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Abstract—This paper deals with motion control of throwing
generated by dexterous action. Dexterous actions can be seen
in many sports. In baseball pitching, dexterous throwing seems
to use energy transfer and a physical constraint at the elbow
joint. To implement the dexterous throwing, two types of two-
link underactuated manipulator are presented. One model has
a spring at 2nd joint which represents an arm’s stiffness and a
constraint at elbow joint, another model has a physical absolute
constraint at elbow joint. For these models, throwing motion
control method based on output zeroing which specifies the path
of the ball held by an end-effector is proposed. The proposed
control strategy realizes the energy efficient motion for throwing
to the desired direction. Simulation and experimental results
show the effectiveness of the proposed control method.

I. INTRODUCTION

We can see dexterous actions in many human sports, e.g.

throwing, batting and kicking, etc. In biomechanics field, so

many researchers focused on the motion utilizing dexterous

action. In addition, there are many researches for motion

control based on dexterous action and structure.

As one of such researches for motion control realizing

dexterous actions, there is golf swing control whose aim is to

perform high-speed swing at the time of hitting ball. Shimojo

et al. proposed golf swing motion control applying human

dynamic skills[2][3]. They developed two-link golf swing

robot that has a constraint around a wrist joint as a dexterous

structure. Another work dealt with motion control of swing

arm with spring attached to the joint[4]. This work supposed

spring attachment as a dexterous structure. Ishikawa et al.

studied about batting motion realizing high speed swing[5].

They focused on the sequence of actuation for serial link

manipulator. In this paper, we deal with the throwing motion

control for another dexterous action.

At first, we deal with features of dexterous action in human

throwing. Kreighbaum et al. organized human dexterous

action about throw-like motion in biomechanics[1]. They

mentioned “Lagging Back” motion that is used to get longer

interval for acceleration. After Lagging Back motion, throw-

ing motion is shifted to the motion based on “Kinetic Link

Principle”. The swing based on the Kinetic Link Principle

performs stepwise rotation of joint from proximal link to

distal one. This principle is able to realize more efficient

motion about energy cost. That movement induces energy

flow to gain the velocity of the ball at hand. So we propose

the control method for throwing motion based on these

principles.

Though there are some researches about motion control

for throwing an object, most of them about throwing motion

control only dealt with accuracy of the target point to which

the released ball approaches[6][7][8]. So, there were few

researches about throwing motion control utilizing dexterous

features. Ishikawa et al. dealt with throwing motion control

that uses energy flow as a dexterous action[9]. But they could

not control about the direction of throwing. Our purpose is

to implement throwing motion control for desired direction.

In addition, we realize the efficient throwing motion from

the perspective of energy.

Human throwing is very difficult to analyze all features,

because throwing motion is performed in three dimensional

space. So we use planar two-link underactuated manipulator

as an arm from a lateral view. Two-link manipulator is

considered to be enough to realize dexterous features in

throwing motion. We suppose that this model has a constraint

at the elbow joint for realization of dexterous mechanisms.

Two types of model are proposed, one model has a spring

at elbow joint, which is represented as a arm’s stiffness

and a constraint at that joint. We call this model “spring

model”. Another one has a physical absolute constraint at

elbow joint, and we call this model as “constraint model”.

Motion realization method is based on output zeroing control

that specifies the path of the ball held by end-effector.

In this paper, the model, its state equation and throwing

pattern are described in section 2. In section 3, we introduce

dexterous action which is able to be realized in throwing

motion. Motion control scheme is discussed in section 4.

Simulation results are given in section 5. In section 6,

experimental equipment and results are stated. A conclusion

is given in the final section.

II. THROWING MODEL AND STATE EQUATION

In throwing motion, we can observe the following phases.

• Wind-up: The arm is swung to the backward direction

against the direction to throw. As a result, the distance

of movement of hand to accelerate is increased.

• Acceleration: From the position of wind-up, the arm is

swung to the direction for throwing with the condition

that gains velocity gradually. And then, the ball is

released at desired position and velocity.

• Follow Through: From the released position, the arm is

slowed down. Finally the arm is stopped fully.

In this paper, we will propose control scheme for the motion

from the Acceleration till the Follow Through. So we assume

that the initial posture is fixed to the wind-up position

stationary. And we also assume that desired direction for

throwing is set for horizontal direction (direction of −x axis).
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Fig. 1. Dexterous action and structures

To construct throwing model, we briefly state dexterous

action, as shown in Fig. 1. Dexterous features are summa-

rized as following three topics:

• Energy transfer from the trunk of the body to the ball in

hand is used. This feature enables more energy efficient

motion which carries out high speed throwing with

fewer energy cost.

• Extension torque at the elbow joint is almost never used

in the acceleration phase.

• In the acceleration phase, according to the direction of

rotation of the shoulder joint, the arm is swung with

constraint at the elbow joint, because the elbow joint

has one degree of freedom.

We apply two-link underactuated manipulator as a required

minimum model that is possible to express such dexterous

features. The proposed model is shown in Fig. 2 and 3. In

this paper, we proposed two types of model that are spring

model and constraint model.

These models consist of Joint1 as a shoulder joint, Joint2

as an elbow joint, Link1 as an upper arm, and Link2 as

a forearm. Joint1 has an actuator, so input torque τ works

only at the Joint1. However Joint2 has no actuator, so

this model is considered as an underactuated manipulator.

Underactuated model can represent such dexterous feature

that use no extension torque at the elbow joint. TABLE I

shows parameter notation for these models.

Fig. 2 shows spring model. This model has a spring

attachment at the elbow joint whose spring constant is Kc. By

this spring, this model expresses dexterous structures such

as a constraint at elbow and stiffness of the arm. Fig. 3

shows constraint model that represents a physical constraint

at elbow as a dexterous structure. This model has a rotating

limit to negative direction θ2min.

A. Dynamics of the spring model

The equation of motion for the spring model can be

represented as the follows:

M(q)q̈+CG(q, q̇) = E f τ, (1)

where q ∈ R
n is generalized coordinate, M(q) ∈ R

n×n is

inertia matrix, CG(q, q̇)∈R
n is Coriolis and centrifugal force

and gravity term, and E f = [1,0]T . Then, the state equation

for the spring model is represented by

x = f (x)+g(x)τ, (2)

Fig. 2. Spring model

Fig. 3. Constraint model

TABLE I

PARAMETER NOTATION

Jgi moment of inertia of the i-th link

li length of the i-th link

lgi length from the i-th joint to COG of the i-th link

mi mass of the i-th link

mb mass of the ball

Kc spring constant

θ2min constraint angle of the 2nd joint

where

f (x) =

[

q̇

−M(q)−1CG(q, q̇)

]

, g(x) =

[

0

M(q)−1E f

]

,

with x = [qT , q̇T ]T . This equation has the term Kc(θ2 −θkn)
in CG2(q, q̇) of CG(q, q̇) = [CG1(q, q̇),CG2(q, q̇)]

T . This is

the term due to spring force and θkn is a natural angle of

spring.

B. Dynamics of the constraint model

The equation of motion for the constraint model can be

represented as follows:

M(q)q̈+CG(q, q̇) = E f τ + JTλ , (3)

Jq̇ = 0, (4)

where J ∈ R
n is the Jacobian. J is represented as

J =
∂N

∂q
, (5)
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where N = θ2 is constraint state. When Link2 reaches

to constraint limit angle θ2min, constraint torque λ occurs

around θ2. And λ is represented as

λ = (JM−1JT )−1JM−1(CG(q, q̇)−E f τ). (6)

Then, the state equation for the constraint model is repre-

sented by

x = f (x)+gu(x)τ +g f (x)λ , (7)

where

f (x) =

[

q̇

−M(q)−1CG(q, q̇)

]

,gu(x) =

[

0

M(q)−1E f

]

,

g f (x) =

[

0

M(q)−1JT

]

.

III. ENERGY FLOW OF DEXTEROUS ACTIONS

In this section, we analyze energy transfer which is one of

the factor of the dexterous action in human throwing. This

feature can be applied to either spring model and constraint

model. To apply this feature to both models, we suppose that

Joint2 doesn’t have any constraint in the following discussion

about energy.

First, energy of the Link1 E1, energy of the Link2 E2,

energy of the ball Eb and total energy of the system E are

given by

E1 =
1

2
m1(ẋ

2
1 + ẏ2

1)+
1

2
Jg1θ̇

2
1 +m1g(y1 + l1 + l2), (8)

E2 =
1

2
m2(ẋ

2
2 + ẏ2

2)+
1

2
Jg2(θ̇1 + θ̇2)

2 +m2g(y2 + l1 + l2),

(9)

Eb =
1

2
mb(ẋ

2
b + ẏ2

b)+mbg(yb + l1 + l2), (10)

E = E1 +E2 +Eb, (11)

where (x1, y1), (x2, y2) are position of the mass of the Link1

and the Link2 in Cartesian coordinate, and (xb, yb) is position

of the mass of the ball. Velocity of the ball and its time

derivative are given by

vb =
√

ẋ2
b + ẏ2

b, (12)

v̇b =
1

mbvb

[

Ėb +mbgẏb

]

. (13)

According to (13), it can be said that the velocity of the ball

is increased, if the time derivative of the energy of the ball

Ėb is increased. In addition, Ėb is represented as

Ėb = τθ̇1 − (Ė1 + Ė2). (14)

Equation (14) denotes that the energy of the ball can be

accumulated by transferring the energy from the Link1 and

Link2 to the ball. As a result, according to (13) and (14), the

velocity of the ball can be gained by realizing the motion so

as to transfer the energy of the link to the energy of the ball.

The time derivative of the energy of the ball Ėb is also

represented as the following equation, when gravity term is

eliminated.

Ėb =
l1mb

∆
[τHτ +H1 +H2] (15)

where

Hτ = wτ1θ̇1 +wτ2θ̇2 (16a)

H1 = 2sinθ2(w11θ̇1 +w12θ̇2)θ̇1(θ̇1 + θ̇2) (16b)

H2 = l1(lg2m2 + l2mb)sin2θ2(w21(θ̇1 + θ̇2)
3 +w22θ̇

3
1 )
(16c)

wτ1 =l1[2Jg2 − (l2 −2lg2)lg2m2 + l22mb]− l1l2(lg2m2 + l2mb)

cos2θ2 +2l2[Jg2 + lg2(−l2 + lg2)m2]cosθ2 (17a)

wτ2 =2l2[Jg2 + lg2(−l2 + lg2)m2]cosθ2 (17b)

w11 ={−l22(Jg1 + l2g1m1)+ l21 [Jg2 +(−l22 + l2g2)m2]}(lg2m2+

l2mb) (17c)

w12 =−{Jg1l2 + l2l
2
g1m1 + l21(l2 − lg2)m2}(Jg2

+ l2g2m2 + l22mb) (17d)

w21 =l2[Jg2 +(−l2 + lg2)lg2m2] (17e)

w22 =− [l2(Jg1 + l2g1m1)+ l21(l2 − lg2)m2] (17f)

∆ =(Jg2 + l2g2m2 + l22mb)
(

Jg1 + l2g1m1 + l21(m2 +mb)
)

− l21(lg2m2 + l2mb)
2 cos2

θ2 (17g)

Next, we show the condition that the time derivative of the

energy of the ball is increased (Ėb > 0). It can be divided

into two cases relating to the direction of the whole energy

flow, one is the situation where the total energy of the system

is accumulated (τθ̇1 > 0), another one is the situation that

the total energy of the system is dissipated (τθ̇1 < 0).

A. The case of increasing the total energy

If following assumptions are satisfied, Ėb is increased in

the case of increasing the total energy.

• θ̇1 > 0, θ̇2 ≥ 0

• τ > 0

• −π ≤ θ2 ≤ θ2τ

• |wτ1θ̇1| > |wτ2θ̇2|

where θ2τ is the angle when wτ1 = 0 (−π ≤ θ2 ≤ 0). These

conditions are the situation increasing the total energy of the

system by input τ , because τθ̇1 > 0. Hτ > 0, H1 > 0 and

H2 > 0 should be satisfied to be Ėb > 0.

Generally, it is clear that H1 > 0 and H2 > 0 from (16b)

and (16c) when θ̇1 > 0 and θ̇2 > 0, because w11, w12, w21

and w22 consist only of physical parameters.

Next, we think about whether Hτ > 0 is satisfied or not.

If −π ≤ θ2 ≤ θ2τ , then it can be said that wτ1 > 0. And it is

clear that wτ2 < 0 from (17b) (−π ≤ θ2 ≤ 0). Therefore, it

is said that Hτ > 0, when |wτ1θ̇1|> |wτ2θ̇2| is satisfied. This

assumption is fulfilled in the case of θ̇1 ≫ θ̇2.

For example, the image of this situation can be represented

as in Fig. 4. The arm is folded back at initial posture

as θ2 < 0 in this situation, and then it is accelerated as

θ̇1 > 0. Thus, the energy of the ball can be increased in

the case of increasing the total energy of the system, when

the assumptions described above are satisfied.
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Fig. 4. The motion that occurs energy transfer (In the case of increasing
the total energy)

Fig. 5. The motion that occurs energy transfer (In the case of decreasing
the total energy)

B. The case of decreasing the total energy

If following assumptions are satisfied, Ėb is increased in

the case of decreasing the total energy.

• θ̇1 > 0, θ̇2 ≥ 0

• τ < 0

• −π

2
≤ θ2 ≤ 0

• |wτ1θ̇1| < |wτ2θ̇2|

In these assumptions the different points from the case of

increasing the total energy are τ < 0 and |wτ1θ̇1| < |wτ2θ̇2|.
Hτ < 0, H1 > 0 and H2 > 0 should be satisfied to be Ėb > 0.

H1 > 0, H2 > 0 can be satisfied from the same reason denoted

in the case of increasing the total energy. To think about

about Hτ < 0, first wτ2 < 0 is satisfied in −π

2
≤ θ2 ≤ 0.

Second, considering for wτ1, it is switched from positive to

negative at θ2τ , when θ2 increases from −π

2
to 0. So it can

be said that Hτ > 0, if |wτ1θ̇1| < |wτ2θ̇2| is satisfied. This

assumption is satisfied in the case of θ̇1 ≪ θ̇2.

For example, the image of this situation can be represented

as in Fig. 5. In this figure, we think about the movement

after the motion performed in the case of increasing the total

energy (Fig. 4). If τ is switched from positive to negative

after the arm is sufficiently accelerated as θ̇1 > 0, energy

transfer occurs from the link to the ball. As a result, the arm

is swung like Link1 is decelerated by input torque τ < 0.

IV. CONTROL METHOD OF THROWING MOTION

In this section, we explain a control method to throw the

ball toward the desired direction using underactuated model

described in §II. There are mainly two objectives:

• Execution of throwing in the desired direction (i.e.

horizontal direction).

• Realization of energy efficient throwing by using the

energy transfer from the link to the ball (stated in §III).

However, this model has one actuator at Joint1 as a shoulder,

so we can not make the ball track the desired trajectory.

In other words, we can’t make the ball the desired state

which includes position and velocity. To throw in the desired

direction, we will control the position of the ball to follow

a straight path. If the ball is accelerated along this straight

path, it can be thrown in the desired direction. Additionally,

the energy transfer described in §III will occur by realizing

acceleration of the ball on that path, because the conditions

that increase the time derivative of the energy of the ball

can be satisfied when the ball at end-effector moves along

the straight path.

We propose the control method for throwing motion in

each model, i.e. spring model and constraint model as

follows. Note that throwing motion control of spring model

should not be compared with that of constraint model for

the reasons that these models deal with different features

respectively. For example, spring model uses the effect of

spring, but constraint model only uses the effect of physical

constraint. Therefore we denote the advantage of each model

by using each features.

A. The case of the spring model

The desired path for throwing is chosen as

yb = −rd2 +
2rd2

1+ exp[α(xb− rd1)]
, (18)

where (xb,yb) is the position of the ball, and rd1, rd2, α

are parameters for the desired path. Equation (18) is drawn

in Fig. 6. rd1 is initial position of the ball in x-axis, rd2

is distance between straight line of the desired path and

x-axis, and α represents gradient of a curve section. Thus

these parameters of this desired path are easy to understand.

Note that the desired path is connected smoothly between the

curve section and the straight section. If the ball moves from

the curve section of the desired path to the straight section of

it (Fig. 7), then the ball can be released to desired direction

after the ball velocity reaches the target velocity for release.

To make the ball converge to the desired path, we use

output zeroing control[10]. The output function for zeroing

is set as following.

h = yb + rd2 −
2rd2

1+ exp[α(xb− rd1)]
(19)

Fig. 6. Desired path

Fig. 7. Desired motion (Spring model)
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Fig. 8. Desired motion (Constraint model)

Then, ḣ, ḧ are calculated as follows:

ḣ =
∂h

∂x
( f (x)+g(x)u)

= L f h+uLgh = L f h, (20)

ḧ =
dL f h

dt

= L2
f h+uLgL f h. (21)

where L f h, Lgh, L2
f h and LgL f h are Lie derivative[10]. By

taking new input as ḧ = v, the input for output zeroing is

obtained as the following form.

u = LgL f h
−1

[

v−L2
f h

]

. (22)

If the new input v can stabilize the new state [h, ḣ],
the ball at the end-effector will converge on the desired

path for throwing. This means output zeroing is achieved.

Additionally, if zero dynamics that makes a movement on the

desired path is unstable by the effect of the spring, the ball is

accelerated on the desired path. Thus, we carry out throwing

motion control for the desired direction using output zeroing.

B. The case of the constraint model

In the case of the constraint model, we make the following

assumption for initial state.

• The initial angle θ20 equals to the constraint angle θ2min.

Thus, throwing motion is started from constraint condition.

When Joint2 is constrained, the trajectory of the ball must

be a circular arc whose center locates on Joint1. Therefore,

two types of controller are used in each case:

• With constraint phase: The input torque is constant uc,

while the state is constrained from the initial state.

• Without constraint phase: The input is derived using

output zeroing. The output function for zeroing is (19).

Fig. 8 shows the movement described above. At the timing

of switching the phase, the parameters of the output function

(19) are selected to connect the trajectory smoothly by

calculating curvature of the desired path. So parameters of

output function are selected by initial angle θ20 and the

position of breaking constraint condition.

V. SIMULATIONS

In this section, we verify effectiveness of the proposed

control method for throwing through numerical simulations.

Physical parameters used in simulation are shown in TABLE

II, but Kc = 0.0[Nm/rad] in the case of the constraint model

and also rotational limit θ2min is applied only in the case

of constraint model. We show each result about the spring

model and the constraint model.

TABLE II

PHYSICAL PARAMETERS

m1 2.0[kg] l1 0.40[m] Jg1
m1l

2
1

12

m2 1.8[kg] l2 0.48[m] Jg2
m2l

2
2

12
mb 0.1[kg] lg1 0.20[m] θkn 0.0[deg]
Kc 6.0[Nm/rad] lg2 0.24[m]

We suppose that the ball is released after the releasing

requirement is satisfied. The releasing requirement is defined

as

Urel := {qb | vb ≥ vrel , |ẏb| < ẏrel , cb < crel} (23)

where qb = [xb,yb, ẋb, ẏb]
T is state of the ball. cb is curvature

of the ball trajectory. vrel is desired velocity of the ball

for release. ẏrel is a restriction to throw the ball to desired

direction(−x-axis). crel is a restriction to verify whether

the trajectory of the ball can be kept on straight path for

throwing. If above requirements are satisfied, the end-effector

will release the ball.

A. The case of the spring model

To select the parameters of the output function, we cal-

culate optimal value of these parameters utilizing genetic

algorithm which searches the parameters of the output func-

tion minimizing the value of the energy cost Ec. Here Ec is

represented as

Ec =
∫ Trel

0
|τθ̇1|dt, (24)

where Trel is the timing of release.

Control parameters for the spring model and the optimized

parameters are shown in TABLE III. And we define Ecv as

Ecv =

mbv
2
b

2
∫

|τθ̇1|dt
. (25)

Ecv is an evaluation value to verify energy efficiency of

throwing motion. Namely Ecv indicates contribution ratio of

the kinetic energy of the ball against the energy cost. If Ecv

takes a high value, we can consider that the inflow energy

by input torque is spent to accelerate the ball efficiently.

Simulation results are shown in Fig. 9. Ec is 92.56[J]

with released velocity 15.00[m/s]. Fig. 9(a) shows that the

trajectory of the ball (xb, yb) and the trajectory of the end-

effector (xend , yend). Before releasing, (xb, yb) equals to (xend ,

yend). It can be seen that throwing motion in desired direction

is realized. The velocity of the ball vb is shown in Fig. 9(b).

vb is increased during the acceleration motion, and it reaches

to the desired velocity for release.

Fig. 9(c) shows angular velocity θ̇1, θ̇2 and Fig. 9(d)

shows input torque τ . After t = 0.2[s], θ̇2 is rapidly increased

against θ̇1 is decreased. And τ has a peak at t = 0.183[s], and

then it is decreased. From these transition of θ̇1, θ̇2 and τ ,

it can be said that this throwing motion uses energy transfer

from the link to the ball to accelerate the velocity of the

ball efficiently. The energy of links and ball E1, E2 and Eb

are shown in Fig. 9(e). In this figure, it also can be seen

that the energy transfer is caused from the point where Eb

is increased against E1, E2 is decreased.
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TABLE III

CONTROL PARAMETERS (SPRING MODEL)

θ10 140.10[deg] α 5.8 vrel 15.0[m/s]

θ20 -89.78[deg] rd1 0.626 ẏrel 0.5[m/s]

rd2 0.751 crel 0.3
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Fig. 9. Throwing simulation (Spring model)

Fig. 9(f) shows the evaluation value Ecv defined by (25).

Ecv is increased till release. Therefore this control method is

efficient from the perspective of energy.

Since these simulation results are optimized about energy

cost, the parameters of the desired path is selected to use

the effect of spring positively. From Fig. 9(d), τ is decreased

once after t = 0.1[sec], and then it is increased. This decrease

of torque occurs from using potential energy of spring instead

of the input torque. Besides, optimized parameter has the

relation that rd2 is larger than rd1. By using these parameters,

θ̇2 is increased until the ball enters to the straight section of

desired path. As a result, potential energy of the spring is

used to accelerate the ball.

B. The case of the constraint model

We also carry out the simulation of throwing motion con-

trol using constraint model. Control parameters are shown in

TABLE IV. Fig. 10 shows simulation results, Ec = 105.46[J]

with released velocity 13.20[m/s] at t = 0.274[s].

Fig. 10(a) shows the trajectory of (xb, yb) and (xend , yend).

It can be seen that the ball is released on the straight path,

and we can say that throwing for desired direction is realized.

TABLE IV

CONTROL PARAMETERS (CONSTRAINT MODEL)

θ10 -140.20[deg] α 5.54 vrel 10.0[m/s]

θ20 -90.00[deg] rd1 0.625 ẏrel 0.5[m/s]

uc 40.0[Nm] rd2 0.680 crel 0.3
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Fig. 10. Throwing simulation (Constraint model)

Fig. 10(b) shows the ball velocity vb. From this figure, it is

clear that vb is rapidly increased on the straight path.

From the same reason denoted in the simulation results of

spring model, it can be said that the energy of the ball is

increased by energy transfer as in Fig. 10(e). And we can

see in Fig. 10(c),(d) that the condition described in §III is

satisfied which increases the energy of the ball.

Fig. 10(e) shows Ecv that is the value for evaluation. It can

be seen that the value of Ecv is rapidly increased after t =
0.2[s], so the acceleration of the ball is performed efficiently

about energy. Fig. 11 shows a snapshot of the simulation of

throwing motion in the case of the constraint model.

1) Comparing the minimum energy cost: We compare

with another model to confirm the advantage of proposed

model. Here, we compare minimum energy cost for the

constraint model with the one for 1-link model. 1-link model

can be considered that it doesn’t rotate around Joint2 (θ̇2 =
0). Input limit is set as Umax = 50.0[Nm], Umin =−50.0[Nm].

After the ball is released, the minimum energy cost is

calculated for each initial state, Fig. 12 shows simulation

results for each initial state θ20. Once initial angle θ20 is

selected, all initial states are fixed, because initial position
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Fig. 11. Sequences of throwing motion (Constraint model)
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Fig. 12. Minimum energy cost
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Fig. 13. Maximum released velocity

of the ball at the end-effector is located on the x-axis by

assumption.

Fig. 12(a) shows the velocity of the ball and Fig. 12(b)

shows energy cost Ec. It can be seen that proposed method

is less minimum Ec than 1-link model, when throwing is

performed at same released velocity. However, the range

which θ20 satisfies requirement of release is restricted, be-

cause input torque is limited.

2) Comparing the maximum ball velocity: By using pro-

posed control method, we compare maximum velocity of

the ball at the moment of release for the constraint model

with the one for 1-link model. The maximum ball velocity

is calculated at each initial angle θ20, and input limit is set

as Umax = 50.0[Nm] and Umin = −50.0[Nm].

Fig. 13(a) shows the velocity of the ball and Fig. 13(b)

shows energy cost Ec. From Fig. 13(a), it can be said that

proposed method can realize higher velocity of the ball

at the release than the case of the 1-link model. Besides,

we take notice of the range between θ20 = −110[deg] and

θ20 = −85[deg], then throwing using the proposed method

performs higher velocity of the released ball with fewer

energy cost comparing the case of the 1-link model.

By using proposed model, which is an underactuated

model with constraint at Joint2, we realized throwing the

ball to the desired direction through numerical simulations.

In addition, from the results of comparing with 1-link model,

proposed control method is more efficient from the viewpoint

of energy cost than 1-link model.

VI. EXPERIMENT

In this section, we state experiment of throwing motion

to verify the validity of our model and the effectiveness

of proposed control method. Note that experimental results

described here are still in progress.

A. Experimental equipment

We developed an experimental equipment for throwing

motion as shown in Fig.14-16. Fig. 14 shows overview

of the experimental equipment. Physical parameters of this

equipment are listed in TABLE V where di is a viscous

friction of i-th joint. Although these parameters are different

in TABLE II, the objective in this section is to confirm

not simulation results discussed previous section but our

approach for throwing motion control in this paper.

This experimental equipment is constructed as the spring

model Tennis ball is used for a throwing object. Joint1

is driven by an AC servo motor. Joint2 has no actuator,

but torsion coil spring is attached as a constraint. This

structure can be seen in Fig.15. As the proposed model is

underactuated model, this equipment can’t be fixed at the

Wind-up position that is initial position. Therefore Joint2 of

experimental equipment has an electromagnet to fix Joint2,

and electromagnetic force is applied at the initial position.

Link2 is shown in Fig.16. It can be seen that the hand

mechanism to hold the ball consists of an electromagnet and

a compression spring. It holds the ball when the compression

spring is shortened by electromagnetic force, and it can

release the ball instantly to turn off the electromagnet.

B. Experimental results

We carried out experiment of throwing motion control.

Control parameters are listed in TABLE VI. Experimental

results are shown in Fig. 17. Note that experimental result

and simulation result which is carried out by using parame-

ters in TABLE V and VI are drawing in these figures.

Fig. 17(a) shows the trajectory of the ball. From this figure,

it can be seen that throwing for desired direction is performed

in experiment. Fig.17(b) shows the velocity of the ball which

is increased until release. Angular velocity θ̇1, θ̇2 are shown

in Fig.17(c). Fig. 17(d) shows input torque τ that is limited

by Umax = 79[Nm], Umin =−79[Nm]. The energy of link E1,

E2 and the energy of the ball Eb are shown in Fig. 17(e).

Energy transfer from the link to the ball can be seen in this

figure. Fig. 17(f) shows Ecv defined as (25). This result shows

that input energy is spent efficiently to accelerate the ball,

because Ecv is increased rapidly.

VII. CONCLUSIONS

In this paper, we discussed throwing motion control as

dexterous action based on output zeroing control utilizing

2-link underactuated arm.

First, we introduced dexterous actions in throwing motion,

and two types of underactuated model that are the spring

model and the constraint model was proposed.
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Fig. 14. Overview of the experimental equipment

Fig. 15. Magnification around joint2

Fig. 16. The release mechanism in link2

TABLE V

PHYSICAL PARAMETERS (EXPERIMENT)

m1 1.972[kg] d1 0.4847[kgm2]

m2 1.537[kg] d2 0.0432[kgm2]

mb 0.057[kg] Jg1 0.0559[kgm2]

l1 0.25[m] Jg2 0.0206[kgm2]

l2 0.30[m] θkn 0.0[deg]

lg1 0.0929[m] Kc 1.6044[Nm/rad]

lg2 0.0743[m]

TABLE VI

CONTROL PARAMETERS (EXPERIMENT)

θ10 137.3[deg] α 6.0 vrel 13.9[m/s]

θ20 -90.0[deg] rd1 0.39 ẏrel 0.0[m/s]

rd2 0.39

Second, we proposed a control method to realize throwing

motion in a desired direction. The control method uses output

zeroing to make the ball position converge on the desired

path. We obtained throwing motion in the desired direction

in each model through numerical simulations. For the spring

model, by using optimization for the parameters of the output

function, we showed the efficient desired path about energy

cost utilizing spring effect. For the constraint model, we

showed the advantage of proposed model and control method

by comparing with 1-link model. Finally, the experimental

result showed the effectiveness of proposed method, but it is

still in progress.
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Fig. 17. Throwing experiment (Spring model)

REFERENCES

[1] Ellen Kreighbaum, Katharine M. Barthels, BIOMECHANICS: A Qual-

itative Approach for Studying Human Movement, Benjamin-Cummings
Pub Co, 1996.

[2] Chunquan Xu, Aiuo Ming, Makoto Shimojo, ”Optimal Trajectory
Generation for Manipulator with Strong Nonlinear Constraints and
Multiple Boundary Conditions”, IEEE Int. Conf. on Robotics and

Biomimetics, 2004, pp.192-197.
[3] Chunquan Xu, Takeharu Nagaoka, Aiguo Ming, Makoto Shimojo,

”Motion Control of Golf Swing Robot Based on Target Dynamics”,
IEEE Int. Conf. on Intelligent Robots and Systems, 2006, pp.2545-
2550.

[4] Masafumi Okada, Shigeki Ban, Yoshihiko Nakamura, ”Skill of Com-
pliance with Controlled Charging/Discharging of Kinetic Energy”,
IEEE Int. Conf. on Robotics and Automation, vol.3, 2002, pp.2455-
2460.

[5] Senoo T., Namiki A., Ishikawa M., ”High-speed batting using a multi-
jointed manipulator”, IEEE Int. Conf. on Robotics and Automation ,
vol.2, 2004, pp.1191-1196.

[6] Hitoshi Arisumi, Tetuo Kotoku, Kiyoshi Komoriya, ”A Study of
Casting Manipulation(Swing Motion Control and Planning Throwing
Motion)”, IEEE Int. Conf. on Intelligent Robots and Systems, vol.1,
1997, pp.168-174.

[7] Kato N.,Matsuda K.,Nakamura T., ”Adaptive Control for a Throwing
Motion of a 2 DOF Robot”, Int. Workshop on Advanced Motion

Control, vol.1, 1996, pp.203-207.
[8] Minor M.A., Jensen K., Youngshik Kim, ”Design and control of a

three-link serial manipulator for lessons in particle dynamics”, IEEE
Int. Conf. on Robotics and Automation , vol.4, 2002, pp.3435-3441.

[9] Taku Senoo, Akio Namiki, Masatoshi Ishikawa, ”High-speed Throw-
ing Motion Based on Wave Propagation”, JSME Conf. on Robotics

and Mechatronics(in Japanese), 2007.
[10] Alberto Isidori, Nonlinear Control Systems, Springer 1995.

3064


