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Abstract— We introduce a new methodology to construct a
Gaussian mixture approximation to the true filter density in
hybrid Markovian switching systems. We relax the assumption
that the mode transition process is a Markov chain and allow it
to depend on the actual and unobservable state of the system.
The main feature of the method is that the Gaussian densities
used in the approximation are selected as the solution of a
convex programming problem which trades off sparsity of the
solution with goodness of fit. A meaningful example shows
that the proposed method can outperform the widely used
interacting multiple model (IMM) filter in terms of accuracy
at the expenses of an increase in computational time.
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I. INTRODUCTION

Many applications require to estimate the state of a system

with time varying dynamics. Applications of these type of

systems can be found in target tracking [11], change point

detection [2] and financial engineering [7]. A specific class

of these systems is the class of jump Markovian systems.

The state of such systems consists of a continuous part, the

kinematics, and a discrete part, the mode which determines

the dynamics in place. In this paper we consider systems

in which the mode is not directly observed, also referred in

the literature as hidden Markov models. In the simplest case

in which the mode switching process is a Markov chain,

we obtain the so called Markov jump linear system. In this

case, the optimal filter density can be computed using a

weighted mode-matched sequence of Kalman filters, one

for each trajectory of modes. Since the optimal filtering

density cannot be directly computed due the computational

complexity which grows exponentially with time, a number

of approximation techniques have been developed to deal

with these systems, such as the IMM estimator [3], [10],

Gaussian mixture reduction techniques [13] and particle

filtering methods [8]. An excellent survey of all these tech-

niques can be found in [11].

We consider models in which the mode jump process is

not a Markov chain, but state dependent. This relaxes quite a

restrictive assumption, which is unrealistic in many practical

applications. For example, if a target is constrained to travel

on a road network, a maneuver can only be performed at time

instances at which the target reaches an intersection. Whether

or not the target reaches an intersection in each sampling

interval depends on the proximity of the target to it and its

speed in traveling towards the intersection. Nevertheless in

target tracking, most of the filtering studies have continued

to focus on Markovian jump systems. Some exceptions are

Blom [4], who proposes a particle filtering approach for

jump systems with non Markovian switching probabilities,

and Rozowskii [12] who develops a greedy selection proce-

dure based on matching pursuit to manage the non-linearity

arising from the non-Markovian mode switching process.

We develop an approach to solve filtering problems arising

in jump systems with state dependent mode transition prob-

abilities. The output of our scheme at each sampling time is

an approximation of the true unnormalized posterior density

with a mixture of Gaussian densities. The novelty of the

approach is that such densities are selected as the solution

of a convex programming problem aiming at finding the

sparsest possible expansion in terms of Gaussian densities,

which is as close as possible to the actual unnormalized

density when both are evaluated on a discrete set of training

points.

The proposed approach differs from the mixture reduction

algorithm based on clustering proposed by Salmond [13]

in that we do not set any a-priori upper bound on the

number of components in the reduced mixture. Such number

is adaptively selected by the convex optimization algorithm

based on the maximum error tolerance specified by the user.

The number of Gaussian mixture components tends to be

low in cases when the density is sufficiently close to a low

dimensional Gaussian mixture, while it tends to be high when

the shape of the density is far from a Gaussian mixture.

The novel approach has in common with the IMM and

the IMM particle filtering, see [4], that the mode conditional

densities are approximated right after the mixing step. The

proposed method is shown to outperform the widely used

IMM estimator in terms of prediction accuracy on a mean-

ingful tracking scenario. However, the methodology is based

on an explicit gridding of the state space, which makes it

slower than IMM as discussed later in the paper.

The rest of the paper is organized as follows. Section II

introduces the general state and observation model along

with the mode transition process. Section III develops the

exact recursive Bayesian filter. Section IV describes the

proposed approximation approach used in computing the

filter density estimator. Section V evaluates the methodology

on a tracking scenario. Section VI concludes the paper.
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II. SETUP AND PROBLEM FORMULATION

The dynamics of the state is modeled by the jump linear

switching system

xk = A(θk−1)xk−1 + Q(θk−1)wk (1)

where xk is the n dimensional state of the system at time tk,

and θk is the mode switching process. We assume that θk is a

discrete time finite state process taking values in {1, . . . , d}.

For any 1 ≤ r ≤ d, A(r) is a square n dimensional matrix

governing the dynamics associated to mode r. The noise

process wk is a n′ dimensional Gaussian vector consisting

of n′ independent Gaussian random variables with zero mean

and unit covariance matrix, while Q(r) is a mode dependent

n × n′ positive semidefinite matrix. We assume that the

pair (xk, θk) is a homogeneous Markov chain with transition

matrix P∆ defined as

P∆(x, j,y, i) := P (xk = x, θk = j|xk−1 = y, θk−1 = i)

= P (θk = j|θk−1 = i,xk = x) ·
· P (xk = x|xk−1 = y, θk−1 = i) (2)

and prior distribution on the chain

π(u, j) := P (x0 = u, θ0 = j)

= P (x0 = u)P (θ0 = j|x0 = u)

(3)

where the initial density P (x0 = u) is assumed to be

Gaussian with mean µ0 and covariance matrix Σ0.

It is clear from Eq. (2) and (3) that the mode switching

process θk is statistically dependent on the state xk. In the

special case that it is not, then it becomes a Markov chain and

we recover the mode dependent state transition probabilities

as in classical Markov jump linear systems.

We next discuss the structure of the observation model.

The measurement zk produced at time tk is described by

the following equation

zk = H(θk−1)xk + R(θk−1)vk (4)

The observation matrix H is a mode dependent m×n matrix.

The measurement noise vk is a m′ dimensional vector

consisting of m′ independent Gaussian random variables

with zero mean and unit covariance matrix, while R is a

mode dependent m×m′ matrix. For notation simplicity, both

the design matrix H and the transition matrix A are assumed

to be time invariant.

The main objective is to develop an accurate methodology

which approximates the unnormalized posterior density

pl
k,k(x) := P (xk = x, θk−1 = l,Zk), l = 1, . . . , d (5)

where Zk = {z1, . . . , zk} denotes the set of observations

received up to and including sampling time tk. Equation (5)

then allows to obtain easily the joint state-mode posterior

hybrid density, and the posterior density of the state through

normalization.

III. EXACT FILTER

A. Notation and terminology

The following notation will be used henceforth:

– N (x, µ, σ2): Gaussian r.v. with mean µ and variance σ2

– n(x;µ,Σ): multivariate Gaussian density with mean µ

and covariance Σ

– Zk = {z1, . . . , zk}: observations up to time tk
– λi,j(y) = P (θk = j|θk−1 = i,xk = y): mode

switching probabilities

– λj(y) = P (θ0 = j|x0 = y): prior mode probability

– p(x|y, l) = P (xk = x|θk−1 = l,xk−1 = y): mode

dependent transition density

– p(x) = P (x0 = x) : the initial density on x0

– pl
k,k(x) : unnormalized posterior joint-state mode prob-

ability density

– pk|k(x) = P (xk = x|Zk): the posterior density

– Ll
k|k(x) = p(zk|xk = x, θk−1 = l): the mode condi-

tioned measurement likelihood

– Ef [g] =
∫

Rn f(w)g(w)dw: the expectation of g with

respect to the density f .

B. Exact Bayesian Filter

We use a recursive expression for the unnormalized poste-

rior density, instead of working directly with its normalized

counterpart following the approach presented by Blom in [4].

Such density is obtained through an interaction of d

Bayesian filters, with each filter being an unnormalized

posterior density

pl
k,k(x) := P (xk = x, θk−1 = l,Zk), l = 1, . . . , d (6)

The unnormalized prediction density is defined as

pl
k,k−1(x) := P (xk = x, θk−1 = l,Zk−1) (7)

and can be developed as

∫

Rn

d
∑

r=1

P (xk = x,xk−1 = y, θk−1 = l, θk−2 = r,Zk−1)dy

=

d
∑

r=1

∫

Rn

λr,l(y)p(x|y, l)pr
k−1,k−1(y)dy (8)

where p(x|y, l) is a Gaussian density with mean A(l)y and

covariance Q(l)Q(l)′. The above decomposition steps above

follow from straightforward application of Bayes rule. The

unnormalized posterior joint state-mode probability density

function may then be obtained as

pl
k,k(x) = Ll

k|k(x)pl
k,k−1(x) k ≥ 2

pl
1,1(x) = Ll

1|1(x)
∫

Rn p(x|u, l)π(u, l)p(u)du
(9)

where the correction term Ll
k|k(x) is a Gaussian density with

mean Hx and covariance R(l)R(l)′ due to the structure of

the observation equation (4).

From the above derivations, we can see that the filters

interact with each other according to fundamental Bayesian

rules, leading to the linear recursive expression given in Eq.

(9) for the unnormalized density. The posterior density may
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then be obtained from the interacting bayesian filters through

normalization as

pk|k(x) =

∑d

l=1 pl
k,k(x)

∫

Rn

∑d

l=1 pl
k,k(x)

(10)

IV. THE FILTER APPROXIMATION SCHEME

Although an exact filter has been derived in Subsection

III-B, it is not amenable to an efficient implementation.

First of all, the recursive expression (9) shows that an

exponentially increasing number of filters have to interact

to obtain the unnormalized density at time tk. Additionally,

Eq. (8) involves the evaluation of non Gaussian integrals

due to the appearance of the terms λj,l in pl
k,k−1(x), and

such integrals may in general be computationally expensive

to evaluate. In order to deal with these computational issues,

we propose an approach which at every step k approximates

the unnormalized density using a restricted set of Gaussian

densities, selected from a prescribed base set. The number

of densities and the weight of each density are recovered

as the solution of a convex second order cone programming

problem.

A. The approximation method

Let p(x) be the density which we wish to approximate.

Let I and J be two set of indices. We construct a base set

of multivariate Gaussian densities

B = {ni,j(x)}i∈I,j∈J (11)

where ni,j(x) stands for the multivariate Gaussian density

with mean µi and covariance Σj . Moreover, we require

µi1 6= µi2 , ∀i1 6= i2

Σj1 6= Σj2 ∀j1 6= j2 (12)

meaning that the means and covariances of the Gaussian

densities in B are all different. We choose a training set

X = (x1,x2, . . . ,xq) (13)

of size q containing vectors in Rn. Let us define the matrix

Φ(X ) =











n1(x1) n2(x1) . . . n|I|(x1)
n1(x2) n2(x2) . . . n|I|(x2)

...
...

. . .
...

n1(xq) n2(xq) . . . n|I|(xq)











(14)

where ni(xl) = (ni,1(xl), ni,2(xl), . . . , ni,|J|(xl)), i.e. a

row vector whose j-th entry is the multivariate Gaussian

density in B with mean µi and covariance Σj evaluated

at xl.

Moreover, we assume that q < |I| × |J |, i.e. the size of

the training set is strictly smaller than the cardinality of the

base set B. Let p = (p(x1), . . . , p(xq))
′. The linear system

p = Φz (15)

is solvable and overdetermined being q < |I|×|J |. Although

we could solve the system and then approximate the density

p(x) with φz(x), we notice that such approach would require

to propagate a number of Gaussian densities equal to the size

q of the training set, and therefore it would scale linearly with

the size of the training set, making a real time implementa-

tion computationally intensive. Our goal is to approximate p

using a short linear combination of Gaussian densities and

at the same time reduce the introduced approximation error.

Therefore, we look for the sparsest representation of p(x)
in the following sense:

min ||υ||0 subject to ||p − Φυ||2 ≤ ι (P1)

(P1) is a mathematical programming problem with decision

variables υ, and ||υ||0 denotes the number of non-zero

entries of the vector υ, i.e.

||υ||0 = |{(i, j) : υ(i,j) 6= 0}| (16)

where υ(i,j) is the entry of the |I|×|J | dimensional vector υ

multiplying the Gaussian density ni,j . If υ∗ is the solution of

(P1), we would approximate p(x) with φυ∗. However, this is

of little practical use, since the optimization problem (P1) is

non-convex and generally impossible to solve as its solution

usually requires an intractable combinatorial search. To this

purpose, we look for the convex penalty function which is as

close as possible to ||υ||0. This turns out to be the l1 norm

which thus leads to the following optimization problem

min ||̟||1 subject to ||p − Φ̟||2 ≤ ǫ (P2)

with decision variable ̟. The problems (P1) and (P2)

differ only in the choice of the objective function, with

the latter using an l1 norm as a proxy for the sparsity

count. However, unlike (P1), (P2) is a convex second order

cone programming problem and can be solved efficiently

using standard optimization algorithms, see Boyd (2004).

Therefore, we will approximate the actual density p as

p(x) ≈ Φ̟(x) (17)

B. The filter approximation

We describe how to construct an approximation to the

actual unnormalized density pl
k,k(x) at time tk from an

existing set of approximations to the unnormalized density

{pr
k−1,k−1(y)}r=1,...,d available from time tk−1. For any

r = 1, . . . , d, let us denote by p̂r
k−1,k−1(y) such an approx-

imation which would have been computed in the previous

step of the approximation procedure. Let

Ωl
k = {(i, j) ∈ I × J : [̟l

k](i,j) 6= 0} (18)

where ̟l
k is the solution of (P2) obtained when approximat-

ing pl
k,k(x), i.e.

p̂r
k−1,k−1(y) ≈

∑

(i,j)∈Ωr
k−1

[̟r
k−1](i,j)ni,j(y) (19)

Notice that we are only propagating from time tk−1 to time

tk the Gaussian densities in B with nonzero weight. Our

goal is to approximate the actual filter density pl
k,k(x) at

time tk given by Eq. (9). This is done in two separate steps.
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The output of the first step is an approximate density p̌l
k,k(x)

computed as follows:

pl
k,k(x) = Ll

k|k(x)

d
∑

r=1

∫

Rn

λr,l(y)p(x|y, l)pr
k−1,k−1(y)dy

≈ Ll
k|k(x)

d
∑

r=1

∫

Rn

λr,l(y)p(x|y, l)p̂r
k−1,k−1(y)dy(20)

:= p̌l
k,k(x)

where the approximation step consists in replacing each term

pr
k−1,k−1(y) with its previously computed approximation

p̂r
k−1,k−1(y). We can write out explicitly each term in the

approximation, thus obtaining

p̌l
k,k(x) = Ll

k|k(x)

d
∑

r=1

∑

(i,j)∈Ωr
k−1

[̟r
k−1](i,j)

·
∫

Rn

λr,l(y)p(x|y, l)ni,j(y)dy(21)

Eq. (21) shows that we have obtained an approximation

density p̌l
k,k(x) for pl

k,k(x) consisting of d · ∑d

r=1 |Ωr
k−1|

components. Moreover, p̌l
k,k(x) is no longer a mixture of

Gaussian due to the appearance of the state-dependent mode

transition term λr,l(y). To this purpose, we approximate

p̌l
k,k(x) further before propagating it to the next sampling

time tk+1. This is the second step of our methodology,

which is described next. We first numerically compute the

mean x̌l
k,k and covariance matrix Σ̌l

k,k of the unnormalized

density p̌l
k,k(x). We next choose an n-dimensional ellipsoid

of uncertainty G ∈ Rn defined as

(x − x̌l
k,k)′(Σ̌l

k,k)−1(x − x̌l
k,k) (22)

Both the set X of training points and the means of the

Gaussian densities in the base set B are chosen in the

region G. The covariance matrices of the Gaussian densities

in B are instead assumed to be the same at all stages.

Further implementation details for a specific example will

be presented in Section V.

We next evaluate the density p̌l
k,k(x) on the set X of

training points, thus obtaining a vector

p̌l
k,k = (p̌l

k,k(x1), . . . , p̌
l
k,k(xq)) (23)

Let ǫl
k be the smallest component of the vector p̌l

k,k. Then

we solve the optimization problem (P2) as follows:

min ||̟||1 subject to ||p̌l
k,k − Φ̟||2 ≤ ǫl

k (P2)

If ̟
l,∗
k denotes the optimal solution to (P2), the approxi-

mation density at step k, which is propagated to step k + 1
is

p̂l
k,k(x) =

∑

(i,j)∈Ωl
k

[̟l,∗
k ](i,j)ni,j(x) (24)

The total variation distance between the optimal unnormal-

ized filter density pl
k,k(x) and its computed approximation

p̂l
k,k(x) may be controlled through an analytical bound

provided in [6]. We summarize the all procedure with a block

diagram of the estimator in Figure 1.

Previous unnormalized posterior pdfs
d

kkkk pp 1,1
1

1,1 ˆ,...,ˆ
����

AGGREGATION-APPROXIMATION

APPROXIMATION 

USING L1 NORM METHOD

…
FILTER

F
d

FILTER

F
1

Updated unnormalized posterior pdfs
d

kkkk pp 1,1
1

1,1 ,...,
����

��

meas. zk

mode �1

meas. zk

mode �d

New gaussian mixture approximations for
d
kkkk pp ,

1
, ˆ,...,ˆ

Fig. 1. One cycle of the estimator.

C. Computational requirements

We compare the computational complexity of our method-

ology with the one of the IMM estimator. The overall com-

plexity of the IMM algorithm is O(d2 + n3). Our approach

has higher computational load which comes from the amount

of time needed to set up and solve the second order cone

programming problem (P2). Before solving the optimization

problem, it is required to compute p̌l
k,k for any mode l and

this has complexity O(d2|I||J |q). This is because p̌l
k,k in

Eq. (21) may be written as

p̌l
k,k(x) =

d
∑

r=1

∑

(i,j)∈Ωl
k

[̟r
k−1](i,j)Eni,j

[Ll
k|k(x)λr,l(Y)p(x|Y, l)]

(25)

where Y is a gaussian random vector with mean µi and

covariance matrix Σj . For each x in the training set it

is required to compute d|I||J | Gaussian integrals, each of

which computable in constant time using Hermite quadra-

ture. This has to be repeated for each mode, thus the total

complexity is O(d2q|I||J |). Then the optimization problem

needs to be solved for each mode, and this can be done in

time O((|I||J |)2q) using the algorithm proposed in [9].

V. APPLICATION TO TARGET TRACKING

We evaluate the prediction accuracy and the computational

power of our scheme on a target tracking problem. The

considered scenario consists of an aircraft flying in the

(x1, x2) plane. The planned flight path consists of travelling

along the vertical direction and execute a 90◦ right turn (with

turn rate of 3◦

s
) when the trajectory change point (TCP) is

reached, see Figure 2 for an illustration. The sensor sampling

period is 10 seconds. After the turn, the aircraft continues

straight along the horizontal direction. However, in practice

the aircraft can turn earlier at a difference trajectory change

point (TCA) and we assume that the distance TCA - TCP at

which the trajectory change point occurs is Gaussian with

mean zero and standard deviation
√

10m. Therefore, the

further the aircraft is from the expected TCP, the less likely

it is to change its trajectory.
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TCPP

TCPA

Planned�Flight�Path

Actual�Flight�Path

dPA

Fig. 2. Actual trajectory versus expected trajectory of the aircraft

This simple scenario is challenging because the deviation

from non-maneuvering motion is very large, while the dura-

tion of the maneuver is extremely short. The second order

system for this motion, with position only measurements is:

xk+1 = diag(A,A)xk + diag(Γ,Γ)wk

zk = diag(H,H)xk + vk (26)

where
xk = [x1

k ẋ1
k x2

k ẋ2
k]′ zk = [z1

k z2
k]′

A =

[

1 T

0 1

]

Γ =

[

1
2T 2

T

]

H = [1 0]

The probability of switching from the straight mode to the

maneuvering mode, here denoted as λ1,2(x), is defined as

λ1,2(x) := λ1,2(x1, x2)

= α1,2 + β1,2n([x1, x2], [0, L],M) (27)

In Eq. (27) we want to emphasize that the probability of

turning is only dependent on the (x1, x2) aircraft position

and it is independent of the other state components. For this

experiment, we set α1,2 = 0.03, β1,2 = 16π, and

M =

(

10m 0
0 10m

)

(28)

Here α is modeling the probability that the aircraft turns at

a different point than TCP, while β1,2 models the probability

that the aircraft turns at the expected TCP.

The two process noise sequences are zero-mean and only

differ in the choice of the process noise covariance which is

set to a two dimensional diagonal matrix with equal entries.

For the straight mode (also referred to as mode 1) such

entries are set to (0.3 m
s2 )2 and for the maneuvering mode

(also referred to as mode 2) such entries are set to (6 m
s2 )2.

The covariance matrix of the measurement noise is a two

dimensional matrix with diagonal entries equal to (100m)2.

For the true dynamics, the process noise covariance is

assumed to be a two-dimensional diagonal matrix having

both entries equal to (0.4 m
s2 )2. The maneuver is obtained by

changing the mean of the process noise E[wk] from time

k = 7 to k = 9 as

0 2 4 6 8 10 12 14 16 18
100

105

110

115

120

125

130

135

140

time (sampling periods)

e
r
r
o
r
 
(
m
e
t
e
r
s
)

 

 

l
1
 norm minimization

IMM computed

GPB 2

Fig. 3. Coordinate-combined position estimation error

E[w7] = E[w9] =

[

6 m
s2

−1.61 m
s2

]

E[w8] =

[

4.39 m
s2

−4.39 m
s2

]

At all other times E[wk] = 0. We carry out one-hundred

Monte-Carlo simulations by generating aircraft trajectories

randomly distributed around the planned flight path

according to a Gaussian distribution with zero mean and

standard deviation of 5 meters. The set of training points in

X are chosen in such a way that any two adjacent points in

the uncertainty ellipsoid G in Eq. (22) are equidistant. The

means of the Gaussian densities in B are chosen to coincide

with the training points in X . The covariance matrices are

chosen as follows. We specify the standard deviation of each

state space component σi, i ∈ 1, . . . n, and the correlation

factors between them, ρi,j , i, j ∈ 1, . . . , n. The values for

σi in each covariance matrix is assumed to be identical for

all i. Those values decay exponentially from a value σmax

for the first covariance matrix to a value σmin for the last

covariance matrix. The correlation factors ρi,j are equally

spaced in the interval (−1, 1). The combination of all these

parameters resulted in a base set B of about 700 Gaussian

densities and a training set X of about 49 training points

when averaged out across all sampling times.

We compare our method with the IMM and GPB2 estima-

tor and the reported results are obtained through an average

of one-hundred Monte-Carlo runs. The transition probability

function used within IMM and GPB2 is

λ(E[xk|Zk−1]) (29)

i.e. the function λ in Eq. (27) is evaluated at the state

predicted at time k on the basis of the the observations Zk−1.

Figures 3 and 4 report the comparison of our filtering

scheme with the IMM estimator on one-hundred Monte-

Carlo simulations and show that our approximation scheme

improves the tracking accuracy with respect to both IMM

and GPB2. This is partly due to the fact that our method

always propagates more than two densities at each sampling

step, whereas the IMM always propagates only two of them

per time step. Our method also appears to exhibit a better

tracking performance during the maneuvering stage which

may be explained by the fact that it is considering actual

state dependent transitions (using Eq. (27)), whereas IMM

and GPB2 consider estimated state dependent transitions

(using Eq. (29)). Figure 5 reports the number of components
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Fig. 5. The number of non-zero Gaussian components used in the density
approximations p̂

1

k,k
(x) and p̂

2

k,k
(x)

of the vector ̟
l,∗
k which are significantly different from

zero in each sampling time tk. More specifically, at each

sampling time, we observe that there are few entries of

̟
l,∗
k with a large order of magnitude and many remaining

entries which are smaller than those by a factor larger than

10−6. Our computational scheme does not propagate these

components, thus they are not counted in in the l0 norms of

̟
1,∗
k and ̟

2,∗
k , which are reported in Figure 5. We denote

these truncated l0 norms respectively by ||̟1,∗
k,trun||0 and

||̟2,∗
k,trun||0.

This evidences a feature of our method, the fact that it

does not put any hard constraint on the number of densities

to propagate, but it is adaptive to the situation at hand. In

cases when the situation is “easy”, then it does not use

many of them, but if the situation is “hard” it compensates

by propagating more densities. It also emerges clearly from

Figure 5 that the number of Gaussian densities propagated

is always reasonably small (it never exceeds 10), thereby

showing that the recovered solution is sufficiently sparse.

With respect to the computational time, our method

performs worse than the IMM and GPB2 estimator. For

each Monte-Carlo run, we took the average time needed

to compute the state estimate over all sampling intervals.

We then averaged out those times across all Monte-Carlo

runs. Times are measured on a 2.20GHz processor with

4Gb of RAM. The times required by IMM, GPB2 and by

the proposed method are respectively 5.0 msec, 10 msec and

150 msec, showing that our method is slower than IMM by

a factor of 30 and than GPB2 by a factor of 15.

VI. CONCLUSIONS

In this paper we have presented a new approximation

scheme to compute the filter density in jump linear systems

with state dependent transition probabilities between modes.

Such scheme obtains an approximation density for each

unnormalized posterior density by solving a second-order

cone programming problem which trades off sparsity and

accuracy. By means of a target tracking study case, we

have shown that our method can outperform the IMM and

GPB2 estimator, although this occurs at the expenses of an

increase in computational time. In the future we plan to

compare our method with particle filtering and investigate

which families of mode switching probabilities lead to filter

densities close to a low dimensional Gaussian mixture, thus

allowing sparse gaussian mixture approximations computable

using the proposed methodology.
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