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Abstract— Continuous changes in the demand and valve
operation in each district metered area (DMA) introduce
undesired behaviors in a water distribution system (WDS). In
order to dynamically correct the emergence of these undesired
pressure transients, an adaptive controller using foraging theory
as an optimization method is developed. Specifically, an E.
Coli bacterial algorithm is customized to be used in an
adaptive control scheme (indirect and direct) with real time
requirements.
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I. INTRODUCTION

LOSSES by leakage in a Water Distribution System

(WDS) have been one of the most important problems

that needs to be solved by the distribution companies. Some

of them report almost 40% of water loss in distribution,

which brings economical and social inconveniences [1].

The economical inconveniences arise because users and

companies have to assume the cost of losses (by means

of an increase of the value that users must pay), which

implies that the company’s utilities decrease. On the other

hand, sustainability and ambiental protection of the resource

generate a public concern. For instance, in [1] the authors say

that “the resource is often oversupplied relative to demand,

generally underpriced relative to its intrinsic and economic

values, and governed by institutions geared to augment

supply rather than to manage demand.” This is clearly a

social inconvenience.

In order to minimize leakages we need to study the transients

that often appear in systems where valves are utilized.

Manual or servo actuated valves, commonly used on WDS,

have effects on transients due to the opening and closing

times and the changes in the consumption patterns [2]. There

is enough evidence that pressure control must be sampled in

short intervals to study transients in each pipe, which imposes

restrictions on the sampling, processing time, and algorithm

complexity [3].

The influence of pressure reducing valves (PRV) in a WDS

has been investigated in several publications. In [4], the au-

thors conclude that the use of PRVs can reduce the losses by

leakage to 50% of its original value. In [5], the authors for-

mulate the PRV model using several approximations. These

models contributed to develop a proportional controller in
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de Ingenierı́a Eléctrica y Electrónica, Universidad de los Andes, Bogotá,
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[3], which has problems with oscillations and settling time.

An improvement in the control scheme in this particular

application is introduced in [6], which uses a PID controller.

A faster tracking response is obtained without oscillatory

issues. The present document extends these works based on

foraging theory for the design of an optimal controller that

increases the system robustness.

In order to increase the robustness, some bioinspired ap-

proaches have been proposed to solve different problems. For

instance, in [7], the authors reduce the E. Coli complexity to

perform the optimization in dynamic environments. On the

other hand, in [8] the authors combine genetic algorithms

with foraging theory to improve the convergence in a non-

linear system. In each case, the foraging algorithm proposed

has shown advantages in implementation. In this paper we

study the effects of using this approach on another problem.

This work uses two models to validate the algorithm. The

first one is based on an indirect adaptive controller, while the

second one uses Non-linear Autoregressive with Exogenous

Inputs (NARX) [9]. We design and implement the controller

using adaptive control together with foraging theory as an

optimization method. The foraging algorithm is based on the

behavior of the E. Coli bacteria, which has 3 fundamental

steps in the form of surviving, searching for, and obtaining

nutrients (chemotaxis, reproduction, and elimination and

dispersion) [10]. This implies that each bacteria is an agent

searching the optimum place where the food is found, and

noxious substances are avoided using some type of swarming

among the whole group.

The document is divided as follows. First, we present dif-

ferent WDS models in order to get one for the PRV. In

Section III we explain the E. Coli algorithm and its variations

using direct and indirect approaches. In Section IV, we give

some insights about implementing the E. Coli algorithm in

a PRV application, and we discuss the advantages for using

the proposed algorithm. Finally, some conclusions are drawn

in Section V.

II. WATER DISTRIBUTION SYSTEM MODELS

There is a tendency in the water distribution companies to

separate the distribution areas in closed small sectors called

District Metered Areas (DMAs). Each DMA brings facilities

for supervising and controlling the two main variables in the

distribution, i.e., flow and pressure. Based on this, we explain

the necessary models that describe the system behavior in

each DMA. The pipes and their transients are described by

one dimensional model using the so called water hammer

equations. The demand profile (i.e., flow consumption) is
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modeled in order to simulate the users dynamics. Finally,

the PRV system (i.e, the actuator) is based on the behavioral

model [5].

A. Demand Model

The demand in an WDS can be modeled by probabilistic

events, which depend on the type of user (e.g., industrial or

residential), pressure measured in each node, and sometimes

on the weather. This work uses user depended models, con-

sidering the fact that the pressure in each node is adequate,

and ignoring weather effects on changes in the consumption

patterns [11]. The two types of demand models described

in the literature are the residential and the industrial models.

The first one has a great quantity of users with a low average

of consumption. The second one is determined by fewer users

with a high consumption, where the sum of the individual

demands constitutes the total consumption of the system [6].

Independently of the type of model, what is used to define the

consumption over one period of time, qm, is the following: i)

we define the average consumption, favg, based on empirical

data; ii) next, over a sequence of rectangular pulses C j, we

define the duration and the intensity, i.e., Ti (seconds), and

Ii (liters per seconds, l/s), respectively. The duration Ti is

represented by an exponential distribution that is function

of the arrival times τi, and Ii is represented by a Weibull

distribution. Therefore, the consumption can be written as

qm =
C j

∑
i=1

T (τi)Ii (τi)+ favg(τi) (1)

The stochastic model is necessary for the correct simulation

of the demand throughout the system and it can be seen as a

system’s perturbation (e.g., Section IV). This model suggests

that favg will not change suddenly over time, but Ti and

Ii change depending on the type of user. In other words,

the industrial user will increase its consumption over a large

time, and the residential user will consume less and increase

the frequency. Both behaviors can be modeled by Equation

(1), modifying their intensity and duration in each case.

B. Transients Model

The WDS is composed by several DMAs, where each one

is assumed to be small, close, and composed by several nodes

or service points joined by pipes among them. Sometimes,

control valves are introduced to achieve some goals on the

system. These valves can generate transients depending on

the state [2]. To describe this behavior it is necessary to

introduce the water hammer equations, which represent the

dynamics of the transients of the system. This model is

formulated in [12], and it is summarized in the numerical

solution of the equations

g

∫ hP

hA

dh± a

A

∫ qP

qA

dq+
f

2DA2

∫ xP

xA

q |q|dx = 0 (2)

where the second term can be positive or negative represent-

ing two equations that we call C+ and C−. In (2), h is the

piezometric head, q is the flow over the pipe, x is the length

of the pipe, D is the pipe diameter, A is the pipe area, f

is the Darcy-Weisbach friction factor, a is the wave velocity

(supposedly to be constant), and g is the gravity. In order

to find a numerical solution, the pipeline must be divided in

N sections, each one with a length ∆x. To find C+ a time

step ∆t = ∆x/a is computed along the points AP, as seen

in Figure 1. C− is computed along the points BP. Note that

the points A, B, P are used as subindices to represent the

pressure (hA, hB or hP), or the flow (qA, qB or qP), or the

position (xA, xB or xP) in each pipe. Note that we do not

show the numerical results for Equation (2), but we use a

numerical approximator to compute them (a second order

trapezoid rule is used in all simulations).

Fig. 1. Characteristic method for the water hammer equations, adapted
from [12], [13]. L corresponds to the length of the pipe, and the points A,
B, and P are used as subindices to represent the pressure (hA, hB or hP),
or the flow (qA, qB or qP), or the position (xA, xB or xP) in each pipe.

C. Pressure Reducing Valve Model

In an effort to reduce the pressure in each DMA it is

necessary to use a control element placed between the water

supply and the DMA. In this work we use a PRV since the

benefits have been demonstrated [4]-[6]. According to [5]

and [6], the best way to represent a PRV (shown in Fig. 2)

is using the behavioral model described by Equation (3). This

set of equations offers low complexity and high approach to

the real operation of this type of valves [5]. The operation of

the valve consists on strangling the flow qm with a pressure

hin, to get a desire pressure hout by the opening or closing

of the diaphragm xm through the input/ouput of liquid qc on

the cavity. The flow qc can enter into the cavity because hin

will always be greater than the pressure on the cavity. The

same phenomenon occurs when the flow qc gets out from

the cavity. The pressure hout will be less than the one in the

cavity. Analytically that is,

ẋm = qc

Acs(xm)

qc =

{

αopen (hset −hout) , ẋm ≥ 0

αclose (hset −hout) , ẋm < 0

qm = Cv (xm)
√

hin −hout

(3)

In (3), Cv is the valve capacity which is a function of xm, Acs

is the transversal area of the control space given as a function

of the opening, αopen and αclose are two constants that are

related to the servo-valve speed, and hset is the reference

pressure (i.e., the set point). The variables related to the static

characteristics (i.e., ACS(·), CV (·), αopen, and αclose) can be

determined by a set of experiments [5]. The flow qm is the

same one shown in Equation (1), i.e., the demand model.
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Fig. 2. Pressure reducing valve, adapted from [6]. hin corresponds to the
input pressure, qm is the flow over the valve, xm is the diaphragm space,
qc is the flow through the cavity, and hout is the output pressure.

III. E. COLI ADAPTIVE CONTROLLER

The controller that we use is based on adaptive control

and foraging theory as an optimization method. The foraging

algorithm is based on the behavior of the E. Coli bacteria,

which has tree fundamental steps: chemotaxis, reproduction,

and elimination and dispersion [10]. Chemotaxis is used in

order to move and search for food; reproduction is used to

make an identical copy; and elimination and dispersion is

used to avoid noxious elements that can kill or spread a

group of bacteria in the search space. The complete algorithm

includes these three steps representing an important amount

of operations that cannot allow real time implementation. In-

stead, we propose a simplification using just the chemotaxis

step (illustrated in Algorithm 1). In this case, each bacteria

i, i = 1, ...,S, moves on the space θ i( j) ∈ R
p, where S is

the total amount of bacterias, j represents each iteration of

the algorithm until a maximum time T is reached, and p is

the dimension of the space. The bacteria is always seeking

to increase favorably its environment. Thus, it can sense

the changes in the nutrient’s concentration. If the change

increases, it continues moving Ns steps with size C(i) in

the ∆(i) direction. If not, it generates a random direction

to search more concentration of nutrients. Then, we use a

type of memory J(i, j) to evaluate the performance of each

bacteria in the last N steps. J(i, j) depends on the error

e, which represents the difference between the estimated

pressure ĥ(θ i( j)) and the measured pressure hout( j) at time

j. Two control strategies based on conventional adaptive con-

trol are used. These are the indirect and the direct adaptive

controllers adapted from [10]. The first one is based on

online identification method to estimate the plant dynamics.

The second one observes the control signal and adapts the

parameters to maintain the performance. In the indirect case,

the E. Coli algorithm estimates the best parameters θ ∗ of

a given model α̂ and β̂ . In the direct case, the algorithm

estimates the control signal u∗ using the plant structure φu.

In both control schemes, each bacteria moves in order to

change the parameters of plant structure. The bacteria who

has the best behavior in a part of his life (i.e., minimize

the cost function J based on N last steps) is chosen by the

proposed algorithm to be applied in the control signal u∗.

A. Indirect Adaptive Controller

The type of plant considered here is y(k + d) =
f (x(k),u(k)), where u(k) is the control signal, y(k) is

a smooth function representing the output of the plant,

Algorithm 1 Chemotaxis step

Random initialization of θ i ∈ R
p over search space

for j = 1 to T do

Chemotactic step

for i = 1 to S do

e
(

θ i( j)
)

= ĥ
(

θ i( j)
)

−hout ( j)

Jcc

(

θ i( j)
)

=
(

e
(

θ i( j)
))2

J(i, j) = J(i, j)+ Jcc

(

θ i( j)
)

Jlast = J(i, j)
Tumble: random vector ∆(i) ∈ R

p

∆m (i),m = 1,2, ..., p

θ i( j +1) = θ i( j)+C(i)
∆(i)

√

∆T (i)∆(i)
{run}

m = 0 {swim}
while m < Ns do

m = m+1

if J(i, j +1) = Jlast then

Jlast = J(i, j +1)

θ i( j +1) = θ i( j +1)+C(i)
∆(i)

√

∆T (i)∆(i)
else

m = Ns
end if

next bacteria i +1

end while

end for

J minimized according to the last N steps

if j > N then

J (i, j) =
j

∑
k= j−N

(

e
(

θ i (k)
))2

, ∀i = 1, ..,S

θ∗ ( j) = arg min{J (i, j) : i = 1, ...,S}
end if

end for

d > 1 represents the delay among input and output. The

state vector x(k) is represented by x(k) = [y(k), ...,y(k −
n),u(k − 1), ..u(k−m)], n,m > 0. Clearly x(k) depends on

the amount of memory of the system, where n and m

represent the number of past outputs and inputs, respec-

tively. In this case, we use the type of plant represented

by y(k + d) = α (x(k)) + β (x(k))u(k), where α (x(k)) and

β (x(k)) are unknown smooth functions. β (x(k)) must be

bounded away from zero (i.e., non minimum phase plants are

treated here). To linearize the dynamics, we use the estimated

output ŷ(k + d), i.e., ŷ(k + d) = α̂ (x(k)) + β̂ (x(k)) û(k) =
θ T

α ,β φα ,β (x), where θα ,β are the parameters of the fixed struc-

ture φα ,β . In order to approximate û to the ideal controller

u∗(k), we use the approximator composed by the estimated

values for α(x(k)) and β (x(k)), i.e., û(x(k) ,r (k + d)) =
−α̂(x(k))+r(k+d)

β̂ (x(k))
, where r is the reference to be tracked.

In order to achieve the appropriate û, we have to min-

imize the error between the measured output y and its

approximator ŷ, which implies tunning the parameters, i.e.,

θ ∗
α ,β = arg min

θ i
α,β

∈Ωα,β

(

sup
x∈Sx

∣

∣

∣
θ i

α ,β
T

φα ,β (x)− y

∣

∣

∣

)

, where θα ,β

is defined in the compact parameter set Ωα ,β , and Sx is

the compact set where the state trajectory of x(k) may

travel under closed-loop control. Note that the parameter

θ i
α ,β means that each bacteria i = 1, ...,S, can adjust the

approximator ŷ(k + d). Thus, the bacterial population tries

to move close to the plant behavior, which in the PRV case

is hout .

B. Direct Adaptive Controller

In the direct case, in order to obtain the optimal control

signal u(k) at each discrete time k, it is necessary to

approximate the measured output of the system y using a

plant prediction, i.e., ŷi
j(k +1), j = 1, ...,n j, where n j is the

number of outputs of the plant, and i = 1, ...,S, is the total

number of bacteria. We consider the non-linear system as a
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black box, where the output y j(·) is obtained by introducing

to it an input vector x(k) with size 1×nx. Input and output are

introduced into a multilayer perceptron (MLP), i.e., ŷ j(k +

1) = g0

(

nh

∑
i=1

wi jx
(1)
i + a j

)

, and x
(1)
i = g1

(

nx

∑
i=1

w
(1)
i j xi + a

(1)
j

)

,

where g0 is the activation function of the output neuron, g1

is the activation function of the hidden layer, a(1) is a vector

representing the independent term (bias) in the hidden layer,

a represents the bias in the output layer, nh is the number of

neurons in the hidden layer, w(1) is a matrix that contains the

weights between the input and the hidden layer, w is a matrix

that contains the weights between the hidden and the output

layer, and nx is the number of inputs [9]. Then, the MLP is

trained with backpropagation to tune the model parameters.

We specifically use Levenberg Marquardt training. This type

of identification is called NARX [9] that is represented by

ŷi
j
(k+1) = fm

(

yi
j
(k) , . . .,yi

j

(

k−ny
)

,xi(k−1), . . .,xi(k−nu)

)

, where nu and ny represent

the past inputs and outputs, respectively.

In order to develop a direct controller, we update

ui(k) via the E. Coli algorithm proposed using ui (k) =

Fu

(

x(k) ,r (k + 1) ,θ i
u (k)

)

= θ i
u

T
φu (x(k) ,r (k + d)), where

θ i
u(·) represents the parameters to be tuned, φu(·) is the ap-

proximator structure that is fixed. Then, we find the point θ ∗
u

in the the convex compact set of search space Ωu ⊂ R
p that

minimizes the error ei(k) = r(k+d)− ŷi by the i-th bacteria,

i.e., θ ∗
u = arg min

θ i
u∈Ωu

(

sup
x∈Sx,r∈Sr

∣

∣

∣
θ i

u
T

φu −u(x,r)
∣

∣

∣

)

where Sx is

the compact set where the state trajectory x(k) may travel

under closed-loop control, and Sr is the reference input space

that is bounded. In order to evaluate each bacterial behavior,

it is necessary to introduce a cost function J
(

θ i
u(k),N,k

)

=

w1

k−N

∑
j=k

(

r (k + j)− ŷi(k, j)
)2

+ w2

k−N−1

∑
j=k−1

(

ui (k, j)
)2

. The two

scaling factors w1 and w2 are used to weight the importance

of achieving the tracking error near to zero, and minimizing

the control energy, respectively.

IV. SIMULATION RESULTS AND DISCUSSION

A. Indirect Case

In order to compare our results, we use the same PID

controller designed and tuned to control the PRV introduced

in [6]. Our indirect controller has also been tuned using the

simulation parameters as in [6] 1. To check the robustness of

both controllers, we test the PID and our controller approach

with a lower demand profile (i.e., a small value of qm),

and with an increase in the actuators velocities. The lower

demand profile is used to test the behavior of the controller at

night, where the consumption is reduced in several residential

areas. The speed increment of the actuators represents the

change of a servo-valve manufacturer. Every other parameter

1The simulations are performed using the following parameters: a =
1200m/s, f = 0.5mm, a sampling time of 100ms, D = 150mm, g = 9.8m/s2,
the set point r = 30 mH2O, S = 10, Ns = 4, C = 0.01, αopen = αclose =
1× 10−6, a demand profile between 10 l/s and 15 l/s. The traversal area
(Ac) and the valve capacity (Cv) are functions of xm as it is shown in [6].
The PID values are: Kp = 7.9×10−5 , Kd = 2.4×10−7 and Ki = 6×10−3.

remains equal. The PID response to a lower demand profile

is shown in Fig. 3, and the E. Coli response is shown

in Fig. 4. The response on lower demand is similar in

both controllers, but the E. Coli algorithm has an increase

in the response time. Hence, the only drawback for the

lower demand case is in the settling time, which increases.

Figures 5 and 6 show the servo-actuators change (i.e.,

Fig. 3. PID response on a PRV using a demand profile between 2.6 and
3 l/s (lower profile demand).

Fig. 4. E. Coli indirect controller response on a PRV using a demand
profile between 2.6 and 3 l/s (lower profile demand).

αopen = αclose = 3× 10−6). Note that we also introduce a

change in the consumption from 10 to 15 l/s at t = 500s,

which represents an industrial demand. With the change to

non nominal conditions in the servo-actuators, the PID must

be tuned again because it does not settle down. However, our

proposed E. Coli adaptive controller performs much better to

these changes, which represents the robustness advantage on

using our controller. Table I summarizes the statistical results

when we compare the behavior in the output pressure hout

of these two controllers. Nevertheless, the behavioral model

used to simulate the PRVs is not useful in implementation

because the control signal u is given as flow in liters per

second (l/s). Normally we use a pair of servo-actuators

like solenoid valves, which implies that the control signal

u must be the time of opening. Therefore, we have to find

a relationship between the flow qc and the time of opening.

Since this clearly represents a problem, we introduce next
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Fig. 5. PID response on a PRV using a demand profile between 10 and
15 l/s with speed increment αopen = αclose = 3×10−6 .

Fig. 6. E. Coli indirect controller response on a PRV using a demand
profile between 10 and 15 l/s with speed increment αopen = αclose = 3×10−6.

another approach that uses an online identification of the

plant.

TABLE I

STATISTICAL DESCRIPTION OF PID AND E. COLI SIMULATIONS.

Simulation Mean Standard Settling
(mH2O) Deviation(mH2O) Time(s)

PID (Fig. 3) 29.93 0.75 250
E. Coli (Fig. 4) 29.99 0.67 40
E. Coli (Fig. 6) 30 1.05 150

B. Direct Case

The simulations shown in this section are based on an

identification model for a PRV. In order to get an approx-

imation of the system’s behavior we use an experiment,

where the PRV system is excited by the control signal u(t)
(opening times for servo-valves) to find the model ŷ that

captures the dynamics of the output pressure hout . Like it

was shown in the last section, we use NARX method to

choose the adequate structure of ŷ and its parameters. In

order to evaluate how good is our model, we perform three

tests after the training. The first one (Fig. 7-a) shows the

response of hout and ŷ to the input signal u(t) using the

same data of the backpropagation training. The second one

(Fig. 7-b) shows the response to new data (i.e., data that

are not used in the training test). The third one (Fig. 7-

c) is similar to the last test, but we do not use hout as

an input for our model. The first test does not have good

information about model generalization. For this reason, we

introduce the second test, where we evaluate the behavior

of the model to newer data. This last simulation suggests

that the model has good generalization property because we

obtain an error less than 1% between ŷ and hout . The third

test is used to see how the model can predict the behavior

of the plant over time without full information (i.e., we use

only the initial condition and u(t) from the experiment). This

test shows that ŷ and hout has a maximum error of 20%,

but the changes in both outputs have the same proportion.

The E. Coli direct controller has to find the best bacteria

that minimizes the cost function J
(

θ i
u(k),N,k

)

, i.e., to find

the best control signal û. The NARX model works as one

step predictor for the pressure output ŷ(k + 1). Figure 8-a

shows the response to several operation points. Figure 8-b

shows the control signal u. We can see some oscillations

in the output due to the error introduced in the reference

model ŷ. The real and the reference model differ in 10% in

some parameters, which emulates non exactly knowledge of

the plant. In contrast to the indirect case, here the control

signal u is shown in seconds, which represents the time of

aperture of each servo-actuator. The NARX model includes

in its dynamics the influence of qc in the control space, which

is helpful in the implementation of the controller because the

control signal u is referred to time and not to flow.
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Fig. 7. Plant identification: NARX technique with nu = 5, ny = 1, six
hidden layers, and 300 epochs. a) Training, b) Testing, c) Generalization.
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Fig. 8. E. Coli simulation using multiple operation points with S = 10,
N = 20, Ns = 4, and C = 0.02. a) PRV response, b) Control signal u(t).
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C. Discussion

The WDS simulation in this document is based on some

assumptions that simplifies the model complexity. First, we

assume that the flow is independent of the pressure based in

[11], although this assumption is not always valid. Next, we

do not describe when cavitation can appear, which may be

present when xm is low, and the water velocity is increased.

This phenomenon generates bubbles in the water and it

changes the PRV dynamics. Therefore, we try to present a

general model that includes the behavior of the pipes, valves,

and user dynamics in the system. These models have been

accepted in the literature [6], [12]. We use these models

in one part of this article to show that our control scheme

works fine in a theoretical scenario. However, we introduce

a system identification experiment in a PRV system in order

to implement our control algorithm.

Tuning a controller using the theoretical PRV model implies

almost three experiments to obtain the model parameters

like Acs, Cv, αopen, and αclose [5]. It is necessary to use

almost four sensors to measure the flow (i.e., qm) and the

pressure (i.e., hin, hout , and the pressure on the control

space). These issues make this alternative allowable only for

academics goals. Another alternative based in experimen-

tation is presented in [6], where a PID is tuned using the

Åström relay method [14]. They conclude that this technique

is not perfect and they are obligated to use a fine tuning

method to improve the controller performance, which implies

more time in experimentation without any knowledge on the

robustness. For these reasons, we are motivated to extract the

dynamics of the system via system identification. The NARX

experiment implemented uses one sensor to measure hout ,

and in our case, two solenoids valves as control elements.

We use two types of schemes to test the robustness of

the controller. The first one is based on the change of the

demand profile. Another one is based on the servo-valve

parameters. The first test suggests that the PID has settling

time problems in lower consumption. The second one shows

that the PID has to be tuned again every time when the plant

parameters change. Instead, our bioinspired approach does

not have problems in lower consumption, and it does not

have to be tuned again because it is adaptive. This implies

that the commissioning time decreases, which leads to have a

better service and savings for the company. Although the PID

controller offers a quick settling time to nominal conditions,

the Åström relay method does not guarantee the robustness of

the system. In contrast, the adaptive controller biologically

motivated by the E. Coli bacteria posesses the advantages

of the good controllers, as well as a good response when

the parameters change (i.e., robustness). Contrary to other

controllers, this one offers the feasibility to be used with

non-linear models in the approximators of the system, with

the possibility of real time operation.

V. CONCLUSION

We have shown in this paper an improvement to the

control scheme in a PRV. The demand variable and the

transients in the system make this problem a challenging

one in the controller design for a PRV. We extend the

results of previous works including two probable scenarios

like low consumption and plant changes, in order to test

the robustness of the controller. For that, we use a PRV

model, and an identified one. The behavioral model is used

to compare the performance of the proposed algorithm with

previous results using a PID. Then, the experimental model,

which is used to capture the system’s dynamics via system

identification (NARX), allows the controller implementation

using a specific servo-actuator in the plant. A modified E.

Coli algorithm is proposed to be applied using adaptive

control schemes. The algorithm offers some advantages over

the PID, like the incorporation of the non-linear model based

on system identification (i.e., NARX). Complexity is not

a barrier to implement it because the original algorithm

is simplified, and it is shown that it converges in a PRV

application. We obtain good responses to plant changes,

which suggests that this controller can be used in comercial

and industrial applications. In the future, we would like to

implement our controller in Florencia (Caquetá, Colombia),

where we want to improve the behavior of the PID controllers

which are now used to control the PRVs.
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