Fig. 1. For

comparison, an estimate of what the FF controller would

have predicted is plotted over the amount of CO2 required

for pH regulation. The results of this controller are shown in

Fig. 4.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

time (hours)

P
A

R

Model Verification on PBR Data from 31−Jul−2008 to 08−Aug−2008

0 20 40 60 80 100 120 140 160 180 200
0

5

10

M
a

s
s
 (

O
D

 u
n

it
s
)

Sensor

Model

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

C
O

2
 c

o
m

m
a

n
d

CO
2
 Delivered (MFC)

CO
2
 Model

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

D
O

 (
m

g
/m

L
)

DO Sensor

DO Modeled

Fig. 4. Dynamic Model Verification.

Fig. 4 shows the both the growth model and the dissolved

gas models over an entire batch. The first plot shows the PAR

reading from an on-site sensor. The second plot shows the
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modeled and OD sensor measurement of microalgae mass.

The third plot shows the amount of CO2 required to maintain

a pH of 7.3 and a plot of what the FF controller would have

commanded. The FF controller was able to capture the CO2

profile. During the day, the feedback controller was only able

to regulate the pH to within 0.05 of 7.3. At night, the pH

was within 0.01 of 7.3. It is assumed that the addition of the

FF controller will provide tighter regulation during the day.

The bottom graph shows the DO sensor reading and the DO

model. All three models are able to capture the dynamics of

the system using first order models.

For a given strain of microalgae, the rate of dark respira-

tion, namely R, will be fixed. The only two parameters that

will change with different operating conditions are mdense and

KPAR. The only parameter that will affect mdense is mixing

since it will determine both the fraction of microalgae ex-

posed to PAR photons and the duration of the exposure. Since

there is an optimal light/dark cycle for microalgae [5], there

is an optimal mixing with an associated maximal mdense.

Maximizing mdense will maximize that amount of time that

the microalgae spend in the exponential growth phase. All of

the other operating conditions will affect the sun utilization

parameter, namely KPAR. A larger KPAR means better sun

utilization and hence more growth for a given amount of sun.

Since the objective is to maximize growth, it is desirable to

operate the PBR at the optimal temperature, nutrient level,

dissolve oxygen level, dissolve carbon level, and pH level

that will result in the largest KPAR. Maximizing mdense and

KPAR are topics of ongoing research.

V. CONCLUSIONS AND FUTURE WORK

A model for a vertical flat panel PBR was presented

along with an example of how the model could be used

for FF control. The model was developed independent of the

actual PBR size or microalgae strain (i.e., it was built around

densities and concentrations with parameters based on known

theoretical relationships or fit from data). This allows for the

same model to be used to evaluate the performance of a

variety of PBR sizes, orientations, architectures, and various

microalgae strains. It should be noted that different microal-

gae strains require different mixing, pH levels, temperatures,

and nutrient levels. Ongoing modeling efforts will continue

to develop methods for determining model parameters from

first principles and experience with the physical PBRs.

As a part of the development process, a better under-

standing is needed of how the parameters held constant in

eqns (1) and (4) affect the growth. Determining these effects

and utilizing the model to test various operating conditions

and PBR designs is crucial for commercial success. These

are topics of ongoing research.
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