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Abstract— In this paper an optimal control design strategy
to guarantee consensus achievement in a multi-agent network
is developed. Minimization of a global cost function for the
entire network guarantees a stable consensus with an optimal
control effort. In solving the optimization problem it is shown
that the solution of the Riccati equation cannot guarantee the
consensus achievement. Therefore, the linear matrix inequality
(LMI) formulation is used to solve the corresponding opti-
mization problem and simultaneously to address the consensus
achievement constraint. Moreover, using the LMI formulation
a controller specific structure based on the neighboring sets can
be imposed as an additional LMI constraint. Therefore, the only
information each controller needs is the one it receives from
its associated neighbors in its neighboring set. The global cost
function formulation provides more insight into the optimal
performance of the entire network and would result in a
“global” optimal (or suboptimal) solution. Simulation results
are presented to illustrate the performance of the multi-agent
team in achieving consensus.

I. INTRODUCTION

There are many advantages for deploying an autonomous

network of agents. For instance, enhanced group robustness

to individual failures, increased and improved instrument

sensing and resolution, reduced cost of operation, and adap-

tive reconfigurability capabilities have been discussed in

[1]. Some applications that necessitate development of these

systems are in satellite deployment for distributed Earth or

deep space observations; maneuvers of a group of unmanned

aerial vehicles (UAVs) for intelligence, surveillance, and re-

connaissance (ISR) missions; automated factories; unmanned

underwater vehicles (UUVs) for search and rescue; and

teams of mobile robots deployed in a hazardous environment

where human involvement is dangerous. In order to fully

take advantage of these large-scale networks and systems

of systems, several prerequisites are required to be satisfied.

Some of these are development of reliable communication,

optimal power consumption management, and team cooper-

ation as discussed in [2]. These issues are still open areas of

research.

Cooperation in a network of multi-agents has received

extensive attention in the past several years. The coopera-

tive control may address one of the following issues, i.e.

swarm analysis and flocking [3]-[4], rendezvous problem [5],

formation control [6], agreement and consensus seeking [7]-

[9]. Consensus seeking has been investigated from different
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perspectives and with different assumptions. In [7], as one of

the pioneer work in this area, linear and nonlinear consensus

protocols are suggested for a network of dynamic agents with

integrator dynamics and undirected information flow graphs.

The relationship between the maximum tolerable time delay

in the network and connectivity of the network is defined.

Most of the above mentioned work on consensus seeking

have basically focused on only analysis and not explicitly

on the design of a control strategy to guarantee consensus

achievement. Moreover, in most of the above articles the

suggested solutions are restricted to agents with a specific

dynamical equation, i.e. an integrator model. However, in the

present work the consensus protocols are designed formally

and based on the well-known control design techniques for

a general linear model of agents.

There are some results in the literature that address design-

based consensus protocols, e.g. [10]-[14]. The author in

[10] introduced a method based on passivity for solving

the coordination problem. An optimal approach to consensus

problem is considered in [11]-[13]. In order to solve the team

optimal problem, the authors in [11] have assumed that in

evaluating the minimum value of each individual cost, the

state of other agents are constant. The works in [12], [13]

avoid this restrictive assumption by decomposing the control

input of individual agents into local and global components.

In [14], the dynamics of the entire network are decomposed

into two components, namely one in the consensus space and

the other in the orthogonal subspace. A set of LMIs are then

used to guarantee the stability and consensus achievement

using an H2 design strategy.

In the present work, a consensus protocol is “designed”

using optimal control and LMI design tools. For this purpose,

the idea of decomposing the state vector into two components

as introduced in [14] is adopted for solving the optimal

consensus problem. As opposed to [14], where the robust

performance is analyzed using H2 design methodology, here

we start with a Hamilton-Jacobi-Bellman equation. Then,

we will use the LMI formulation of the LQR problem.

After decomposing the state vector, a global cost function is

suggested for the entire network to achieve a stable consen-

sus. The advantage of introducing a global cost function as

opposed to the individual cost functions is that the former can

provide a better insight into the overall performance of the

network. It is shown that the LMI optimization provides more

flexibility when compared to the method based on solution

of the Riccati equation. The optimal solution that is obtained

incorporates all the imposed constraints and suggests a global

optimal (suboptimal) solution. Moreover, since the optimal
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control is a multi-objective framework and with the help of

the LMI formulation, the proposed method has the advantage

of being capable of addressing additional specifications,

e.g. limited control input availability, the specific control

structure, and consensus achievement constraint.

The organization of the paper is as follows: In Section

2, the problem definition is formally given. In Section 3,

consensus problem is transformed into a stabilizing prob-

lem using a state decomposition technique. Application of

optimal control theory for consensus seeking is presented

in Section 4. Finally, simulation results and conclusions are

discussed in Sections 5 and 6, respectively.

II. PROBLEM DEFINITION

A. Model Description

Multi-agent teams: Assume a set of agents Ω = {i =
1, . . . , N}, where N is the number of agents and each

member of the team has a dynamical representation as

governed by:

Ẋi = AiXi + Biui, Xi ∈ Rn, ui ∈ Rm, i = 1, . . . , N
(1)

Y i = ciXi, Y i ∈ Rq (2)

Information structures and neighboring sets: In order to

ensure cooperation and coordination among team members,

each member has to know the status (output) of other

members, and therefore members have to communicate with

each other. For a given agent i, the set of agents connected

to it via communication links is called a neighboring set N i:

∀ i = 1, . . . , N, N i = {j = 1, . . . , N |(i, j) ∈ E} (3)

where E is the edge set that corresponds to the underlying

graph of the network. Here, we assume that the network

connections are bidirectional (undirected graph).

Model of interaction between the team members: Assume

that the dynamical model of each agent is given by (1)

and (2). This model defines an isolated agent of the team,

but in reality the agents have some interactions through the

information flows that exist among the neighboring agents.

In [13], it is shown that each member’s dynamics can be

described by the following model in which the interaction

terms are incorporated:

Ẋi = AiXi + Bi(ui
l + ui

g) (4)

ui
g = Bi

∑

j∈Ni F ijY j , Y i = CiXi (5)

in which ui
g is the interaction term, and F ij is the interac-

tion coefficient which ensures the compatibility of matrices

dimensions in the agents’ input and output channels.

We can rewrite the dynamical representation of the entire

network as follows:

Ẋ = AX + BU, Y = CX (6)

in which X,Y and U are the entire team state, output and

input vectors, respectively, which are the concatenation of

all the state and input vectors and are given by:

X = [(X1)T . . . (XN )T ]T , U = [(u1
l )

T . . . (uN
l )T ]T ,

Y = [(Y 1)T . . . (Y N )T ]T .

Matrices A,B and C are defined as follows:

A =







A1, 0, . . . , B1F 1jCj , . . . , 0
...

0, . . . , BNFNjCj , . . . , 0, AN






,

B = Diag{B1, . . . , BN}, C = Diag{C1, . . . , CN}

(7)

The terms BiF ijCj represent the interactions that exist

among the agents and is modelled as a component in the

input channel of each agent.

B. Problem Statement: Consensus in a Team of Multi-Agents

Our main goal is to ensure agents’ state, e.g. velocity,

converge to the same value, i.e. ∀i, j Xi → Xj . In other

words, we desire that the team reaches to a consensus in the

subspace spanned by the vector 1, that is:

Xss = [(X1)T
ss . . . (XN )T

ss]
T = [1 1 . . . 1]T⊗ωss = 1⊗ωss

where ωss is the final state vector to which the states of all

agents converge.

Definition 1 (Consensus to S): Let S be an orthonormal

matrix in RNn×1. The system (6) achieves consensus to the

subspace S = span{S} if S is a minimal set such that for

any initial condition the state X(t) converges to a point in

S [14].

In the present work we assume that the desired consensus

subspace S is spanned by the unity vector, i.e. S = 1.

III. STATE DECOMPOSITION

Using the above definition, the orthonormal basis for the

subspace S is denoted by SNn×1 = 1. The orthonormal

complement of this matrix is denoted by S̄Nn×(Nn−1), which

is a basis for the corresponding subspace orthonormal to S.

The following relationships are satisfied by these matrices:

S̄∗S = 0, S̄∗S̄ = I, S∗S = 1, S̄S̄∗ + SS∗ = I (8)

where A∗ stands for the conjugate transpose of A. Now,

the state vector X can be decomposed into two orthogonal

components in the above mentioned subspaces and can be

written as [14]:

X = [S̄ S]

[

Xs̄

Xs

]

(9)

Assuming that the control input has a state feedback

structure, i.e. U = KX , then the dynamical equation of the

system would be transformed into:
[

Ẋs̄

Ẋs

]

=

[

S̄∗

S∗

]

(A + BK)[S̄ S]

[

Xs̄

Xs

]

(10)

This follows from the fact that [S̄ S]−1 =

[

S̄∗

S∗

]

.
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Since our goal is to ensure consensus in subspace S for

the closed-loop system, the following equilibrium condition

is imposed on the above dynamical equation [14]:

(A + BK)S = 0 (11)

In other words the equilibria should lie in the consensus

subspace. This condition should be incorporated in the design

procedure. Therefore, we will have:
[

Ẋs̄

Ẋs

]

=

[

S̄∗

S∗

]

(A + BK)S̄Xs̄ =

[

S̄∗(A + BK)S̄ 0
S∗(A + BK)S̄ 0

] [

Xs̄

Xs

] (12)

In order to achieve consensus the final state of the system

should be a vector in subspace S. Therefore, the component

Xs̄ should converge to zero in steady state. This implies that

this part of the system dynamics should be asymptotically

stable. Moreover, the dynamics corresponding to Xs is only

dependent on Xs̄, and therefore we are only concerned with

the dynamics corresponding to Xs̄ as governed by:

Ẋs̄ = S̄∗(A + BK)S̄Xs̄ = S̄∗AS̄Xs̄ + S̄∗BKS̄Xs̄

= ĀXs̄ + B̄K̄Xs̄ = ĀXs̄ + B̄Ū
(13)

where Ā = S̄∗AS̄, B̄ = S̄∗B, K̄ = KS̄. If this part of

the dynamics is stabilized asymptotically to zero, Xs will

approach to a constant value which is in the consensus sub-

space. Therefore, the consensus would be achieved. Now we

may design a state feedback control strategy to guarantee the

consensus achievement by the closed-loop system. Towards

this end, optimal control techniques will be used below to

design a controller to guarantee a stable consensus in an

optimal manner.

IV. OPTIMAL CONSENSUS SEEKING

As discussed in the previous section the purpose of the

control design is to stabilize that part of the system dynamics

which corresponds to the subspace S̄ = span{S̄}. Therefore,

our goal is to design the corresponding control gain, i.e. K̄.

Based on this value of K̄ the corresponding value of K for

the original system can be obtained. Therefore, optimality

here refers to the situation where the dynamics of Xs̄ is

stabilized in an optimal manner.

For characterizing optimality we need to define a formal

performance index. We can define either individual perfor-

mance indices or a single index (cost function) for the entire

team. The authors have previously proposed individual cost

functions and suggested a semi-decentralized control strategy

for minimizing these cost functions in [13]. Although the

individual cost functions do better fit within a decentralized

control structure, they cannot be utilized as an index of the

team performance. In contrast, the team cost function which

we use here is a good index of the team performance and its

minimization can result in a globally optimal (or suboptimal)

solution. However, the solution would be centralized. Fortu-

nately, using the LMI formulation, we will show that this

centralized solution can be avoided by adding a constraint

on the structure of the controller gain matrix.

Now, let us define the team cost function to be minimized

as follows:

d =
∫

∞

0
{XT

s̄ Q̂Xs̄ + ŪT RŪ}dt, X = [S̄ S]

[

Xs̄

Xs

]

(14)

where Q̂ has a predefined structure as Q̂ = S̄∗QS̄ > 0
(since rank(S̄(Nn)×(Nn−1)) = Nn − 1, then Q̂ would be a

PD matrix if QNn×Nn is selected to be a PD matrix.

In the following subsection, we show that in general the

solution of the Riccati equation does not result in a consensus

for a network of agents with general dynamical representa-

tion. In other words, the linear quadratic regulator (LQR)

formulation cannot be used for consensus achievement.

Therefore, in the second subsection an LMI formulation is

utilized for the optimization problem which can incorporate

the requirements of consensus achievement and results in an

optimal consensus algorithm.

A. Discussion on the Solution of Riccati Equation

The problem of minimizing the cost function (14) subject

to the dynamical constraint (13) is a standard LQR problem.

The solution to this LQR problem can be achieved by solving

the corresponding Riccati equation as follows:

Ū = −R−1B̄∗PXS̄ (15)

where P satisfies the following Riccati equation

PĀ + Ā∗P − PB̄R−1B∗P + Q̂ = 0 (16)

Therefore, K̄ = KS̄ = −R−1B̄∗P and from the properties

of matrix S̄ we can find K as K = −R−1B̄∗PS̄∗. Hence,

the control input is given by:

U = −R−1B̄∗PS̄∗X (17)

By applying this input to system (6), the closed-loop dynam-

ics can be written as:

Ẋ = (A − BR−1B̄∗PS̄∗)X (18)

In order to achieve consensus for the closed-loop system,

the matrix S should be in the null-space of the closed-loop

matrix, i.e. [A−BR−1B̄∗PS̄∗]S = 0. However, the second

part of this expression is zero due to the properties of S̄ as

stated in (8), i.e.

−BR−1B̄∗PS̄∗S = 0 (19)

In other words, we should have AS = 0 to guarantee a stable

consensus. The above discussion is formally summarized in

the following lemma.

Lemma 1 Consider a team of agents with the team entire

dynamics given in (6) and assume that a state decomposition

procedure is performed and the consensus seeking problem

is reduced to stabilization of the dynamical equation (13).

Then, the solution of the corresponding Riccati equation

given in (16) which minimizes the cost function (14) subject

to the dynamical constraint (13) may not result in a stable
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consensus algorithm unless the consensus subspace is in the

null space of the open-loop matrix A, i.e.

AS = 0 (20)

In other words, this solution may not in general provide a

stable equilibria in the consensus subspace.

Proof: Follows from the previous constructive derivations.�

In general, the condition AS = 0 may not be satisfied

by the subsystems in the network. The above observation

may be explained by the fact that according to the definition

of U , the control only provides a component in S̄ . Hence,

the term BU does not contribute to the S component of Ẋ .

Therefore, to have a stable solution where Ẋ = 0, the term

AX should enjoy the same property, i.e. the component of

AX in S subspace should be zero:

AS = 0 (21)

From the above discussion we can conclude that for a

general case the optimal solution obtained by solving the

Riccati equation does not guarantee consensus achievement.

Therefore, the consensus condition in general should be

imposed onto the optimal solution that is achieved through

the solution of the Riccati equation as an extra constraint.

Hence, the LQR formulation is not appropriate for the

purpose of consensus seeking. In the following subsection

we try to find an optimal solution for the above minimization

problem subject to the consensus constraint.

B. LMI Formulation of the Optimal Consensus Seeking

As discussed in the previous subsection, the problem of

minimizing the cost function (14) subject to the dynamical

constraint (13) cannot be solved as a standard LQR problem.

Instead, we use the well known LMI formulation for solving

the optimal problem. In [15] it was shown that the LQR

problem can be formulated as a minimization problem that

is constrained to a set of LMIs. Using this formulation, the

controller Ū = K̄Xs̄ that minimizes the cost function (14)

is achieved by solving for and determining the appropriate

matrix P , namely

min Xs̄(0)T PXs̄(0) s.t.

P (Ā + B̄K̄) + (Ā + B̄K̄)∗P + Q̂ + K̄∗RK̄ ≤ 0
(22)

where K̄ = −R−1B̄∗P yields the optimal solution. In

[16] it is shown that if instead of the cost function (14)

its expected value is considered and certain assumptions on

the initial conditions of the system are imposed, the above

minimization problem reduces to:

min trace(P ) s.t.

P (Ā + B̄K̄) + (Ā + B̄K̄)∗P + Q̂ + K̄∗RK̄ ≤ 0
(23)

For the dynamical system (13) the inequality constraint

(23) can be written as:

P (S̄∗AS̄ + S̄∗BKS̄) + (S̄∗AS̄ + S̄∗BKS̄)∗P

+ S̄∗QS̄ + S̄∗K∗RKS̄ ≤ 0
(24)

By multiplying both sides of this inequality by P−1 we get:

S̄∗(A + BK)S̄P−1 + P−1S̄∗(A∗ + K∗B∗)S̄+

P−1S̄∗QS̄P−1 + P−1S̄∗K∗RKS̄P−1 ≤ 0
(25)

Now define a new variable Z > 0 that satisfies the following

equation [14]:

Z = S̄S̄∗ZS̄S̄∗ + SS∗ZSS∗ (26)

an example of which can be in the following form [14]:

Z = [S̄ S]

[

P−1 0
0 M

] [

S̄∗

S∗

]

(27)

where both M = S∗ZS and P−1 = S̄∗ZS̄ are PD matrices

and P can be the same matrix as the one used in (25).

Corresponding to this definition of Z we will have ZS̄ =
S̄P−1. Substitute ZS̄ = S̄P−1 into (25) to get:

S̄∗(AZ+BKZ+ZA∗+ZK∗B∗+ZQZ+ZK∗RKZ)S̄ ≤ 0

Introduce a new variable W = KZ, so that we have:

S̄∗(AZ + BW + ZA∗ + W ∗B∗ + ZQZ + W ∗RW )S̄ ≤ 0

This can be written as an LMI condition using the Schur

complement and noticing that R > 0 and Q ≥ 0, we get




Υ S̄∗ZQ1/2 S̄∗W ∗R1/2

Q1/2ZS̄ −I 0
R1/2WS̄ 0 −I



 ≤ 0,

Υ = S̄∗(AZ + BW + ZA∗ + W ∗B∗)S̄

(28)

Therefore, the minimization problem in (23) can be written

as follows:

min trace(P ) s.t.




Υ S̄∗ZQ1/2 S̄∗W ∗R1/2

Q1/2ZS̄ −I 0
R1/2WS̄ 0 −I



 ≤ 0,

Υ = S̄∗(AZ + BW + ZA∗ + W ∗B∗)S̄,

Z = S̄S̄∗ZS̄S̄∗ + SS∗ZSS∗

(29)

where ZS̄ = S̄P−1. In the following we discuss the condi-

tions for existence of a solution to the above minimization

problem and then present the main results of this section as

a theorem.

Discussion on the Existence of Solutions: It is well-known

that detectability and stabilizability conditions are required

for existence of a solution to a linear optimal control prob-

lem. The following lemma illustrates and formulates these

conditions for our specific problem.

Lemma 2 The minimization problem (23), or equivalently

(29), subject to the dynamical constraint (13) has an optimal

stabilizing solution if matrices A,B,Q are given such that

the following inequalities have a solution for P2:

1. Stabilizability condition: S̄∗(AP2 +P2A
∗−BB∗)S̄ < 0,

2. Detectability condition: S̄∗(P2A + A∗P2 − Q)S̄ < 0,

where P2 > 0 satisfies P2 = S̄S̄∗P2S̄S̄∗ + SS∗P2SS∗.
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Proof: Omitted due to space limitations.

The immediate result from the above discussions is the

following theorem.

Theorem 3 a. Consider the dynamical system and the cost

function given by (6) and (14), respectively. Assume that

the matrices A,B,Q satisfy the conditions of Lemma 2.

Moreover, assume that the control input U is selected as

U = KX , where K = WZ−1 and the LMI variables Γ,W

and Z are obtained through the minimization problem below

min trace(Γ) s.t.














































1.

[

Γ I

I S̄∗ZS̄

]

> 0

2.





Υ S̄∗ZQ1/2 S̄∗W ∗R1/2

Q1/2ZS̄ −I 0
R1/2WS̄ 0 −I



 ≤ 0,

Υ = S̄∗(AZ + BW + ZA∗ + W ∗B∗)S̄
3. (AZ + BW )S = 0
4. Z = S̄S̄∗ZS̄S̄∗ + SS∗ZSS∗, Z > 0

(30)

Then, the cost function (14) is minimized and the system

described by (6) reaches a stable consensus in an optimal

manner.

b. Furthermore, if the following constraints are added to

the above minimization problem the controller would then be

semi-decentralized. In other words, only partial information

available through the predefined neighboring sets are used

by the controller provided that:


















1. Z is diagonal, i.e. Z =







Z1 . . . 0
...

. . .
...

0 . . . ZN







2. W (i, j) = 0 if L(i, j) = 0

(31)

where L is the Laplacian matrix of the graph describing the

network.

Proof: Omitted due to space limitations.

C. Discussion on Graph Connectivity

So far there has been no explicit restriction on the con-

nectivity of the network underlying graph. In the following

we observe that the graph connectivity is a requirement

for guaranteeing consensus achievement. First, we prove the

following lemma which is required for the remainder of the

discussion in this section.

Lemma 4 The closed-loop matrix of the entire network,

i.e. A + BK represents the Laplacian matrix of a weighted

graph. The corresponding graph is a subgraph of the original

network graph but with different weights assigned to its

edges.

Proof: Omitted due to space limitations.

Theorem 5 If the graph corresponding to the entire network

is not connected, the existence of a solution to the consensus

problem cannot be guaranteed.

Proof: Omitted due to space limitations.

V. SIMULATION RESULTS

It is worth noting that in the present approach, there is

more flexibility in design of both the local controllers and the

interaction terms. In other words, ui
l in (4) can be a function

of both the local information Xi as well as the global

information Xj , j ∈ N i. Consequently, the interaction term

F ij can be selected as zero even though the agent j is in the

neighboring set of agent i.

Simulation results presented in this section are for a team

of four agents. The simulations are done for two cases. In the

first case the requirement given in Lemma 1 is not satisfied

by the system matrix A, i.e. AS �= 0. The Laplacian matrix

corresponding to the connected graph describing the network

structure is L =









2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2









. Other simulation

parameters are Ai =

(

1 1
0.5 1

)

, Bi = 2I2×2, ci =

I2×2, Qij = 6I2×2, Ri = 2I2×2. The state vector X is

composed of velocity vectors of all agents in the team, i.e.

X = [(v1)T , . . . , (vN )T ]T . Therefore, for the present case

and assuming that the velocity vector is two-dimensional, i.e.

vi = [vi
x, vi

y]T , the initial condition of the state vector is

selected as X(0) =
(

6 1 5 3 2 1 −5 −4
)T

. The

interaction coefficients F ij , ∀i, j are assumed to be zero. It

can be verified that the above parameters satisfy the condi-

tions provided in Lemma 2 and the corresponding matrix P2

can be selected as the identity matrix. The simulation results

are obtained by applying the control law U = KX to the

system (6). Matrix K is first evaluated through the set of

LMIs given in Theorem 3. In Figure 1, the x−component, i.e.

vi
x of the velocity profiles of the four-agent team are shown

for the above configuration. In Figure 2 we have applied

the control strategy given by (17) to the system (6) with

the above configuration. It can be seen that as predicted in

Lemma 1 the closed-loop system is unstable. This is due

to the fact that the open-loop matrix A does not satisfy the

property AS = 0.

In the second part of the simulations, we have selected

a matrix A such that AS = 0. The corresponding results

are presented in Figures 3-4. To guarantee the condition

AS = 0, the interaction coefficients are selected as F ij =

−0.25

(

1 1
0.5 1

)

, ∀i, j. Other simulation parameters are the

same as in the previous case. The simulation results are

obtained by applying the controllers designed based on the

Riccati equation solutions and the solutions to the set of

LMIs in (30). Figure 3 corresponds to the latter approach,

whereas Figure 4 corresponds to the former approach. For

comparison between these two approaches we calculated a

performance index for both methods. Since one does not

have direct access to Xs̄, instead of the performance index

(14) we used the following cost function for comparative
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purposes:

PI =
∫ T

0
{XT QX + UT RU}dt (32)

where T is selected to be 10s. The values obtained for the

above performance index are 865.5 and 883.2 corresponding

to the Riccati equation and the LMIs approaches, respec-

tively.
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Fig. 1. The x-component of the velocity profile; optimal design based on
the solution of the LMIs when AS �= 0.
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Fig. 2. The x-component of the velocity profile; optimal design based on
the solution of the Riccati equation when AS �= 0.
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Fig. 3. The y-component of the velocity profile; optimal design based on
the solution of the LMIs when AS = 0.

VI. CONCLUSIONS

An optimal control design strategy based on state decom-

position is introduced to guarantee consensus achievement

in a network of multi-agents. It is shown that the approach

based on the solution of the Riccati equation in general

fails to provide a solution for a stable consensus protocol.

Therefore, our proposed approach is based on minimization

of a global cost function that is subject to a set of constraints

expressed as LMIs. Introduction of a global cost function

considered here can ensure a global optimal (or suboptimal)

solution. Also, this formulation provides a single index for

describing and analyzing the total performance of the team.
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Fig. 4. The y-component of the velocity profile; optimal design based on
the solution of the Riccati equation when AS = 0.

Moreover, through the LMI formulation the constraint on

partial information availability can be formally taken into

account. Therefore, in the individual control design the only

required information will be what has been received from

the corresponding neighbors in the controller’s neighboring

set. This framework has sufficient flexibility to accommodate

additional constraints and design criteria in our proposed

methodology and solution.
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