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Abstract— In this paper, we propose a Maritime Underwater
Navigation System (MUNS) for Unmanned Underwater Vehicles
(UUVs). The proposed MUNS has a hierarchical architecture
comprising of a Wide Area Planner (WAP) and a Local Area
Planner (LAP). MUNS is intended to be a plug-and-play module
to provide obstacle avoidance and path planning capabilities to
existing UUV platforms thereby expanding operational capabil-
ities in cluttered and littoral environments. MUNS is designed
to be flexible and to support a variety of tasks including
point-to-point moves, object inspection, contour tracking, and
region scanning/searching. The performance of MUNS has been
validated through extensive simulation studies.

I. INTRODUCTION
Unmanned Underwater Vehicles (UUVs) (and Unmanned

Underwater Riverine Craft (UURC)) can play an important
role in many civilian and military applications [1–3] such as
intelligence and surveillance applications, search and rescue,
mobile communication relays, and hull and pier inspection
with object identification and localization. To realize their
full potential in these and other applications, it would be
greatly beneficial to attain a high degree of autonomy,
reliability, and robustness in order to negotiate unknown
hazardous environments, and to perform a launch-and-forget
mission in which the vehicle travels to the target point with-
out operator intervention. Achieving autonomy capabilities
in UUVs, especially in riverine, harbor, shallow water, or
cluttered environments forms a challenging problem due to
various sensory limitations [4–11]. Sonar sensors which form
the primary sensor modality for picking up information on
local underwater geometry are noisy, affected by surface
returns and water turbulence, and offer only a limited field
of view. Furthermore, in typical UUV applications, a priori
information on the local obstacle geometry could be minimal
or nil thus making the obstacle avoidance task completely
dependent on real-time sensor information. Additionally, in
underwater applications, position referencing sonar returns
into an absolute frame could be difficult since the estimate
of the vehicle’s own position drifts in the absence of GPS
updates (this is particularly relevant when it is desirable
for stealth reasons that the UUV not surface for GPS
fixes). Hence, the obstacle avoidance module should function
reliably with purely relative measurements even when the
vehicle’s own position is uncertain.

In this paper, we describe the Maritime Underwater
Navigation System (MUNS), a path planning and obstacle
avoidance system intended to be a plug-and-play module
for UUVs and UURC. The design of MUNS is based on
our earlier work on a low-resource algorithm GODZILA
(Game-Theoretic Optimal Deformable Zone with Inertia and
Local Approach) [12,13] and its application along with
the A∗ search algorithm [14,15] to attain a hierarchical
path planning and obstacle avoidance system for Unmanned
Surface Vehicles (USVs) [16,17].
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II. MUNS AND ITS COMPONENTS

The MUNS module (Figure 1) described in this paper
addresses the path planning and obstacle avoidance problem
for a UUV operating in partially or completely unknown
environments through the utilization of a hierarchical path
planning and obstacle avoidance system comprising of a
Wide Area Planner (WAP) and a Local Area Planner (LAP).
The WAP is responsible for higher-level planning given
the mission specifications while the LAP focuses on local
obstacle avoidance. The LAP can operate based on just the
relative measurements to obstacles provided by the sonars at
the current time while the WAP constructs and maintains an
environment map to achieve the specified mission objective.
The utilization of a modular hierarchical approach makes
it straightforward to address different mission objectives
(including collaborative missions performed by multiple
unmanned vehicles) through inclusion of appropriate algo-
rithms in the WAP component. In this effort, the LAP is
based on GODZILA which is an optimization-based reactive
obstacle avoidance algorithm.
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Fig. 1. Conceptual architecture of overall MUNS.

MUNS includes three central components: (1) Situational
Awareness: The data from the sensors is integrated into a co-
herent knowledge base of the obstacle geometry taking into
account uncertainties resulting from sensor noise and drift
in own position estimate. (2) WAP: The WAP is a higher-
level module (Mission Planner) which addresses the specific
mission (such as searching a specified region, examining a
specific object by tracing its contour, or visiting a sequence
of waypoints) being performed and computes nominal UUV
trajectories to execute the mission. (3) LAP: The LAP is
responsible for local obstacle avoidance, i.e., maintaining
the specified safe clearance distance to the obstacles in the
vicinity. To accomplish this task, the LAP modifies in real-
time the nominal trajectory computed by the WAP. The
WAP typically operates using a coarse map over a larger
geographical region and updates at a much lower sampling
rate than the obstacle avoidance algorithm. For simple point-
to-point moves, the WAP is not required and the LAP can
operate on its own given only the final target position.

The overall OAS which is comprised of the situational
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awareness component, the LAP, and the WAP is responsible
for translating given task specifications into linear and angu-
lar velocity commands to the inner-loop controller (autopi-
lot), which in turn computes the physical actuator commands
to track the commanded linear and angular velocities. The
UUV is equipped with acoustic sensors (sonars) to detect
obstacles in the environment. The sensor readings from
each sonar (after preliminary processing) yields a grid of
measurements of range to obstacles from which the range
measurements utilized by GODZILA are computed.

A. Situational Awareness
The sensor data from sonars are processed by the situ-

ational awareness block to obtain a coherent obstacle map
of the environment taking into account the sensor noise and
uncertainty in the UUV’s position. The construction of the
obstacle map by the situational awareness block involves
a probabilistic characterization of the obstacle geometry
(modeled through a set of probabilistic occupancy grids),
propagation of the sensor data over time based on estimates
of the UUV’s motion, and examination of the obstacle detec-
tion persistence over time. Depending on the particular task
being performed, the situational awareness block also keeps
track of additional data such as the history of the UUV’s
position (this information is useful in a region scanning
or searching mission). If additional sensory or geographic
information is available such as turbulence locations/patterns,
then the situational awareness block can also integrate such
information into occupancy grids for use by the WAP to
assign traversal costs to cells in the grid. The situational
awareness block provides easily adjustable tuning parameters
such as grid sizes and resolutions, smoothing function for
entering sonar return information into the grids, forgetting
factors to control persistence of information in the grids, etc.

B. WAP Designs
The WAP includes a suite of algorithms for common

tasks. The MUNS is designed in a modular fashion to
easily allow incorporation of additional algorithms in WAP to
extend functionality to different types of missions. Currently,
the WAP is a combination of A∗, heuristics, and dynamic
optimization. The WAP accepts high-level mission objectives
and computes nominal desired motion direction. The WAP
also deforms the local topology as seen by GODZILA
to attain desired behavior from GODZILA. WAP includes
heuristics and dynamic optimization to address specifications
such as keep-inside region (i.e., operating region), keep-out
region, minimum clearance to obstacles, etc. In the simplest
case of a point-to-point move, the WAP performs an A∗

search [14,15] to compute the optimal path from the current
position to the target location based on currently available
information as obtained from the situational awareness block.
A discrete grid is used for this purpose with traversal costs
of the cells in the grid propagated by spatial averaging and
smoothing from the probabilistic occupancy grids maintained
by the situational awareness block. Criteria considered in the
computation of the traversal cost include nearness to obsta-
cles, depth, and vehicle kinematic constraints. In addition,
for tasks such as region scanning, distance of a cell from
the position history grid (used by the situational awareness
block to keep track of locations visited by the vehicle) is
also considered in computation of the cell traversal cost.
The cost function for optimization in A∗ is the total path
length (taking kinematic constraints into account). If addi-
tional sensory or geographic information is available such
as turbulence locations/patterns, then such information can

be readily integrated into the search by modifying traversal
costs of cells appropriately to encourage finding of paths that
avoid regions of turbulence. Similarly, if a specific behavior
is required in a mission scenario such as requiring the UUV
to keep near the middle of a river, then such behavior can
be attained in a straightforward way by modifying the cell
traversal costs. To provide a high-level interface to easily
control such behaviors, the WAP has been designed to accept
commands from a higher level block as to desired and/or
undesired regions or criteria, the intent being that a higher
level mission planner will determine required behavior and
model that required behavior in terms of a set of criteria to
input to the WAP.

C. Application of GODZILA for LAP Design
The UUV OAS is designed based on GODZILA [12]

which is a versatile general-purpose computationally light-
weight algorithm for obstacle avoidance for various types
of unmanned vehicles. GODZILA does not require any
a priori information about the environment and does not
rely on building an obstacle map. GODZILA works in
any finite-dimensional space with provable convergence with
probability 1 to target. The algorithm follows a purely local
approach using only the sensor measurements at the current
time and requiring only a small number of stored variables
in memory. This minimizes the memory and computational
requirements for implementation of the algorithm, a feature
that is especially attractive for small autonomous vehicles.
The trajectory is generated through the online solution of an
optimization cost at each sampling instant. It can be shown
that the optimization cost can be chosen so that the minimizer
can be obtained in closed form. The optimization cost
includes three terms which penalize, respectively, motion
in directions other than the direction to the target, motion
towards obstacles, and back-tracking. In addition to the op-
timization algorithm, GODZILA includes two components,
a local straight-line planner utilized if the target is visible
and navigation towards a random target. Since the algorithm
follows a local approach, it is possible to be caught in
a local minimum. When a local minimum or a “trap” is
detected, navigation towards a random target is initiated to
escape the trap. For enhanced efficacy in UUV applications,
the various design freedoms (parameters and cost functions)
appearing in the GODZILA algorithm have been fine-tuned
for UUV applications based on simulations incorporating
the kinematic and dynamic characteristics of the UUV, the
sensor characteristics, and the typical operating conditions.
In addition, the GODZILA algorithm has been customized
in multiple directions as outlined below:

1) In littoral environments, the UUV would need to oper-
ate in close proximity to the seafloor. Hence, keep-out
distance tolerance for the vertical direction would need
to be smaller than for the horizontal plane. However,
since the seafloor is not of constant depth (there is also
clutter and debris on the seafloor), the OAS should
be sensitive to depth variations. These considerations
are addressed in the GODZILA framework by gen-
eralizing the optimization cost function component
J2 in GODZILA (which penalizes motion towards
obstacles – see [12]) to include a depth-modulated
directional weighting wherein sensor returns indicating
z axis (vertical) proximity to obstacles appear into
the obstacle avoidance component of optimization cost
with low clearance requirement but with high cost
growth at close proximities.
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2) To utilize the full range of maneuvering capabilities of
the UUV, the optimization component of GODZILA
is enhanced to compute both optimal yaw orientation
(θy) and optimal direction of motion. The optimal
direction of motion is computed as in the standard
GODZILA algorithm with the modification described
above and the optimal yaw orientation is computed by
minimizing an optimization cost of the form Jy(y) =
Jsy(∆s(θy)) + Jh(θy) + Jt(θy) where
• Jsy is a class-K function of ∆s(θy) where ∆s(θy)

is defined as the amount of yaw required to bring
the direction in which the closest sensor reading
is currently being detected into the center of the
field of view of any one of the sensors mounted on
the vehicle, i.e., the action of the component Jsy
is to encourage the UUV to align itself so that the
direction in which obstacle proximity is closest is
within the field of view of one of the sensors.

• Jh(θy) penalizes the deviation between the hor-
izontal plane vector corresponding to the yaw
command and the current linear velocity vector
projected into the horizontal plane.

• Jt(θy) penalizes the deviation between the hor-
izontal plane vector corresponding to the yaw
command and the vector to the desired target
location projected into the horizontal plane.

MUNS maintains dual frame (absolute/relative) situational
awareness and the OAS can function purely with relative
distances to obstacles thus providing robustness to navigation
drift. Therefore, MUNS does not introduce any additional ve-
hicle position accuracy requirements beyond what is needed
in terms of mission specifications (e.g., if the vehicle is
commanded to go to a point within accuracy of 10 m,
then the position drift of the navigation system should not
accumulate to more than 10 m minus the maneuvering ac-
curacy of the UUV; similarly, for a region scanning mission,
the coverage distance and the allowed excursion beyond
the operational area set the required position accuracy).
The position accuracy demanded by mission specifications
governs how often the vehicle would need to surface for GPS
updates. The operational endurance and range are dictated
by vehicle specifications (e.g., fuel, batteries, communication
range if real-time communication is desired, storage capacity
if data logging is desired, etc.) and are not further limited
by MUNS except for the power penalty for introduction
of additional sonars if required; MUNS can operate with
a single forward-looking sonar as seen in the simulation
studies in Section IV although utilization of four sonars (one
pointing forward, two pointing to the two sides, and one
pointing downward) would be recommended if the vehicle’s
SWaP (size, weight, and power) constraints allow it.

III. APPLICATIONS TO CONTOUR TRACKING AND
REGION SEARCH MISSIONS

To address common tasks such as tracking/examining
the contour of a specified object and scanning/searching
a specified region, WAP algorithms have been developed
and integrated into the WAP module. The conceptual ar-
chitectures of the overall system when operating in these
modes are illustrated in Figures 2 and 3, respectively. In
each of these two modes, the WAP includes an algorithm
to decide on the “next location” to visit (which we will
refer to as a pseudo-target) based on the task requirements;
this location then forms the input to the point-to-point mode
WAP/LAP OAS (i.e., A∗ in conjunction with GODZILA).
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Fig. 2. MUNS: Application to contour tracking.

In the case of contour tracking, the pseudo-target is picked
to be the estimate of the “next” cell along the contour of
the object of interest; the properties used to characterize this
next cell include a lower bound on distance from locations
traversed within a small past time window, bound (both
lower and upper – based on the desired tracking distance) on
distance from the boundary of the object, and upper bound
on difference in angle between current heading and vector
from current location to the next cell. It is evident that the
characteristics defining the next cell allow several tunable
parameters. Similarly, in region scanning, the pseudo-target
is picked along the “next” scan line, which is characterized
based on a lower bound on distance from previously visited
locations and a lower bound on distance from obstacles.
As mentioned above, a path to the current pseudo-target is
determined using the A∗ and GODZILA algorithms. In both
the contour tracking and the region scanning cases, picking
of the pseudo-target is based on a breadth-first search for the
nearest cell possessing the aforementioned properties. MUNS
has been designed to seamlessly switch between different
modes during run time.
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Fig. 3. MUNS: Application to region scanning.

IV. SIMULATION STUDIES
A. Simulation Platform

A dynamic simulation platform with the architecture
shown in Figure 4 has been constructed incorporating the
UUV operating characteristics, an environment model, sonar
model, and the GODZILA OAS. The simulation platform
supports an arbitrary number of static and moving obstacles
in the environment. The obstacle geometry is specified at run-
time through text configuration files. The simulator has been
implemented in the C++ programming language and includes
a 3D OpenGL based graphical user interface for ease in
visualization and demonstration of the OAS performance.
To allow application of the simulator to future work on
collaborative planning and obstacle avoidance for multiple
UUVs, the simulator has been designed from the ground up
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to include support for an arbitrary number of UUVs (with
possibly different dynamic and kinematic characteristics).

OAS
Mission 
Specifications

Closed-Loop UUV 
Kinematic/Dynamic Model 

(including inner-loop 
controller) 

Sonar 
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Fig. 4. Architecture of the simulation platform.

B. Modeling of UUV and Sensors
The simulation platform supports inclusion of both kine-

matic motion constraints and also a dynamic model of the
UUV motion. The motion constraints addressed in the sim-
ulation studies outlined in Section IV-C include maximum
speed (horizontal, i.e., at constant depth) of 2 m/s, maximum
acceleration of 0.2 m/s2, maximum deceleration of 0.35 m/s2,
maximum dive/climb speed of 0.3 m/s, maximum turn rate
of 10 deg/s, and minimum turn radius of 10 m.

As shown in Figure 4, the output of the closed-loop
kinematic/dynamic model of the UUV provides linear and
angular position and velocity signals which are then used
to synthesize a simulation of sonar data as a grid of range
measurements. The number of measurements in the grid
for each sonar is determined by the sonar’s field of view
and its angular resolution. If the horizontal field of view
is denoted by FOVh (i.e., the horizontal field of view is
[−FOVh

2 , FOVh

2 ]) and the vertical field of view is denoted
by FOVv (i.e., the vertical field of view is [−FOVv

2 , FOVv

2 ]),
then the sonar measurements are represented by a matrix
of dimension (2Nh + 1) × (2Nv + 1) where Nh = FOVh

2δθh

and Nv = FOVv

2δθv
with δθh and δθv denoting the horizontal

and vertical angular resolutions, respectively, of the sonar.
Given an obstacle set ue expressed in inertial frame, the
sonar measurements of a sonar mounted with axis vector as
represented in body frame (body frame axes are constructed
with X axis pointed towards the front of the vehicle, Y axis
to the left, and Z axis downwards) are ideally given by

s(i,j) = min{d|xp + d(xh + q(i,j)) ∈ ue}
for i ∈ {−Nh, . . . , Nh} , j ∈ {−Nv, . . . , Nv} (1)

where xp is the current position, xh is the unit vector along
the current heading (expressed in inertial frame, i.e., if the
rotation matrix between the body frame and the inertial frame
in the current orientation is Rbi , then xh = Rbi [1, 0, 0]T ), and

q(i,j) = Rbi (Ry,jδθv
Rz,iδθh

as − [1, 0, 0]T ). (2)

with Ry,θ denoting the rotation matrix corresponding to a
counter-clockwise rotation by angle θ around the Y axis and
Rz,θ denoting the rotation matrix corresponding to a counter-
clockwise rotation by angle θ around the Z axis. Physically,
the ideal measurements given by (1) are corrupted by three
factors, namely sensor range(R), sensor linear resolution
(rl), and sensor angular resolution (ra), resulting in the
replacement of (1) by

s(i,j) = satRmin{d|xp + d(xh + q̃(i,j)) ∈ ue}+ s̃(i,j) ,

i ∈ {−Nh, . . . , Nh} , j ∈ {−Nv, . . . , Nv} (3)

where s̃(i,j) and the deviation of q̃(i,j) from q(i,j) are
governed by random distributions (nominally modeled as
zero-mean Gaussian for the purpose of simulation with
standard deviations rl and ra, respectively) and satR denotes
a saturation to a maximum of R.

C. Simulation Results
The proposed MUNS module has been validated through

extensive simulations using the dynamic simulation platform
illustrated in Figure 4 that incorporates the UUV operating
characteristics and a model of the environment and sen-
sors. Simulations have been performed with a wide range
of topologies typically encountered in UUV applications.
Simulation studies have also been carried out with various
numbers and placements of sensors and various levels of sen-
sor performance to estimate the OAS performance that can
be attained in different scenarios. Representative simulation
results are briefly summarized in this section.

Screenshots for sample simulation runs for point-to-point
navigation are shown in Figures 5 and 6. In each of the
screenshots, the red sphere indicates the UUV’s initial lo-
cation while the green sphere indicates the target location.
The inputs to the WAP/LAP OAS are range measurements
corresponding to four acoustic sensors (one pointing forward,
two pointing to the two sides, and one pointing down-
ward) with range 50 m, linear resolution 6 inches, angular
resolution 0.5 degree, and field of view 25 degrees. The
simulated trajectory of the UUV under the online action of
the WAP/LAP OAS is highlighted by the yellow cuboids. In
Figure 5, the environment contains nine obstacles (consisting
of five cuboids, one of which is completely submerged, and
four mine-like spheres tethered to the seafloor) in addition
to the seafloor. The geometry in Figure 6(Top) requires
the UUV to find its way out of an enclosed area while
in Figure 6(Bottom), the UUV needs to find its way out
of an enclosed area and then navigate around an obstacle
across the exit of the enclosed area. As mentioned earlier,
the simulations in Figures 5 and 6 are with four sensors. To
evaluate the performance when only one sensor is utilized,
simulations were performed as shown in Figure 7. It is
noted that MUNS is indeed able to function reliably with a
single sensor; however, performance is noticeably degraded
especially in Test Case 2 showing increased wandering of
the UUV. In Figure 8, screenshots are shown for simulations
wherein a position drift (i.e., error in estimate of the vehicle’s
own position) is included with error in estimate of the
vehicle’s own position given by (10 + 0.005t) m in both
X and Y axes (this high rate of drift is used here to
illustrate, within a short simulation run, the OAS behavior
under position drift). It is seen that this position uncertainty
results in error in the final stopping location of the UUV (i.e.,
shift from the actual target location); however, the obstacle
avoidance itself is unaffected by position uncertainty since
the LAP operation is purely in relative frame and does not
rely on knowledge of absolute position of the UUV. This is
a desirable feature since UUV position estimate does drift
over time when the UUV does not surface for GPS updates.
To examine performance deterioration under higher sensor
noise, a simulation was run with double the sensor noise
(i.e., 1 foot sensor accuracy) in Figure 9 and it is seen that
performance remains adequate thus building confidence that
the proposed system would be able to operate even under
adverse environmental and turbulence conditions wherein
sensor accuracy could be degraded.

Sample simulation runs for contour tracking are illustrated
in Figure 10 for three simulation scenarios: (a) With four
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sensors as discussed above (b) With only one forward
looking sensor (c) With four sensors but with uncertainty in
the vehicle’s own position (position drift of (10 + 0.005t) m
in both X and Y axes). In each of the simulation runs, the
objective was to track the (a priori unknown) contour of
the obstacle with a desired stand-off distance of 10 m. The
red circle denotes the starting location of the UUV. Note
that at initialization time, the algorithm has no knowledge
of the obstacle contour and the only piece of identifying
information provided is the coordinate location of a single
point inside the object of interest. The distances from the
obstacle as a function of time during the contour tracking
operations are shown in Figure 11 for four simulation sce-
narios (four sensors as discussed above, only one forward
looking sensor, four sensors but with drift in own position
estimate, one sensor with drift in own position estimate). It
is seen that when four sensors are used, the performance
is quite robust to uncertainty in the vehicle’s own position.
The performance with a single forward looking sensor shows
more variation in stand-off distance, but could be acceptable
given the task requirements.

Simulations for a sample simulation run for region scan-
ning are shown in Figure 12. The region of interest is
specified through a sequence of coordinate locations forming
the vertices of a polygon. Simulations were also performed
to evaluate the effect of a drift in the UUV’s own position
estimate. As expected, it was seen that a drift in the vehicle’s
own position results in a shift in the perceived region of
interest. It is conceivable that in a scenario such as this, the
effects of position drift could be alleviated by monitoring the
obstacle geometry over time and using mismatch between
a recorded map and currently observed geometry to com-
pensate for the drift in the vehicle’s own position estimate;
this is more feasible if some obstacle is known to be fixed
and can be used as a beacon). While such drift correction
using obstacle geometry is not further pursued in this effort,
it is understood that an algorithm (along with appropriate
sensors and processing) to perform such a position drift
estimation can be incorporated into the entire system to
provide a compensating effect against drift thus improving
OAS performance for tasks such as region scanning or point-
to-point moves wherein absolute frame position knowledge
is required to meet task specifications.

Fig. 5. UUV simulation with four sensors for Point-to-Point Test Case 1.

V. CONCLUSION
In this paper, we have described MUNS, a hierarchi-

cal scalable real-time dynamic OAS and path planning
module. MUNS has been designed to be computationally
lightweight, reliable, and capable of straightforward plug-
and-play integration into existing UUV systems. The MUNS

Fig. 6. UUV simulation with four sensors: Point-to-Point Test Cases 2
(Top) and 3 (Bottom).

Fig. 7. Sample UUV simulation runs with one forward-looking sensor:
Point-to-Point Test Cases 1 (Top), 2 (Middle), and 3 (Bottom).

Fig. 8. Sample UUV simulation runs with four sensors and drift in position
estimate: Point-to-Point Test Cases 1 (Left and Middle) and 2 (Right).

Fig. 9. Sample UUV simulation run with four sensors and higher sensor
noise: Point-to-Point Test Case 2.

is designed to be integrated onto existing UUV platforms
in either of the following two configurations: firstly, as a
plug-and-play stand-alone module communicating with an
existing UUV autopilot via a message-based JAUS-compliant
communication interface, and secondly, as a software module
incorporated into an existing processing module on the UUV.
The modular nature of MUNS also allows benefiting from
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Fig. 10. Sample UUV simulation runs for contour tracking: top two
screenshots are with four sensors; middle two screenshots are with one
forward-looking sensor; bottom two screenshots are with four sensors and
drift in position estimate.

other existing modules which provide functionality such
as computing movement recommendations based on energy
harvesting or turbulence considerations.
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